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1. Introduction 
 

When designing a structure, various reliability criteria 

should be met in accordance with the relevant standards 

(Vrouwenvelder 2002, Ang and Cornell 1974). Each 

random variable in the probabilistic computations contains 

uncertainties (Falsone and Settineri 2014, Kiureghian and 

Ditlevsen 2009) which may be broadly classified into two 

main categories: 

• aleatoric (stochastic) uncertainties of a random nature 

and 

• epistemic (state of knowledge) uncertainties that arise 

owing to imperfect knowledge on the part of the analyst. 

Typical sources of aleatoric uncertainties are material 

properties and production and/or assembly inaccuracies in 

the geometry or the environment where the structure should 

be located (Spackova et al. 2013, Sejnoha et al. 2007). 
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The final reliability of the structure is also affected by 

epistemic uncertainties which depend on the computational 

model used, statistical processing of input data, which also 

involves a human factor in the design process, and/or 

construction and use of the structure. 

Recently, two different approaches have been developed 

to address uncertainties. On the one hand, there are formal 

mathematical languages that work with degrees of truth 

(“fuzzy logic”) or degrees of membership of a set (“fuzzy 

set theory”) (Tao et al. 2017, Jafari and Jahani 2016, 

Antucheviciene et al. 2015). On the other hand here are 

methods based on probabilistic formalism (Ditlevsen and 

Madsen 1996). The dominant opinion is that probability 

calculus is the most convenient mathematical basis for 

evaluations of structural reliability and that probability-

based methods deserve to be further developed. 

These methods are known as: 

• analytical methods and 

• simulation methods. 

Analytical methods for the computations of failure 

probabilities and generalized reliability indices are often 

denoted under the abbreviation FORM (Hohenbichler and 

Rackwitz 1983). Methods that include the curvature 

correction of the limit state surface are known as SORM 

(Fiessler et al. 1979). Among methods for efficiently 

solving very complex problems, response surface and its 

modifications (Fang and Tee 2017, Zhao et al. 2017, 

Goswami et al. 2016) should not be omitted. There is a  
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Fig. 1 Histogram of a continuous random quantity X1 after 

discretization 

 

 

variety of software products based on direct Monte Carlo 

sampling, as well as on stratified methods. Beyond these 

approaches, there are a number of advanced Monte Carlo 

simulation techniques, see e.g., (de Angelis et al. 2015, 

Bhattacharjya et al. 2015, Roudsari and Gordini 2015, Neil 

2003, Ditlevsen and Madsen 1996, Saliby 1990, Melchers 

1989, Bucher 1988, Bjerager 1988). The advent of Markov 

chain Monte Carlo (MCMC) simulation techniques (Vargas 

et al. 2015) gave rise to a new approach called subset 

simulation, which is suitable for computing very small 

probabilities (Au and Beck 2001). 

This paper presents a new method, currently known as 

Direct Optimized Probabilistic Calculation (DOProC), 

which is based on the theorem of overall probability, and, as 

such, in principle belongs to the first category and primarily 

deals with aleatoric uncertainties. In this regard, the Point 

Estimate Method (PEM) should be mentioned here for 

DOProC might be compared to it or at least put into the 

category of PE methods. Recall with reference to 

(Rosenblueth 1981, He and Sallfors 1994) that PEM is a 

statistical method with which continuous probabilistic 

distributions are replaced by several discrete points. Their 

locations and weighting factors are optimized by matching, 

or approximately matching, the lowest three or five 

statistical moments. In case of n random variables the 

optimal PEM schemes are expressed in (He and Sallfors 

1994) for 2
n
, 2n, and 2

n
+2n points, which are referred to as 

the optimal ones. 

In DOProC, both statistically independent as well as 

correlated random variables are expressed by means of 

histograms. They are characterized either by a class 

(interval) of a given variable or by a set of correlated 

variables. If continuous random distributions (including 

parametric ones) are available, the continuous quantity is 

subdivided into intervals; see Fig. 1. All points representing 

these intervals are used in a special form of optimized 

numerical integration, without reducing their number as is 

typical of PEM. 

The novelty of the proposed method lies in its optimized 

numerical approach to the demanding nature of numerical 

integration. It is our belief that, despite tremendous 

achievements in the development of simulation techniques, 

the proposed method provides advantages in terms of 

effectiveness, variability, and competitiveness. 

This paper is organized as follows: the main concepts 

and relationships relevant to reliability computations are 

briefly recalled in Sec. 2. Sec. 3 describes the principles of 

Direct Optimized Probabilistic Calculation (DOProC). A 

few deliberately selected simple application examples are 

demonstrated in Sec. 4, followed by our conclusions 

(Sec. 5). 

The method is expounded in an expressively succinct 

manner in a few short international conference papers, and 

in detail in monograph (Janas et al. 2015) available in 

Czech language only. The DOProC method was introduced 

in the context of other probability methods in (Krejsa et al. 

2016a), along with a brief description of the principle of 

basic computational algorithm with the possibility of 

reducing computational steps using optimization 

procedures. The conference paper (Krejsa et al. 2016b) 

outlines further possibilities and the potential of the method 

developed in the context of application useful in 

engineering practice. 

