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1. Introduction 
 

In recent years, researches on composite structures in 

the order of micron and sub-micron scales have been 

growing, rapidly. The experimental researches by 

Herakovich in 2012 show that the material strength and 

stiffness in microscale are higher than their bulky materials 

which can be explained by the size or scale effects. Since, 

theories of classical continuum mechanics overlook the 

material length scale parameter, so they are not appropriate 

for microscale applications, and the use of related 

nonclassical theories such as the couple stress theory is 

necessary many theories have been introduced such as the 

couple stress theory Toupin (1962), Mindlin and Tiersen 

(1962), Mindlin (1963, 1964), Yang et al. (2002), the 

modified couple stress theory By Park et al. (2006), 

Kocaturk et al. (2013), Jahangiri et al. (2015), strain 

gradiant in 1998 by Nix and Gao, and the nonlocal elasticity 

by Eringen in (1972, 1983). Gürses et al (2012) investigated 

the effects of nonlocal parameter, mode numbers, sector 

angle and radius ratio on the vibration frequencies in detail. 

Modified strain gradient for non-classical sinusoidal 

plate model new non-classical microstructure-dependent 

sinusoidal plate model is developed based on the modified 

strain gradient by Akgöz and Civalek (2015). 

Recent proposed modified couple stress theory studied 

the isotropic Euler-Bernoulli beam by Park and Gao (2006). 
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Kapania and Raciti (1989) reviewed and compared classical 

laminated composite beams theories. Ghadiri et al (2016) 

investigated thermal stress of a simply supported micro 

laminated composite beam based on modified couple stress 

theory both analytically and nummerically. Mohammad-

Abadi and Daneshmehr (2015) have studied free vibration 

analysis of Euler-Bernoulli, Timoshenko and Reddy beams 

based on the modified couple stress theory for several 

boundary conditions and they considered the free vibration 

analysis of a simply supported beam analytically as well as 

GDQ method. 

Investigations on laminated microstructures with defects 

such as micro-cracks and impurities in laminated 

microstructures are of attention according to widely usage 

of composite materials in different scales. In this regard, 

Chen, and Li (2011) have suggested a new model for 

laminated composites. In 2011, they investigated bending 

for simply supported laminated composite beams with the 

first order shear deformation and solved the governing 

equations analytically. Bending of simply supported 

laminated composite Reddy beams were studied 

analytically by Chen and Sze (2012). Chen and Li (2013) 

studied free behavior of a simply supported laminated 

composite Timoshenko beam based on the new modified 

couple stress theory. Static bending and buckling behaviors 

of microbeams are investigated by Akgöz and Civalek 

(2015).  
For considering the size effect many researchers have 

been concentrated on the beam theories in the recent years. 

Some papers have been published on attempts of 

developing the couple stress beam models and applying 

them to examine nanobeams and other small beam-like 

members/devices. Vibration analysis of functionally graded 
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micro beams based on modified couple stress theory was 

done by Tounsi et al. (2015). The material length constants 

are predicted in the rotational equilibrium equations in the 

couple-stress theory. Miniature devices such as actuators or 

sensors (in small scale engineering applications) in micro-

electromechanical systems (MEMS) and nano-

electromechanical systems (NEMS) are often in the 

different forms with beams, plates and membranes which 

shows the importance of these models based on the couple-

stress and strain-gradient. A zeroth-order shear deformation 

theory for free vibration analysis of functionally graded 

(FG) nanoscale plates resting on elastic foundation based on 

using the nonlocal differential constitutive expressions was 

investigated by Tounsi and et al. (2016). In recent years 

many researches have been accomplished around FGMs 

and composite materials and related analysis have been 

considered, Ait Yahia et al. (2015), Belabed et al. (2014), 

Bellifa et al. (2016), Bennoun et al. (2016), Bouderba et al. 

(2013), Bourada et al. (2015), Bousahla et al. (2014), 

Hamidi et al. (2015), Houari et al.(2016), Mahi et al. 

(2015), Tounsi et al. (2016), Zemri et al. (2015), Beldjelili 

et al. (2016), Attia et al. (2015), Bouderba et al. (2016), 

Bousahla et al (2016), Draiche et al.(2016), Chikh et al. 

(2017), Bessaim et al. (2013). 

The size of elements in micro- and nano-

electromechanical systems (MEMS and NEMS) is very 

small and as a result, non-classical continuum theories such 

as the modified couple stress theory are appropriate for 

modeling these material behaviors. 

