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1. Introduction 
 

Contact problem is the one of the basic problems in the 

elasticity and has been widely studied due to its possible 

application to a variety of structures of practical interest 

such as foundation grillages, pavements in roads and 

runways, railway ballast, and other structures consisting of 

layered media. Numerous researchers have studied the 

contact problem using both numerical and analytical 

techniques. Most widely used numerical methods for 

contact mechanics are finite element method (Jing and Liao 

1990, Satis Kumar et al. 1996) and boundary element 

method (Graciani et al. 2005, Paris et al. 1995). 

Additionally different analytical methods have been used to 

solve contact problems. Civelek and Erdogan (1976) 

considered frictionless contact problem for an elastic layer 

lying on a rigid foundation. Giannakopoulus and Pallot 

(2000) examined two dimensional contact of rigid cylinder 

on an elastic graded substrate. Guler and Erdogan (2007) 

investigated frictional sliding contact problems of rigid 

parabolic and cylindrical stamps on graded coatings. 

Chidlow and Teodorescu (2014) investigated sliding contact 

problems involving inhomogeneous materials comprising a 

coating-transition layer-substrate and rigid punch. Chen et 

al. (2015) studied frictional contact of a rigid punch on a 

half plane with shear modulus varying exponential gradient 

in an arbitrary direction. Turan et al. (2016) solved 
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axisymmetric contact problem of FG layer using analytical 

method, finite element method and stiffness matrix method. 

Two dimensional tractive rolling contact problem between a 

rigid cylinder and an orthotropic half plane is considered by 

Alina et al. (2017). Guler et al. (2017) solved the plane 

frictional contact problem of a cylindrical punch on a 

functionally graded orthotropic medium by using analytical 

and computational methods. Oner et al. (2017) examined 

continuous contact problem of a functionally graded layer 

resting on a elastic half plane. 

Although in the majority of cases the contact area 

increases after the application of the load, there are others 

where the final contact area is smaller than the original, 

then such as contact is referred to as receding contact 

(Dundurs 1975). As a different point of view, a contact said 

to be a receding if the contact zone shrink as the two bodies 

are pressed against each other (Garrido and Lorenzana 

1998). Several studies were performed on the receding 

contact problems. Keer et al. (1972) handled the smooth 

receding contact problem between an elastic layer and a 

half space under the assumption of the plane and 

axisymmetric cases. The frictionless contact problem for an 

elastic layer supported by two elastic quarter planes was 

studied Erdogan and Ratwani (1974). Gecit (1986) 

investigated axisymmetric contact problem of semi-infinite 

cylinder compressed against a half space. Salamon (1989) 

developed simple algorithm for simulation of structural 

elements in receding/advancing, unilateral contact with 

independent constraints. Gorrido et al. (1991) applied BEM 

to receding contact problem with friction. Gorrido and 

Lorenzana (1998) solved receding contact problem using 

boundary element method. Double receding contact 

problem between rigid stamp and two elastic layers was 

considered by Comez et al. (2004). El-Borgi et al. (2006) 

studied a frictionless receding contact plane problem 

between a functionally graded layer and a homogenous  
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Fig. 1 Geometry and loading of the receding contact 

problem 

 

 

half-space. The receding contact problem between an 

anisotropic elastic layer on anisotropic elastic half-plane 

was considered by Kahya et al. (2007). Rhimi et al. (2009) 

investigated the axisymmetric receding contact problem 

between a functionally graded layer and a homogenous 

substrate. A double receding contact axisymmetric problem 

between a functionally graded layer and homogeneous half 

space is solved by Rhimi et al. (2011). Yaylacı and Birinci 

(2013) investigated receding contact problem for two elastic 

layers supported by two elastic quarter planes. El-Borgi et 

al. (2014) considered a frictional receding contact problem 

between a functionally graded layer and homogeneous half 

space. Receding contact problem for two elastic layers 

supported by a Winkler foundation was studied using 

analytical method and a finite element method by Oner et 

al.  (2014). Comez (2015) is studied moving contact 

problem for a rigid cylindrical punch and a functionally 

graded layer. Yan and Li (2015) handled double receding 

contact plane problem between a functionally graded layer 

and an elastic layer. Adiyaman et al. (2015) is solved a 

receding contact problem analytically and numerically. 

Parel and Hills (2016) solved frictional receding contact 

problem of a layer on a half plane subjected to semi-infinite 

surface pressure and a receding contact problem for two 

layer functionally graded media is investigated by Comez et 

al. (2016). 

In this paper, the frictionless and receding contact 

problem for an elastic layer resting on a half plane is solved 

using analytical method and a finite element method. 