 

 

2. Basic concept and formulae in reliability 
computations 

 

The load effect, E, is random in both time and space. 

Histograms are typically used to describe random variables 

in the loading process, but the load duration curves are also 

often applied. The structural resistance, R, depends on the 

computational model. The probability of failure pf is 

defined as 

   00  ERPZPp f
, (1) 

where 

0 ERZ  (2) 

is the safety margin. 

In general, the pf can be expressed as 

 

fD

nnf xxxxxxfp d,,d,d,,, 2121 Χ
, 

(2) 

where Df is the domain of failure, Z(X)≤0. The Z contains 

random input variables X = X1, X2, …, Xn, and 

fX(x1, x2, …, xn) is the corresponding joint density function. 

It is often difficult to determine the probability pf on the 

basis of the explicit calculation of the integral in Eq. (3). 

Unlike simulation methods, DOProC solves the integral of 

Eq. (3) directly and numerically, utilizing either the 

univariate histograms of statistically independent input 

variables Xi or the multivariate histograms of the vector X 

for correlated variables. 

 

 

3. Direct Optimized Probabilistic Calculation 
(DOProC) 

 

This section presents the fundamentals of DOProC. To 

begin with, Sec. 3.1 addresses the algorithms transforming 

(merging) histograms of input variables into the histogram 

of a function of these variables. Sec. 3.2 then converts the  
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derived formulae for calculating the pf. To make standard 

procedures efficient and able to compete, a sequence of 

optimization strategies is proposed in Sec. 3.4. The 

fundamental elements of the optimization process include: 

grouping of input/output variables, interval optimization, 

zonal optimization, trend optimization, parallelization, and 

combinations of these. 

 

3.1 Operations with histograms 
 

Each interval of the histogram of an input random 

variable Xj is characterized by its representative value xj,ij
 

and the probability of occurrence pXj(xj,ij
), where the number 

of intervals is ij=1, 2, …, Nj. As xj,ij
, one may select the 

midpoint, the local mean, or the local mode of the subset of 

random values (the outcomes of Xj) falling inside the 

interval. This allows us to use the probability mass 

functions of discrete variables as surrogates for histograms. 

For a combination of n random variables, both 

statistically independent and/or correlated, i.e. 

  



n

j

jjn XcXXgY
1

1 ,, , (4) 

we obtain 

 

 



n

njnj

j

i

inijiiXXXX

ii i

Y

xxxxp

yp

,,,2,1 2121

1 2







 
(5) 

for all xj,ij such that  


n

j ijj yxc
j1 , . 

Similarly, for the cumulative distribution function it 

holds 

 

 
njnj

n
j jijj

nj

inijiiXXXX

yxc

iiii

Y

xxxxp

yF

,,,2,1
,,,,,

2121

1 ,

21

 



 





. (6) 

 

 

Eventually, for independent variables Xj, j=1…n, Eq. (6) 

becomes 

 

     . 

1

,,,2
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1
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







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(7) 

These formulae can be easily modified for two discrete 

random variables X1, X2. In this case 

  221121, XcXcXXgY  , (8) 

c1, c2 being deterministic constants. Evidently, Eq. (5) can 

be rewritten as 

   

 

















2

2221

2121

2,221,11

21

,2,22

1

,2,1
,

,
1

i

iiXX

iiXX

yxcxc

ii
Y

xxcy
c

p

xxpyp

ii  
(9) 

and Eq. (6) will take the following form: 

   

 

  .,
1

2221

2,22
1

1,1
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2121

2,221,11
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1
1

,2,1
,







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







iiXX

xcy
c

x

i

iiXX

yxcxc

ii
Y

xxcy
c

p

xxpyF

ii

ii  
(10) 

Evidently, pY(y) expresses the probability of a single 

value y from all possible combinations x1,i1
 and x2,i2

 of the 

random variables X1 and X2, which correspond to the 

specification in Eq. (8). 

If the independent random variable X1 is represented by 

N1 values x1,i1
, and if the independent random variable X2 is 

represented by N2 values x2,i2
, then Eq. (8) can be used for 

the computation of kmax=N1 · N2 values for yk, where some 

values can be identical. Index k sets the order of possible 

combinations of x1,i1
 and x2,i2

, which pertain in accordance  

 

Fig. 2 Principles of numerical operations with two histograms for computations with Eq. (8) 
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Fig. 3 Histograms of two independent variables X1, X2. 

 

 

with Eq. (8) to yk. When making up a histogram of the 

random variable Y with NY classes, then the class yiY
 

involving yk is specified by its limits fulfilling the following 

condition 

   YYYY iikii y
y

yy
y

yy 






22

1
, (11) 

where y = y(iY) - y(iY-1) is the width of the class (the interval) 

in the histogram of Y. The probability of yk for the 

statistically independent X1 and X2 is 

      
 

 
21 ,2,1 kiik xpxpyp   (12) 

and the probability of the class yiY
 is 

   
k

ki ypyp
Y

 
(13) 

for each yk. 

The above procedure is graphically displayed in Fig. 2. 