Beam structures are frequently found to be resting on 

the earth in various engineering applications. These include 

railway lines, geotechnical areas, highway pavement, 

building structures, offshore structures, transmission towers 

and transversely supported pipe lines. This motivated many 

researchers to analyze the behavior of beam structures on 

various elastic foundations.  

Studies on homogeneous isotropic beams resting on 

variable Winkler foundation are found in various papers. 

Zhou (1993) studied vibration of a uniform single span 

beam resting on variable Winkler elastic foundation. 

Employing the finite element method, Thambiratnam and 

Zhuge (1996) studied the free vibration analysis of beams 

resting on elastic foundations. Au et al. Zheng (1999) 

considered an Euler-Lagrangian approach with C1 

continuity functions for the vibration and stability analyses 

of non-uniform beams resting on elastic foundation. For 

two elastic foundation-parameters, Matsunaga (1999) 

studied the linear vibration of nonprismatic beams resting 

on two-parameter elastic foundations and non-homogenous 

microbeams embedded in an elastic medium is investigated 

based on modified strain gradient elasticity theory in 

conjunctions with various beam theories by Akgöz (2015). 

Ying et al. Lu and Chen (2008) presented solutions for 

bending and free vibration of FG beams resting on a 

Winkler-Pasternak elastic foundation based on the two-

dimensional theory of elasticity. However, works related to 

sandwich beams or composite laminated beams on variable 

Winkler foundation is limited in the literature. In some 

biomechanical, biomedical and MEMS applications, a 

microbeam is found to be embedded in elastic matrix. In 

addition thermo-mechanical vibration analysis of 

functionally graded (FG) beams and functionally graded 

sandwich (FGSW) beams are presented by Pradhan in 

(2009). 

In this study free vibration analyses of micro-sized 

composite laminated beams embedded in an elastic medium 

have been presented by using the modified couple stress 

theory. 

 

 

2. The modified couple stress theory 
 

The modified couple stress theory was presented by 

Yang et al. (2002), in which the strain energy U of the 

isotropic linear elastic material occupying region V can be 

written as 

1
( : : )

2
ij ij ij ij

v

U m dV   
 

( , 1,2,3)i j   (1) 

Where the strain tensor εij, stress tensor σij, curvature 

tensor χij
 
and deviatory part of the couple stress tensor mij 

can be defined as 

    , ,

1 1

2 2

T

ij i j j i jiu u u u         (2) 

( ) 2ij ij ij ijtr       (3) 

    , ,

1 1

2 2

T

ij i j j i ji             (4) 

22ij ijm    (5) 

The components of rotation vector are given by 

 1
2

curl u   (6) 

The Lame’s constants are μ and λ, where μ also is 

known as the shear modulus which is illustrated by G, and u 

shows the components of the displacement vector. E, v and 

B denote as Young’s modulus, Poisson’s ratio and the 

modulus of curvature or bending, respectively. ζ is the 

material length scale parameter and is explained as the 

material property of the couple stress theory and has the 

dimension of length. 

(1 )(1 2 )

E


 


 

 
(7) 

 
2(1 )

E
G


 



 
(8) 

2 2(1 )B B

E G





   (9) 

Constitutive relations of isotropic beams in Eq. (3) 

could not be written for composite materials. So, Cauchy 

stress-strain relation for kth ply of the laminated composite 

beam in local coordinate system (x′,y′,z) which x′ in  local 

coordinate system shows the fiber’s direction and can be 

rewritten as follows 
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(10) 

The stiffness matrix for kth ply of laminated composite 

beam in local coordinate system can be simplified as 
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While 
1

kE
 

and 
2

kE
 

are elastic moduli, 
12

kG , 
13

kG  and 

23

kG
 

are shear moduli and 
12

k  and 
21

k  are Poisson's ratios 

for the kth ply; the couple stress-curvature tensor can be 

written as 
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(13) 

θx′ 
Signifies the rotation about the x′-axis, θy′

 
shows the 

rotation about the y′-axis θz′ 
defines the rotation about the z′-

axis and A′ and B′ are introduced as 
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(15) 

Dissimilar to the isotropic beams, the laminated 

composite beams have three material length scale 

parameters. ζkm1 
is the y′-direction material length scale 

parameter concerns with ∂θy′/θy′, ∂θx′/θy′ and ∂θz′/θy′, ζkm2 is 

the z-direction material length scale parameter related to 

∂θy′/θz
 
and ∂θx′/θz

 
and ζkb is the x′-direction material length 

scale parameter concerns with ∂θx′/∂x′, ∂θy′/∂x′
 
and ∂θz/∂x′. 