Difference of this study than previous studies, first time, the 

effect of symmetric two stamps is examined in receding 

contact and the degree of accuracy is investigated by 

comparing numerical and analytical conclusions. The paper 

is organized as follows. In Section 2 and 3 , the formulation 

and analytical solution of the problem is given, respectively.  

A finite element model and finite element solution of the 

problem is described In Section 4, some of the calculated 

results obtained two different methods and compared with 

each other in Section 5. Finally, Section 6 summarizes the 

important conclusions of this study. 

 

 

2. Formulation of the problem 
 

As shown in Fig. 1, consider the symmetric plane strain 

problem consists of an infinitely long homogeneous layer of 

thickness h resting on a half plane. G1 and v1 are the shear 

modulus and Poisson’s ratio of the layer, respectively. 

Similarly, G2 and v2 are the shear modulus and Poisson’s 

ratio of the half space, respectively. 

The top of the layer is subjected to two concentrated 

load P by means of a rigid rectangular stamps replaced 

symmetrically. The main unknowns of the problem are the 

contact pressures, denoted p1(x) and p2(x), over the contacts 

area between the stamp and the layer (a≤x≤b) and between 

the layer and the half plane (0≤x≤c), respectively, and the 

receding contact half-length, namely c. 

It is assumed that the contact surfaces are frictionless 

and only compressive traction can be transmitted through 

the contact surfaces. In addition, x=0 is to be the plane of 

symmetry with respect to external loads as well as 

geometry, for simplicity. Clearly, it is sufficient to consider 

one half (i.e., x≥0) of the medium only. 

For a plain strain problem, equilibrium equations with 

body forces neglected, the strain-displacement relationships 

and the linear elastic stress-strain law, respectively, given by 
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2xy xyG                  (3c) 

where u and v  are the x and y components of the 

displacement field, respectively; σx, σy and τxy are the 

components of the stress field in the same coordinate 

system; εx, εy and εxy are the corresponding components of 

the strain field; and κ is a material property defined as 

κ=3−4v for plane strain problems.  

Combining Eqs. (1)-(3), the following two-dimensional 

Navier’s equations are obtained 

2 2 2

2 2
( 1) ( 1) 2 0

u u v

x y x y
 

  
    
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2 2 2
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v v u

x y x y
 

  
    
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The boundary conditions for the problem can be defined 

as follows 

1 1( , ) ( ) ( ) ( ),y x h p x H x a H b x     0 ,x    (5a) 

1
( , ) 0,xy x h          0 ,x        (5b) 

1 2( ,0) ( ) ( ),y x p x H c x   
      

0 ,x 
  

(5c) 

1
( ,0) 0,xy x 

          
0 ,x 

    
(5d)
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2 1
( ,0) ( ,0),y yx x 

        
0 ,x 

     
(5e)

 

2
( ,0) 0,xy x 

         
0 ,x 

      
(5f) 

where H is the Heaviside function and sub-indices 1 and 2 

represent the terms related to layer and half space, 

respectively. In addition, it is assumed that the stress field 

goes to zero at infinity 

2 2( , ) 0, ( , ) 0, ,y zyx y x y x y    
    

(6a,b) 

Global equilibrium conditions for the problem can be 

expressed as 

   1 1 1 2 2 2

0

,

b c

a

p x dx P p x dx P  
      

(7a,b) 

where P is concentrated load. In order to ensure continuity 

of the vertical displacement and eliminate rigid-body 

motion through the contact surfaces, the displacement field 

is subjected to following boundary conditions 

   1 2,0 ,0 0,v x v x
x


       

0 x c 
       

(8a) 

 1 , 0,v x h
x


        

a x b 
          

(8b) 

where v1 
is the vertical displacement of the layer whereas v2 

is the vertical displacement of the half plane. 

 
 
3. Solution of the contact problem 

 

Using symmetry considerations and Fourier transforms, 

the displacement components may be written 

       
0

2
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(9a) 
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(9b) 

where ϕ(ξ,y) and ψ(ξ,y) are the Fourier sine and Fourier 

cosine transforms of u and v with respect to the x-coordinate 

and y-coordinate, respectively. Substituting Eq. (9) into 

plane elasticity Eqs. (1)-(3), the following ordinary 

differential equations are obtained. 
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The unknown functions ϕ(ξ,y) and ψ(ξ,y) can be 

determined from the solution of the differential Eq. (10) as 

follows. 
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Substituting Eq. (11) into Eqs. (2),(3),(9), the 

displacement and stress field for homogeneous layer are 

obtained 
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Similarly, for half plane, the stress field for 

homogeneous layer can be expressed as follows 

assuming the stress field goes to zero at infinity. 
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Applying boundary conditions (5) to stress fields 

(13,15) the unknowns Ai (i=1,2,3,4) and AB (j=1,2) can be 

found (given Appendix A). In addition, applying remaining 

displacement boundary conditions (8) yields to following 

singular integral equations, in which the unknowns are 

contact pressure between the layer and the rigid stamp 

p1(t1), contact pressure between the layer and the half plane 

p2(t2), and receding contact half-length c 
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in which k1, k2, k3 and k4 are given in Appendix B. 