In view of mathematical formalism, we state that the 

DOProC method is underlined by Eqs. (9) and (10). In case 

of two statistically independent variables X1, X2, Eqs. (7) 

and (10) are converted to 

     

 

   . 1
22

2

21

2,22
1

1,1

21

2211

,2,22

1

1

,
,2,1

iX

i

iX

xcy
c

x

ii
iXiXY

xpxcy
c

F

xpxpyF

ii
















  

(14) 

The nature of this method is demonstrated via the 

quotient of two random variables 

 
1

2
21,

X

X
XXgY  . (15) 

 
Fig. 4 Bivariate histogram of two correlated variables 

X3d
, X4d

. 

 

 

The resulting histogram is deliberately derived in two 

steps: 

(i) In the first step, we derive the probability mass 

function of Y which, in accordance with properly modified 

Eq. (9), takes the form 

   

 . ,

1,1

1121

2121

1,1

2,2

21

,1,1

,2,1
,











i

i

i

x

iiXX

iiXX

y
x

x

ii
Y

xyxp

xxpyp

 
(16) 

The use of Eq. (16) is illustrated through the following 

example, which allows us to present the algorithm 

alternatively in the matrix form. The univariate histograms 

of input variables are displayed in Fig. 3 for two statistically 

independent variables X1 and X2, and the bivariate 

histogram in Fig. 4 for statistically dependent (correlated) 

variables X3d
 and X4d

. 

Division of two discrete variables is formally denoted as 











25,20,15,10,5

35,30,25,20,15,10

1

2

X

X
Y . (17) 

The possible combinations satisfying Eq. (16) are put 

down in the form of quotients localized as the entries of the 

combination matrix; see Table 1. The first row stores the 

resulting probabilities pY(y) calculated from Eq. (16) and 

modified for independent variables in the following form 

     

   . 
1,1

1211

2211

1,1

2,2

21

,1,1

,2,1
,











i

i

i

x

iXiX

iXiX

y
x

x

ii
Y

xypxp

xpxpyp

 (18) 

The entries in the second row in Table 1 are all the 

possible values (outcomes) of the discrete variable Y=X2/X1. 

The entries in the matrix beneath this row (the 3rd to 7th 

rows) illustrate the possible combinations of these values. 

In particular, for y=2 and with reference to Fig. 3, we 

arrive at 
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     

       

. 11.005.04.025.01.01.0

30152010

1052

2121

21







XXXX

XXY

pppp

ppyp

 (19) 

 (ii) In the second step, the transition from the 

probability mass function of Y to the respective histogram 

of this variable is carried out in the standard way by 

allocating the points from the second row of the matrix (see 

Table 1), along with the corresponding probabilities, to the 

appropriate interval. 

In Table 1 there are thirty non-zero values which 

correspond to kmax=N1·N2=5·6=30. Considering the 

interval’s width y=0.5 yields the resulting histogram 

depicted in Fig. 5. If Eqs. (11) through (13) are used, it is 

possible to obtain yk and p(yk), which are listed in Table 2. 

For instance, for the class yiY
=2, where yk for 

k=1, 12, 23 and 29 are included in accordance with Eq. (11), 

the probability of that class is 

         

       

. 12.001.0010.001.0

2

2923121





 

ypypypyp

ypypypypyp kkkkiY

 (20) 

Using the values in Table 2, the characteristic values 

(the midpoint, mean, and mode) are determined for each 

class. 

 

 

 
Fig. 6 Histogram of Y = X4d 

/X3d
 for two correlated variables 

X3d
, X4d 

, y = 0.5 

 

 

A detailed computation will be now performed for two 

statistically correlated variables X3d
, X4d

 for which 

Y = X4d 
/X3d

 is expressed by a bivariate histogram in Fig. 4. 

Similarly to Eq. (19), for the correlated variables it 

immediately follows with reference to Fig. 4 that 

     

  . 28.0018.01.030,15

20,1010,52

43

4343





dd

dddd

XX

XXXXY

p

ppyp
 (21) 

The result of the probabilistic computation is a 

histogram with y=0.5 in Fig. 6. 

Table 1 Matrix of probabilities pY (y): row 1 includes realizations of the division X2/X1; row 2 includes the view 

outlining all possible combinations 

pY(y) 
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Fig. 5 Histogram of Y=X2/X1, y=0.5 

417



 

Petr Janas, Martin Krejsa, Jiri Sejnoha and Vlastimil Krejsa 

 

 

Table 2 Values yk=(x2/x1)k and p(yk) used for creation of the 

histogram Y=X2/X1 

k x1 p(x1) x2 p(x2) yk=(x2/x1)k p(yk) 