This is obvious that these curvatures are not symmetric; 

however, the couple stress moments are symmetric. For 

isotropic materials, the couple stress moments and 

curvatures are symmetric. 

Looking at relations introduced in the local coordinate 

system, these matrices can be defined as 
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(17) 

Applying m=cosψ
k
 and n=sinψ

k
 while ψ

k 
is fiber angel 

with respect to the x-axis, the couple stress-curvature tensor 

and the stress-strain relation for the kth ply of laminated 

composite beams in the global coordinate system are 

defined as 
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Where 
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Fig. 1 Configuration of the beam and the coordinate system 

 
 
3. The laminated composite beam model 
 

 

Configuration of the coordinate system of the laminated 

composite beam is shown in Fig. 1 which length, width and 

thickness of the beam are L, b and h, respectively; u1, u2 and 

u3 are components of displacement vector in x, y and z 

direction, respectively and the displacement field for Reddy 

beam theory is described as 

 3

1 1

2

3

( ) ( ) ( ) ( )

0

( )

u u x z x c z x w x x

u

u w x

       





 (22) 

Where u(x) is the axial displacement of the mid-plane 

and w(x) is the deflection of the microbeam along the 

thickness (z-direction). Also ϕ(x) is the rotation angle of 

cross section about the y-axis with respect to the thickness 

direction. c1 is a constant introduced as 

21
4

3
c

h
  (23) 

Setting α=0 and ϕ(x)=∂w(x)/∂x in Eqs. (21) and (22) 

Euler-Bernoulli beam is achieved. In this case ,the cross 

section of the microbeam remains normal to the mid-plane 

and undistorted after deformation. 

Also, the thick beam theory (Timoshenko) is achieved 

by setting α=0; due to consideration of shear deformation, 

the cross section does not remain normal to the axial 

direction and it still remains plane and does not be distorted 

after deformation. 

Furthermore, one can obtain the relations of Reddy 

beam theory by setting α=1 and the shear stress vanishes on 

the upper and lower surfaces of the beam. So, there is no 

need to use shear correction factor in the Reddy beam 

theory unlike the Timoshenko beam theory. In addition, the 

cross section does not stay normal to the mid-plane and will 

be even undistorted after deformation in Reddy theory. 

Considering all beam theories, the rotation vector is 

defined by using the displacement field in Eq. (21) and can 

be simplified as 

 21 1
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The zero components of the strain and the curvature are 

defined by substituting Eq. (21) and (23) into Eq. (17) and 

can be written as 
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So, the nonzero components are defined as 
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The couple stress-curvature tensor and the stress-strain 

relation for the kth ply of laminated composite beams in the 

global coordinate system are simplified as 
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In the present work, other components of stress and 

couple stress-curvature tensors are not zero but they are 

existed in the governing equations. The coefficients in Eqs. 

(26) and (27) are written as 
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(29) 

A cross-ply laminated, mn=0 because ψ=π/2 or ψ=0, so 

coefficients in Eq. (27) are rewritten as the following 

4 4

11 11 22

k k kQ m C n C   

2 2

44 44 55

k k kQ m C n C   

2 4 2 4

44 44 55 1 55
ˆ k k k k

kb kmQ C m C C n    

2 2 2

66 2 44 55
ˆ ( )k k k

kmQ m C n C   

(30) 

For isotropic materials, by neglecting the Poisson ratio 

and applying the coefficients of Eq. (29) coefficients are 

archived as 

11 11 22

k k kQ C C E    

44 44 55

k k kQ C C G    

2 2

44 66
늿k kQ Q G     

(31) 

Considering the material length scale parameters equal 

to zero in Eq. (29), the coefficients for-classical laminated 

composite beams are achieved. 

 
 
4. Principle of Hamilton for laminated composite for 
thin beam theory 
 

The principle of Hamilton is used for achieving the 

equilibrium equations and the boundary conditions. The 

principle of virtual work for laminated composite beams of 

the couple stress theory can be defined by 

0
( ) 0

T

K U W dt     (32) 

The first variation of the total strain energy in the beam 

is represented as 
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The first variation of virtual work done by external 

forces in the beam is expressed as 
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(34) 

In which fu 
and fw 

are the x-and z-components of the 

body force per unit length of the beam, repectively. kw is 

the lateral reaction force due to elastic medium and fc is the 

body moment about the z-axis per unit length of the beam, (

c
A

f CdA   in which C is body couple per unit volume). 