 
 
4. Numerical solution of singular integral equation 
 

Using following dimensionless quantities, the numerical 

solution of the problem can be simplified. 
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The singular Eq. (16) and equilibrium conditions (7) 

become 
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It is clear to notice that contact surface between the 

layer and the rigid stamp has stress singularity at the both 

edges of the stamp (a,b) (i.e., ϕ1(−1)→∞, ϕ1(1)→∞). As a 

result, the integral equation has a generalized Cauchy kernel 

with an index +1. For contact surface between the layer and 

the half plane, the integral equation has a generalized 

Cauchy kernel with an index -1 because of smooth contact 

at both ends (−c,c) Hence, the solution may be sought 

described in Erdogan et al. (1973) 

1 1 1 1( ) ( ) ( ),i ir w r g r   
2 0.5
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Using appropriate Gauss–Jacobi integration formulas, 

the solution of Eqs. (18),(19) may be expressed as a system 

of algebraic equations 
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where r1i, r2i, s1k, s2k, W1i, and W2i are known constants as 

shown in Appendix C.  

Note that the system of algebraic Eq. (22) are consist of 

(2N-1) equations in total for (2N+1) unknowns namely g1i, 

g2i (i=1,...,N) and c. In order to solve for (2N+1) unknowns, 

in addition to the system of equations given by (22), the 

global equilibrium conditions (23) are also used. Thus, the 

solution of the problem is reduced into the solution of the 

system consists of (2N+1) equations for (2N+1) unknowns. 

Note that the system is highly nonlinear in c, and an 

iterative procedure have to be used in order to determine 

these unknowns. In this procedure, firstly a prediction for 

unknown c is made and then a new value is chosen 

repeatedly until the value c satisfies the equilibrium 

conditions. 

 

5. Finite element solution 
 

In section 4, contact pressures are obtained by means of 

analytical method. Contact mechanics analyses are also  
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Fig. 2 The geometry for the analysis 

 

 

Fig. 3 Deformed geometry for FEM analysis 

 

 

performed using finite element method. In the FEM, 

structures are divided into a large number of predetermined 

elements and a lot of equation sets are attained combining 

this elements. With recent developments in computer 

technology and commercial package programs for FEM, 

solution of large number of equation sets is accomplished. 

In the literature, plane strain problems were modeled 

two dimensional (2D) instead of three dimensional (3D) due 

to very close results are obtained in both cases. (Ethison et 

al. 2005, Brizmer et al. 2006) Therefore two dimensional 

finite element model has been used in this study. Due to the 

problem exhibits symmetry in geometry, material 

proportions and loading, only half of the problem is 

modeled. Because of the horizontal displacement is zero on 

the symmetry axis, horizontal component of displacement 

(UX) is restricted throughout this surface. In addition, since 

displacement components becomes zero at infinity for the 

half plane, UX and UY (displacements in x and y directions) 

is restricted throughout the bottom surface of the half plane 

in the finite element model. The geometry and the applied 

load are shown symmetrically in Fig. 2 and the finite 

element model before analysis in Fig. 3. In the analyses, 

geometric properties are taken as L=10 m (length of the 

layer in x direction), h=1 m (thickness of the layer in x 

direction) and material properties are taken as E1=10000  

Table 1 The variation of c/h for various G1/G2 and (b+a)/2h 

G1/G2 

c/h 

(b+a)/(2h) 

=0.75 

(b+a)/(2h) 

=1 

(b+a)/(2h) 

=1.25 

(b+a)/(2h) 

=1.5 

(b+a)/(2h) 

=1.75 

Ana. FEM Ana. FEM Ana. FEM Ana. FEM Ana. FEM 

0.05 1.9197 1.9853 2.1816 2.0761 2.4393 2.1816 2.6924 2.2968 2.9432 2.4179 

0.1 1.9436 2.0087 2.2057 2.1000 2.4620 2.2060 2.7175 2.3205 2.9687 2.4425 

0.2 1.9890 2.0531 2.2517 2.1538 2.5110 2.2501 2.7655 2.3679 3.0173 2.4895 

0.4 2.0731 2.1370 2.3361 2.2287 2.5972 2.2292 2.8540 2.4529 3.1067 2.5753 

1 2.2818 2.3398 2.5458 2.4356 2.8099 2.5925 3.0703 2.6648 3.3269 2.7887 

2 2.5419 2.5861 2.8061 2.6906 3.0717 2.8548 3.3350 2.9281 3.5948 3.0542 

4 2.9036 2.9267 3.1676 3.0440 3.4333 3.1675 3.6980 3.2939 3.9603 3.4219 

*(b+a)/(2h)=0.75, κ1=κ2=2. 