1 5 0.10 10 0.10 2.000 0.010 

2 10 0.25 10 0.10 1.000 0.025 

3 15 0.50 10 0.10 0.667 0.050 

4 20 0.10 10 0.10 0.500 0.010 

5 25 0.05 10 0.10 0.400 0.005 

6 5 0.10 15 0.20 3.000 0.020 

7 10 0.25 15 0.20 1.500 0.050 

8 15 0.50 15 0.20 1.000 0.100 

9 20 0.10 15 0.20 0.750 0.020 

10 25 0.05 15 0.20 0.600 0.010 

11 5 0.10 20 0.40 4.000 0.040 

12 10 0.25 20 0.40 2.000 0.100 

13 15 0.50 20 0.40 1.333 0.200 

14 20 0.10 20 0.40 1.000 0.040 

15 25 0.05 20 0.40 0.800 0.020 

16 5 0.10 25 0.20 5.000 0.020 

17 10 0.25 25 0.20 2.500 0.050 

18 15 0.50 25 0.20 1.667 0.100 

19 20 0.10 25 0.20 1.250 0.020 

20 25 0.05 25 0.20 1.000 0.010 

21 5 0.10 30 0.00 6.000 0.000 

22 10 0.25 30 0.00 3.000 0.000 

23 15 0.50 30 0.00 2.000 0.000 

24 20 0.10 30 0.00 1.500 0.000 

25 25 0.05 30 0.00 1.200 0.000 

26 5 0.10 35 0.10 7.000 0.010 

27 10 0.25 35 0.10 3.500 0.025 

28 15 0.50 35 0.10 2.333 0.050 

29 20 0.10 35 0.10 1.750 0.010 

30 25 0.05 35 0.10 1.400 0.005 

 

 

As for the computational algorithm, it is advisable to 

transform the bivariate histogram into the so-called 

condensed histogram. This conversion is evident from 

Fig. 7. Obviously, each class with a non-zero probability of 

the bivariate histogram corresponds to the class t of the 

 

Table 3 Description of the condensed histogram in Fig. 7 

for two correlated variables X3d
, X4d  

t x3d
 x4d

 p(t)=p(x3d 
,x4d

)t 

1 5 10 0.10 

2 5 15 0.05 

3 10 15 0.10 

4 10 20 0.18 

5 15 20 0.21 

6 20 20 0.10 

7 15 25 0.18 

8 20 25 0.07 

9 25 35 0.10 

   ∑ = 1.0 

 

 

condensed histogram with the probability p(t), in 

compliance with Table 3. Application of condensed 

histograms will be further discussed in Sec. 3.3. 

 

3.2 Computing the probability of failure for two 
random variables 

 

The probability of failure for two continuous random 

input variables can be expressed by the joint probability 

density function fR,E(r,e) for the load effect, E, and structural 

resistance, R. 

If R does not depend statistically on E, then 

fR,E(r,e)=fR(r)·fE(e), and Eq. (3) assumes the following well-

known form 

 

        , d d d 
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



 (22) 

where FR(e) is a distribution function of structural 

resistance. 

Passing from discretized continuous functions to their 

representative values, i.e., from probability density 

functions to histograms as their surrogates, we formally 

obtain the same result as that described in Eq. (22). To that 

end, recall Eq. (8). Setting c1=1, c2=-1 and further setting  

 
Fig. 7 Transformation of the bivariate histogram in Fig. 4 into the condensed histogram for two correlated random 

variables X3d
, X4d
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Fig. 8 Basic computation of the reliability function 

histogram, Z, of two random variables using DOProC 

 

 

X1=R, X2=E, and finally Y=Z with reference to Eq. (14), the 

probability becomes 

        
j

jEjRZf epeFFERPp 00 . (23) 

The original and most straightforward method used in 

DOProC follows Eq. (1) and the computation is performed 

as outlined in Fig. 8 

 

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
0

1

z

Z

Z

N

i

if zpp , (24) 

where p(ziZ
) is the probability of ziZ

 in the class 

iZ1, Nz = 0. The class Nz=0 is limited from above by z=0. In 

this process, it is necessary to calculate the histogram of Z 

and all classes for the use of Eqs. (12) and (13), and then pf 

from Eq. (24). The number of operations is proportional to 

the product kmax=NE·NR , where NE (NR) is the total number 

of classes in the histogram of E (R). 

To guarantee that DOProC becomes competitive and the 

numerical integration runs as effectively as possible, a 

variety of optimization strategies as been proposed in the 

sequel. To that end, the histogram of each input variable is 

split into zones 1, 2 and 3, see Figs. 9 and 10. Zone 1 

consists of the intervals which always give for any values of 

the remaining input variables the result Z≤0. The intervals 

falling in zone 3 always result for any values of the 

remaining input variables into Z>0. Zone 2, on the other 

hand, consists of the intervals which for the values of the 

remaining input variables either may or may not participate 

in a failure. Hence Z≤0 or Z>0. In Fig. 8 zones 2 and 3 are 

identified in the histograms for E and R. Zone 2 in both 

histograms R and E can be involved, but not necessarily, in 

the development of a failure. Zone 3 does not affect the 

failure. When calculating p f, the intervals of both 

histograms in zone 3 can be disregarded. Then the number 

 

Fig. 9 Histograms of input quantities with monotonic 

effects on the probability of failure 

 

 

Fig. 10 Histogram of input quantity with non-monotonic 

effects on the probability of failure 

 

 
Fig. 11 The final histogram of the reliability function Z 

obtained by DOProC after zonal optimization-the shortened 

pseudohistogram Z
*
 

 

 

of operations in this second approach is proportional to the 

product k
*
=(Nz = 0)

2
 if the width of the classes in both 

histograms is identical (this condition, however, does not 

need to be fulfilled - this then requires certain modifications 

in the computation.) 