N ,   V , M and Y  are the axial force,-transverse force, 

the first-order and the third order bending moments applied 

at the ends of the beam, respectively. fc also can be as below 
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(35) 

The first variation of the kinetic energy is 
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(36) 

The composite laminated governing equations and 

boundary conditions of thin beam achieved as below 
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(37) 

Where the boundary conditions are in the following 

form 
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(38) 

Governing equations of Euler-Bernoulli beam can be 

obtained by substituting ζkb=ζkm1=ζkm2=0 and isotropic 

material coefficients in Eq. (A.6) and 
44 0Q   in Eq. (39) 

and Eq. (40) as the following form 

 

22

4

22

2

0

4

4
2

2

2

02

2

tx
m

t

w
m

x

f
fkw

x

w
AEA

t

u
mf

x

u
EA

c
w

u































 

(39) 

 

 

5. The analytical solution of free vibration of Euler-
Bernoulli beam 

 

For illustrating this model, the governing and the 

boundary conditions explained analytically. It must be 

mentioned that this model expressed three-layer laminated 

which the thickness of each layer is equal to each other. In 

this model, fu, fw and C components of body force per unit 

length in x and z direction and the body couple per unit 

volume respectively assumed zero in this study. The 

composite laminated governing equations and the boundry 

conditions solved by the Fourier series expantions that 

satisfy the boundry conditions of hinged-hinged and writen 

as following: 

Hinged-hinged 

0u w M Y     at 0x   and x L  (40) 
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(41) 

Which Wn and ωn 
are the Fourier coefficient and natural 

frequency respectively and i
2
=−1. 

Substituting Eq. (40) in Eq. (38) governing equations of 

composite laminated Euler-Bernoulli beam written as 
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(42) 

Natural frequencies of composite laminated and 

isotropic beam written as 

4
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(43) 

 
 
6. The numerical solution of Euler-Bernoulli beam 
 

The results obtained in this paper focused on, effect of 

slenderness ratio (h/ζ) with various foundation on 

fundamental frequency of both isotropic and composite 

laminated beams by considering material length scale  
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Table 1 The properties of materials 

Isotropic 

beam 

E=E1=E2=1.44 GPa, G=G12=G13=G23= ,
)1(2 v

E


 

v=v12=v13=v23=0.38, ζ=ζkb=ζkm1=ζkm2=17.6×10-6 m, 

b=2h, L=20h 

Micro 

composite 

laminated 

beam 

E1/E2=25, E2=6.98 Gpa, v12=v13=v23=0.25, 

G12=G13=0.5E2, G23=0.2E2, L=200×10-6 m, 

b=25×10-6 m, h=25×10-6 m 

 

Table 2 The fundamental frequency of Euler-Bernoulli 

isotropic beam (Hz) 

  Elastic Foundation coefficient 

Ref 

Mohammad-
Abadi (2015) 

  k=103 k=104 k=105 k=106 k=107 k=0 

E
B

T
 

h=ξ 1.1639e+6 1.1690e+6 1.2188e+6 1.6359e+6 3.8189e+6 1.1632e+6 

h=5ξ 9.8191e+4 1.0059e+5 1.2199e+5 2.5002e+5 7.3404e+5 9.7921e+4 

h=10ξ 4.5414e+4 4.6706e+4 5.8071e+4 1.2361e+5 3.6655e+5 4.5267e+4 

 

 

Fig. 2 The fundamental frequency of composite laminated 

Euler-Bernoulli beam (0, 90, 0) (MHz) on elastic 

foundation 

 

 

parameter which defined in theory of modified couple 

stress. The material length scale parameter is concluded by 

experimental data while for micro composite laminated 

beam there is not experimental data, so for micro composite 

laminated beam, the material length scale parameter is 

assumed in order of material length scale parameter of 

epoxy that has been evaluated by Lam et al. (2003). 

Dimensions and properties of isotropic beam and micro 

composite laminated beam considered as Table 1. 

For obtaining the fundamental frequency of isotropic 

Euler-Bernoulli beam on elastic medium some numerical 

results which are function of slenderness ratio (beam 

thickness to length scale parameter ratio) (h/ζ) are depicted 

in Fig. 2 which achieved using material properties of 

isotropic beam in Table 1 considering various elastic 

foundation. For validating some numerical results achieved 

in Table 2, the elastic foundation coefficient is taken to be 

zero k=0 and the results show the accuracy of this attempt 

in comparision with Mohammad Abadi (2015). 