 

 

MPa, 1=0.25. Other parameters are chosen compatible 

with analytical values. PLANE 183 elements are used for 

the modeling elastic layer and half plane. PLANE 183 

element consist of eight nodes and per nodes have two 

degree of freedoms: translations in the nodal x and y 

directions. 

Augmented Langrangian Method is used as the contact 

algorithm and contact areas are meshed by surface the 

surface contact elements: CONTA 172 and TARGE 169. 

CONTA 172 is used to represent the mechanical contact 

analysis. The target surface, defined by TARGE 169, was, 

therefore, used to represent 2D target surfaces for the 

associated contact elements CONTA 172 (Sofuoglu and 

Ozer 2008). A mesh refinement study is performed to 

decrease the percent error of solutions and determine the 

optimum mesh size for FEM. The percent error of solutions 

is checked for all models untill stable values and minimum 

errors are achieved, corresponding model obtained by mesh 

refinement study is used for all remaining finite element 

analysis. 

 

 

6. Numerical results 
 

The geometry and loading of the problem are given in 

Fig. 1. The height of the layer h is taken as 1. In addition, 

iterations are continued until the accuracy is less than 10
-5

 

for N=20. Some calculated results for contact distance and 

contact pressures obtained using analytical and finite 

element solution are shown in Tables 1, 2 and Figs. 4-10. 

Note that all quantities are dimensionless. 

Table 1 shows the half contact lengths c/h for various 

shear moduli ratios G1/G2 and the distance of the stamp 

from the symmetry axis (b+a)/2h. It is seen from the table 

that for a fixed value of G1/G2, c/h increases for increasing 

(b+a)/2h. Similarly for a fixed (b+a)/2h, increasing G1/G2 

results in an increment of the contact length.   

The variation of the half contact length c/h for various 

shear moduli ratios G1/G2 and the width of the stamp 

(b−a)/h is given in Table 2. It can be concluded that for a 

fixed values of G1/G2, c/h increases for increasing (b−a)/h. 

Figs. 4 and 5 show the variation of the contact pressure 

distribution between the layer and the stamp contact surface 

(p1(x1)/(P/h)) and the variation of the contact pressure  
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Table 2 The variation of c/h for various G1/G2 and (b−a)/h 

G1/G2 

c/h 

(b−a)/h=0.25 (b−a)/h=0.5 (b−a)/h=0.75 (b−a)/h=1 (b−a)/h=1.5 

Ana. FEM Ana. FEM Ana. FEM Ana. FEM Ana. FEM 

0.05 1.8700 1.9000 1.9149 1.9500 1.9853 2.0125 2.0761 2.1000 2.2968 2.3125 

0.1 1.8936 1.9250 1.9384 1.9625 2.0087 2.0375 2.1000 2.1125 2.3205 2.3375 

0.2 1.9385 1.9625 1.9837 2.0125 2.0531 2.0750 2.0538 2.1625 2.3679 2.3750 

0.4 2.0205 2.0375 2.0663 2.0750 2.1370 2.1500 2.2287 2.2375 2.4529 2.4500 

1 2.2159 2.2125 2.2642 2.2500 2.3398 2.3250 2.4356 2.4125 2.6648 2.6250 

2 2.4420 2.4250 2.5005 2.4625 2.5861 2.5500 2.6906 2.6375 2.9281 2.8625 

4 2.7442 2.6875 2.8218 2.7500 2.9267 2.8500 3.0440 2.9500 3.2939 3.1875 

*(b+a)/(2h)=1.25, κ1=κ2=2. 