If the computation is carried out based on Eqs. (12) 

and (13) for only k
*
 combinations, the result is an 

incomplete (shortened) pseudohistogram Z
*
 as outlined in 

Fig. 11. The number of classes in this pseudohistogram is 

less than the number of classes in the histogram Z. The 
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Fig. 12 The final histogram of the safety margin, Z, after 

trend optimization-the Z
**

 histogram contains only the 

negative part of the Z histogram 

 

 

obtained pf however, complies with Eq. (24) because 

negative part of the histogram Z is identical with that 

shortened pseudohistogram Z
*
. The second method can be 

used for the computation of pf only if zones 2 and 3 are 

specified. This is simple for two random variables because 

zone 2 in both histograms is limited by the values rmin 

and emax . 

The third method for the computation of pf making use 

of Eq. (24) consists in evaluating the part Z
**

 of Z, which 

meets the condition Z ≤ 0; see Fig. 12. In this case, Eq. (24) 

is modified as follows 
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. (25) 

Evidently, the identical formula emerges from Eq. (23). 

The failure can be analyzed explicitly only for two 

random variables. If there are several random variables, it is 

recommended to use another approach hereafter termed the 

trend optimization. 

This algorithm requires not only specification of the 

zones but also determination of a trend in numbering of the 

classes for histograms of E and R in order to minimize the 

number of operations. This is because the values ziZ
 in Z are 

not considered if ziZ
>0. The trend in the numbering (or the 

computation method) should be chosen such that the 

starting zone for each random variable is the one with the 

lowest number while the final zone is the zone with the 

highest number; see Figs. 9 and 10. 

If a part of the histogram of Z≤0, referred to as Z
**

, is 

analyzed, then the number of computational steps is 

approximately half the number of steps in the second 

approach described above. 

 

3.3 Statistically non-correlated random variables and 
a group of statistically correlated random variables 

 

Let Y be a random variable that is a function of non-

correlated random variables Xj, where j1, n, and let Xjd
 

be a group of correlated random variables, where jd1, m. 

Any constant ci is regarded as a statistically non-correlated 

variable with only one class and the probability p(ci)=1. 

Consquently 



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









dddd mj

nj

XXXX

XXXX
fY

,,,,,

,,,,,,

21

21



 . 
(26) 

The statistically correlated variables Xjd
 enter the 

computation in an ingenious manner utilizing only classes 

with a non-zero probability, i.e. incorporating the condensed 

histograms, see Fig. 7, for which it holds 
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t
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1. (27) 

The outcome of variable Y for any k
th

 combination of 

non-correlated variables Xj,ij
 and for the class t in the group 

of correlated variables Xjd,t is obtained from 

k
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where k is the serial number of classes in the combination 

of histograms. This number ranges in the interval 

k  1, kmax, where kmax is equal to 

TNNNNk nj  21max
, (29) 

where Nj is the number of classes (intervals) of the non-

correlated variable Xj. The probability of occurrence of yk 

for the k
th

 combination of classes of non-correlated random 

variables Xj and for the order t of the group of correlated 

random variables Xjd
 is equal to the product 
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Any value yk from the interval yiY
 has the probability 

p(yk). This value belongs to the class iY if the inequality in 

Eq. (11) is met. 

Probability p(yiY
) is the sum of probabilities of all values 

yk falling into the class yiY
 of the random variable Y as 

stipulated in Eq. (13). Then 

  1
1


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Y

Y

Y

N

i

iyp . (31) 

The procedure with statistically non-correlated random 

variables and a group of statistically correlated random 

variables will be elucidated in the following simple example 
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(32) 

The final histogram for Y is obtained by the approach 

based on Eq. (30); see Fig. 13. Fig. 14 shows the results for 

the class width y=0.5 and for non-correlated X1, X2 from 

Fig. 3, and for the correlated X3d
, X4d

 expressed by a 

bivariate histogram/condensed histogram in Figs. 4 and 7. 

It follows from Eq. (29) that the number of operations 

needed for computation of Y is proportional to the number 

of non-correlated variables n, to the number of classes Nj of 

each non-correlated variable, and to the number T of non-

zero classes in the group of random correlated variables Xjd
. 

For instance, if n=10, N1=N2=... ...=Nj=...=Nn=N=256 and 

T=16, then, in compliance with Eq. (29), kmax=256
10

 · 

10=1.2089·10
25

. This number is rather high, and the 

computation would be demanding even with high -

performance computers. In order to get over this obstacle 

DOProC makes use of optimization strategies already 
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outlined in Sec. 3.2 and summarized in the following 

Sec. 3.4. 

 

3.4 Optimization strategies of probabilistic 
computations 

 

The purpose of the optimization strategies are to 

minimize the number of computational operations. The 

following overview contains a brief description of the 

nature already developed optimization, while all 

possibilities are not still completely exhausted. The basic 

principles of the optimization techniques have been outlined 

only in (Janas et al. 2015, in Czech). 