Fig. 2 presents  effects of slenderness ratio  h/ζ 

increasing for composite laminated Euler-Bernoulli beam 

 
Fig. 3 The fundamental frequency of composite laminated 

Euler-Bernoulli beams for different cross ply laminated 

beams such as (90,0,90), (0,90,0), (90,90,90) and (0,0,0), 

(MHz) on elastic foundation 

 

 

which achieved by increasing length of the beam for 

increasing slenderness ratio above the effect of increasing 

coefficient of elastic foundation in (0,90,0) composite 

laminated beam. 

It is observed in Fig. 3 for different cross ply laminated 

beams such as (90,0,90), (0,90,0), (90,90,90) and (0,0,0), 

the fundamental frequency is increased by increasing length 

scale parameter and assumed elastic foundation coefficient 

is k=10
7

 because of the effect of elastic medium on stiffness 

of chosen laminated beam. 

In all prepared models by increasing the slenderness 

ratio the fundamental frequencies decreased and also by 

increasing the stiffness of elastic medium the fundamental 

frequencies increased but in the composite laminated 

models in all types of cross ply laminated beams such as 

(90,0,90), (0,90,0), (90,90,90) and (0,0,0) there is a 

sensitivity in changing the stiffness coefficient for example 

when in Fig. 3 the zero laminated beam (0,0,0), the stiffness 

coefficient increased from 10
6

 to 10
7
 there is a noticable 

increase. Fig. 2 shows the variation of the fundamental 

frequency for cross ply laminated (0, 90, 0) based on 

CLEBB versus beam thickness to length scale parameter 

ratio (h/ζ) with ζb=25×10
-6

 m, L=20h and b=2h. It is 

necessary to notice that the width and length of beam 

increased due to b=2h and L=20h by increasing the beam 

thickness. In Fig. 3 length scale parameter (h/ζ) with 

ζb=25×10
-6

 m, L=20h and b=2h four types of lamination 

such as (90,0,90), (0,90,0), (90,90,90) and (0,0,0) are 

considered and effect of these cross ply laminated on the 

fundamental frequency of composite laminated beams are 

studied on elastic medium. 

As it can` be seen, the highest values of fundamental 

frequency are predicted by cross ply (0, 0, 0) laminated and 

the lowest values are obtained by cross ply (90, 90, 90) 

laminated and predicted values by cross ply (0, 90, 0) and 

(90, 0, 90) laminated lie between them. 
 
 
7. Conclusions 
 

In this study, free vibration of a anisotropic 
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microstructure-dependent model for a thin laminated 

composite beams, based on modified couple-stress theory, 

and for hinged-hinged boundary conditions on different 

types of cross ply laminations such as (90,0,90), (0,90,0), 

(90,90,90) and (0,0,0) were considered. The fundamental 

frequency has been defined by analytical. Also, the classical 

theory was achieved by considering the material length 

scale parameter, ζb=0
 

and it was compared with the 

modified couple-stress theory for different beam theories 

and the results illustrate that by considering the size effect, 

the stiffness of an anisotropic microstructure-dependent 

model for the thin laminated composite beams has been 

increased. For investigating different parameters including 

material length scale parameter, beam thickness, some 

numerical results on different cross ply laminated beams are 

presented in addition, the Fundamental frequency of 

different thin beam theory is investigated by increasing 

slenderness ratio and various foundations. The results prove 

that the modified couple stress theory increases the natural 

frequency under the various foundation for free vibration of 

composite laminated micro beams. 
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Appendix 
 

The coefficients strain energy formula can be expanded 

as 
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A.1 

Nx, Mx and Mxy in Bernoulli-Euler composite laminated 

beam in terms of displacement parameters can be written as 
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A.2 

And the coefficients in above equation ( 11111111 ,,, QIJQ ) 

are introduced in Eq. (A.4). By using Equation of stress-

strain relation and couple stress-curvature relation and 

(A.1), the state coefficients in Eq. (A.1) for composite 

laminated Timoshenko and Reddy beams beam in terms of 

displacement parameters can be given as 
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A.3 

Where 
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A.4 

By substituting Eq. (28) in Eq, (A.3), these coefficients 

for isotropic material simplified as 
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A.5 

Inertia coefficients that used in Eq. (38), where ρ is the 

mass density of the beam material and independent of time, 

given as 
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