 

3.4.1 Operation with random variables 
• Interval optimization means that the width of intervals 

Nj for random variables Xj are optimized in order to reduce 

the number of operations (the computer time needed) and to 

acquire the specified accuracy. Each random variable may 

otherwise affect the result, which is differently sensitive to 

it. This means that for more sensitive variables the number 

of classes is generally higher, for less sensitive ones it is 

lower. A limit value is a constant that has only one value 

(class). Reducing the number of classes of each variable is 

limited by the required accuracy of the calculation. A 

supporting tool is a sensitivity analysis. 

 
 

Detailed interval optimization has not been published 

yet. 

• Grouping - the purpose is to reduce the number of 

random variables n. It means that equivalent histograms are 

created for random variables as functions of the input 

random variables. In DOProC, any input random variable 

can be included in one group only and not in other groups. 

In the example above, let the number of statistically 

independent random variables be reduced using grouping 

from n=10 to n'=6 and the number of classes N=256 by 

interval optimization on average by 40 %, i.e., N'=154 (the 

decrease will not be the same in each class Nj in the 

practical example, because each random input variable 

affects the result differently). Then, the number of 

computational operations kmax'=2.134·10
14

 will be approx 

5.665·10
10

times less than the original value, what is very 

important for the calculation time. 

 

3.4.2 Optimization operations for pf 

• Zonal optimization takes into account the contribution 

of zones of the input random variables Xj and Xjd
 with 

respect to pf. Individual intervals are properly placed in the 

zones of all respective histograms as described in Sec. 3.2. 

• Trend optimization is based on the zonal optimization. 

It is necessary to specify for each input random variable the 

direction of changes, i.e., to predict the trend, which yield to  

 
Fig. 13 Principles of numerical operations with n statistically independent random variables X1, X2, ..., Xj, ..., Xn and 

with the group of m statistically correlated random variables X1d 
,  X2d 

, ..., Xjd 
, ...,  Xmd

 expressed using the so-

called condensed histogram 
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Fig. 14 Histogram of Y = (X2 + X4d

)/(X1 + X3d
) for X1, X2 and 

two correlated variables X3d
, X4d

, y = 0.5 

 

 

failures. The direction of the trend is given by the zone 

numbers 1, 2, or 3 for each histogram of the input random 

variables (see Figs. 9 and 10 and the text in Sec. 3.2). It is 

recommended to head from the boundary of zone 2 for zone 

3. In other words, from the classes of histograms 

substantially affecting the probability of failure, pf, to those 

with negligible or zero impact on it. If the value of a 

random variable tends to increase the value of safety 

margin, Z, further numerical combinations become pointless 

(Z may turn out to be negative with no impact on the value 

of pf). The number of combinations is then reduced to an 

indispensable minimum. 

Zonal and trend optimization can reduce the number of 

computational operations approximately by half from our 

experience up to now. Their effect is not as great as using 

grouping and interval optimization, but their significance is 

not negligible. All the optimization procedures can be 

combined. 

Both optimization procedures have been published early 

in the development of the method briefly in (Janas et al. 

2010). 

 

3.4.3 Parallelizing 
Some parts of the DOProC computations can be 

performed simultaneously in computers with two or more 

CPUs/cores. It is advisable to split the scope of operations 

into several parts. The number of those parts is the same as 

the number of available computational units. After parallel 

computations have been carried out, the partial results are 

compiled to create the final histogram of the quantity of 

interest, for instance, Z for probabilistic assessment. 

Parallelized computation can be combined particularly with 

interval optimization and with grouping. 

The possibilities of using the described method for 

parallel computations were briefly described in conference 

papers (Krejsa et al. 2016d, Krejsa et al. 2016e). 

 
 
4. Using DOProC 

 

4.1 Basic DOProC applications 
 

To demonstrate the probabilistic computation using the 

described algorithm, the ProbCalc software application 

 

Fig. 15 Static scheme of the column loaded with a system of 

random variable forces 

 

 

(Krejsa et al. 2014), developed for the practical use of 

DOProC, was used. If the goal is the reliability assessment 

of a structure, as well as the probability assessment in 

accordance with the Eurocodes (EC), the user can utilize the 

histogram of the analyzed reliability function, Z. The 

software, which is still under development, includes the 

optimization utilities (interval, zonal, trend optimization and 

parallelizing) discussed above, making it possible to reduce 

significantly the number of computational steps and, in turn, 

the computer time. 

One shortcoming of the ProbCalc code is its somewhat 

demanding user interface. This is due to the requirement 

that the code be universally applicable; but this challenge 

may be eliminated by creating custom-made application 

software, e.g., for the probabilistic design and reliability 

assessment of the anchoring reinforcement of long mine 

workings and underground constructions (Krejsa et al. 

2013) or for the probabilistic computation of fatigue cracks 

in steel structures and bridges subjected to cyclical 

loading (Krejsa et al. 2017, 2016c). 

 

4.2 Example with analysis of optimization steps 
 

The importance and rate of optimization steps are 

presented in the following example solved using ProbCalc 

code. The steel load-carrying component made from an 

HE300B profile is loaded by 2D bending and axial loads 

(simple compression) pursuant to the ultimate limit state 

and second-order theory. Attention was also paid to the 

impacts of initial imperfections. The static scheme of the 

structure is shown in Fig. 15. 

The computational model is defined analytically and is 

based on the direct stiffness method. The maximum 

horizontal displacement at the top of the column is 

expressed analytically by (Marek et al. 1995) 

 
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where WIN, EQ, DL, LL and SL represents the individual  
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load components according to the scheme in Fig. 15, a is 

the initial imperfection in column, l is the height of the 

column and K is defined by 
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where E is Young's modulus of steel and Iy is the moment of 

inertia in a relevant load plane. 

Then, the bending moment M in the critical cross-

section - in the fixed support of the column, and the normal 

stress in the outer fibers of this cross-section  are 

subsequently equal to 
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(36) 

The example includes 10 random input variables 

(vertical load: dead, long-lasting, and short-lasting; the 

horizontal load:  wind and earthquake; variability of cross-

section  variables,  yield  stress,  and  geometric 

imperfections), seven of which are statistically independent  

Table 4 Description of input variables in the example. 

Input variable Minimum Maximum Nj Histogram 

Column height l 6 m - - - 

Yield stress fy 200 MPa 435 MPa 217 FY235-01 

Dead load DL 260 kN 320 kN 256 DEAD1* 

Long-lasting load LL 0 kN 120 kN 256 LONG1* 

Short-lasting load SL 0 kN 75 kN 256 SHORT1* 

Wind WIN -45 kN 45 kN 256 WIND1* 

Earthquake EQ -30 kN 30 kN 256 EARTH* 

Geometric imperfections a -30 mm 30 mm 16 IMP016 

Variability of cross-section 

properties A, Wy and Iy 
- - 103 3DHE300B** 

Cross-sectional area A 13076 mm2 16048 mm2 10 1DHE300BA 

Cross-section modulus Wy 1.44·106 mm3 1.77·106 mm3 10 1DHE300BW 

Moment of inertia Iy 2.19·108 mm4 2.70·108 mm4 10 1DHE300BI 

* 
Histograms are taken from (Marek et al. 1995). 

** 
3D histogram was used for computation considering the statistical dependence of cross-section properties A, Wy 

and Iy . Histograms marked as 1DHE300BA, 1DHE300BW, and 1DHE300BI are based on this, as well. 

Table 5 Results of analysis of the optimization of probabilistic reliability assessment considering statistical 

independence of input random variables, specifications of reliability classes RC, and consequence classes CC 

according to EN 1990 

Optimization used Computer time* pf RC/CC 

Without optimization >> 24 hour computation was not performed 

Grouping of output quantities >> 24 hour computation was not performed 

Grouping of input quantities >> 24 hour computation was not performed 

Grouping of input variables, zonal optimization >> 24 hour computation was not performed 

Grouping of input variables, interval optimization 2:33:22 hours 5.6736·10-5 RC2/CC2 

Grouping of input variables, interval and zonal optimization 2:17:29 hours 5.5559·10-5 RC2/CC2 

Grouping of input variables, interval, zonal 

and the trend optimization 
1:20:43 hours 5.5559·10-5 RC2/CC2 

Grouping of input and output variables 37:05 min. 5.1330·10-5 RC2/CC2 

Grouping of input and output variables, zonal optimization 28:29 min. 5.2469·10-5 RC2/CC2 

Grouping of input and output variables, parallelization (2~cores) 9:06 min. 5.1330·10-5 RC2/CC2 

Grouping of input and output variables, interval optimization 4:30 min. 5.0480·10-5 RC2/CC2 

Grouping of input and output variables, zonal 

and interval optimization 
3:35 min. 5.8711·10-5 RC2/CC2 

Grouping of input and output variables, parallelization (8~cores) 3:20 min. 5.1330·10-5 RC2/CC2 

* 
The computation was performed on an Intel(R) Core(TM) processor i7-2600 CPU@3.40~GHz. 
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Table 6 Number of computing steps for probabilistic 

reliability assessment of individual types of optimization 

steps used considering statistical independence of input 

random variables 

Optimization 
Total number of 

computational steps 

Without optimization 4.13554·1018 

Grouping of output quantities 1.75235·1016 

Grouping of input quantities 2.27541·1011 

Grouping of input variables, 

zonal optimization 
1.83501·1011 

Grouping of input variables, 

interval optimization 
4.59571·109 

Grouping of input variables, 

interval, zonal optimization 
3.38479·109 

Grouping of input variables, interval, 

zonal and the trend optimization 
2.04303·109 

Grouping of input 

and output variables 
1.04858·109 

Grouping of input and output variables, 

zonal optimization 
8.22473·108 

Grouping of input and output variables, 

interval optimization 
1.35032·108 

Grouping of input and output variables, 

zonal and interval optimization 
1.06021·108 

 

Table 7 Results of analysis of the optimization of 

probabilistic reliability assessment considering correlated 

cross-section properties, specifications of reliability classes 

RC, and consequence classes CC according to EN 1990 

Optimization used 
Computer 

time* 
pf RC/CC 

Without optimization >> 24 hour 
computation was not 

performed 

Grouping of output 

quantities 
>> 24 hour 

computation was not 

performed 

Grouping of input 

quantities 

3:52:03 

hours 
5.2442·10-5 RC2/CC2 

Grouping of input and 

output variables 
1:09 min. 5.2467·10-5 RC2/CC2 

Grouping of input and 

output variables, 

parallelization (2~cores) 

19 sec. 5.2467·10-5 RC2/CC2 

Grouping of input and 

output variables, 

parallelization (8~cores) 

9 sec. 5.2467·10-5 RC2/CC2 

* 
The computation was performed on an Intel(R) Core(TM) 

processor i7-2600 CPU@3.40~GHz. 

 

 

and three are random variables which form a group of 

correlated random variables. For details, see Table 4. 

The computation was performed for the statistically 

non-correlated random input variables as well as for the 

statistically correlated cross-section characteristics. The 

obtained p f, computer time needed and the final 

classification into reliability classes, and consequences with 

statistically non-correlated variables are listed in Table 5. 

The number of operations, which depends on the number of 

optimization steps, is given in Table 6. A similar analysis 

was carried out with the statistically correlated cross-section  

Table 8 Number of computation steps in a probabilistic 

reliability assessment of the individual types of 

optimization steps used considering correlated cross-section 

properties 

Optimization 
Total number of 

computational steps 

Without optimization 9.50648·1016 

Grouping of output quantities 5.43227·1014 

Grouping of input quantities 5.68852·109 

Grouping of input 

and output variables 
3.25059·107 

 

Table 9 Results of probabilistic reliability assessment by the 

Monte Carlo method for one million simulation steps, 

specifications of reliability classes RC, and consequence 

classes CC according to EN 1990 

Number of computation pf RC/CC 

1 5.1·10-5 RC2/CC2 

2 5.7·10-5 RC2/CC2 

3 5.8·10-5 RC2/CC2 

4 6.8·10-5 RC2/CC2 

5 5.9·10-5 RC2/CC2 

6 6.3·10-5 RC2/CC2 

7 4.7·10-5 RC2/CC2 

8 4.9·10-5 RC2/CC2 

9 6.5·10-5 RC2/CC2 

10 5.2·10-5 RC2/CC2 

 

 

characteristics, which were expressed in a triple histogram 

(for results, see Tables 7 and 8). 

It follows from the results that the optimization 

techniques (such as grouping, interval optimization, zonal 

and trend analysis, and parallelizing) may considerably 

reduce the computation time at the expense of minor impact 

on the result without any influence on the class/level of 

reliability or the class of consequences in accordance with 

EN 1990. 

In order to verify the degree of accuracy of the DOProC, 

the probabilistic analysis was performed for the specified 

load-carrying element using the Monte Carlo method. In 

order to have objective comparison, results based on Monte 

Carlo simulations serve as an independent reference. One 

million simulations were repeated ten times; for partial 

results and comparison, see Table 9. The computer time 

needed for each computation was 24.5 seconds. The time of 

these computations is, of course, dependent on the way how 

the algorithm is implemented and on the computer 

performance. In this case, the computation was performed 

on an Intel(R) Core(TM) processor i7-2600 

CPU@3.40 GHz using the Anthill code (Marek et al. 1995). 

Results were slightly different when using DOProC 

method. If compared results from MC with DOProC (for 

instance, pf =5.1330·10
-5

 when grouping the input and 

output variables) the final pf obtained by the Monte Carlo 

method is comparable (the average pf obtained in 

10 repetitions was 5.69·10
-5

). 
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4.3 Analysis of results 
 

Based on the results stored in Tables 5-9 one can 

conclude: 

• Parallelized computations do not affect accuracy while 

significantly reduce the computer time. It is the most 

efficient strategy. 

• The spread in pf achieved utilizing different techniques 

in DOProc and stored in Table 5 is smaller than that 

obtained using MC (Table 9). 

• Applying multivariate histograms to express the 

statistical dependence of input variables appears to be duly 

effective for it reduces the number of operations as well the 

computer time. 

• It is worth noting that as oppose to MC-based 

approaches the application of DOProC does not come 

across any substantial complications when incorporating 

statistically dependent input variables. 

 

 

5. Conclusions 
 

The paper introduced the development of probabilistic 

methods and the use of such methods in the reliability 

assessment of structures. Particular attention was paid to a 

new method, DOProC, which is still under further 

development. DOProC appears to be a very efficient 

method whose solutions suffer only from numerical errors 

and errors resulting from discretization of input and output 

quantities. One shortcoming of DOProC is the considerable 

increase in the required computer time for probabilistic 

operations for models with many random variables. The 

maximum number of random variables depends on the 

complexity of this model and, importantly, whether it is 

possible to use any of the described optimization steps. 

DOProC has proved to be suitable not only for 

reliability assessment, but also for other probabilistic 

computations. A simple example was deliberately used to 

illustrate the calculation procedure. Optimization and 

parallelization of the method predetermine DOProC for the 

solution of the real problems of engineering practice, 

tentatively in the range typical of the standard analytical 

methods. For these kinds of computations ProbCalc can 

also be used (Krejsa et al. 2014). 

The possible applications for DOProC are far from 

exhausted. Other areas of investigation could include 

reliability assessment of structural systems, development of 

numerical approaches to make DOProC more efficient, and 

the use of parametric distributions for creating multi-

dimensional histograms. 
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