 

 

Fig. 4 The variation of the p1(x1)/(P/h) for various 

G1/G2 ((b−a)/h=1.25, (b+a)/(2h)=1.25, κ1=κ2=2) 

 

 

Fig. 5 The variation of the p2(x2)/(P/h) for various 

G1/G2 ((b−a)/h=1.25, (b+a)/(2h)=1.25, κ1=κ2=2) 

 

 

distribution between the layer and the half plane contact 

surface (p2(x2)/(P/h)) for various shear moduli ratios G1/G2, 

respectively. It may be observed that p1(x1)/(P/h) goes to 

infinite at the end of the contact zone in Fig. 4. Significant 

changes aren’t observed on the contact stress distributions 

between the elastic layer and rigid stamps for increasing 

values of G1/G2. It can be seen from Fig. 5 that the peak 

value of the stress decreases for increasing values of G1/G2, 

whereas the stress values on the symmetry axis increase. In 

addition, the position of the peak value move away from the 

symmetry axis for increasing G1/G2. 

 

Fig. 6 The variation of the p1(x1)/(P/h)for various 

(b−a)/h ((b+a)/(2h)=1.25,G1/G2=4, κ1=κ2=2) 

 

 

Fig. 7 The variation of the p2(x2)/(P/h) for various 

(b−a)/h ((b+a)/(2h)=1.25, G1/G2=4, κ1=κ2=2) 

 

 

Fig. 8 The variation of the p2(x2)/(P/h)for various 

(b+a)/(2h)
 
((b−a)/h=1.25,G1/G2=4, κ1=κ2=2) 

 

 

The variation of the p1(x1)/(P/h) and p2(x2)/(P/h)
 

for 

various (b−a)/h, are given in Figs. 6 and 7, respectively. 

From Fig. 6, p1(x1)/(P/h)
 
decreases near the edge of the 

stamp for increasing (b−a)/h values. It can be concluded 

from Fig. 7 that increasing stamp width results in a 

reduction of the maximum stresses whereas the stresses on 

the symmetry axis increase. In addition, the distance 

between the symmetry axis and the position of the peak 

value increases. 
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Fig. 9 The variation of the p2(x2)/(P/h) for various 

G1/G2 and (b+a)/(2h) ((b−a)/h=1.25, κ1=κ2=2) 

 

 

Fig. 8 shows the variation of the contact pressure 

distribution between the layer and the half plane contact 

surface (p2(x2)/(P/h)) for various distances of the stamp 

from the symmetry axis (b+a)/2h. It can be seen from Fig. 

8, if distance of stamps from the origin increases, peak 

value of stresses move away from the symmetry axis and 

the stress values on the symmetry axis decreases. 

The variation of p2(x2)/(P/h) providing that the stress 

value on the symmetry axis goes to zero, i.e., the separation 

starts at the symmetry axis between the layer and the half 

space, for various G1/G2 
and (b+a)/(2h)

 
is given in Fig.9. 

The peak value of the stress decreases while the distance 

between the symmetry axis and the position of the peak 

value increases for increasing G1/G2and (b+a)/(2h) values. 

Fig. 10 shows the variation of p2(x2)/(P/h)providing that 

the stress value on the symmetry axis goes to zero for 

various (b−a)/h
 
and (b+a)/(2h). It can be concluded that, the 

peak value of the stress decreases while the distance 

between symmetry axis and the position of the peak value 

increases for increasing punch length and (b+a)/(2h). 

It is seen from all tables and figures that dimensionless 

contact half lengths and contact pressures distributions 

obtained from analytical solution and finite element 

solution agree very well. 

 

 
7. Conclusions 
 

In this paper, a frictionless receding contact of an elastic 

layer resting on homogenous half plane was considered. 

The layer was subjected to concentrated loads by means of 

rectangular stamps placed symmetrically. For analytical 

solution, using Fourier cosine and Fourier sine transforms 

the problem was converted into the solution of a Cauchy-

type singular integral equations in which the contact 

pressures and the receding contact half-length were the 

unknowns. The singular integral equation was solved 

numerically using Gauss-Jacobi integration formulation. An 

iterative procedure was employed to obtain the correct 

receding contact half-length that satisfies the global 

equilibrium condition. Two dimensional finite element 

 

Fig. 10 The variation of the p2(x2)/(P/h)for various 

(b−a)/h and (b+a)/(2h) (G1/G2=4, κ1=κ2=2) 

 

 

analysis of the problem is carried out using ANSYS. The 

effect of stamp size, stamp position and material properties 

on the contact pressure and on the half contact length were 

investigated using a parametric study. It is also verified that 

the difference between analytical solution and finite 

element solution carried out by ANSYS is in an acceptable 

range. 
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Appendix A 
 

The unknowns Ai (i=1,2,3,4) and Bj (j=1,2) can be 

written as follows 

   1 1 11 2 12

1

2

hA e P A P A  


           

(A.1) 

   2 1 21 2 22

1 hA e P A P A              

(A.2) 

   3 1 31 2 32

1

2

hA e P A P A  


   
       (A.3) 

   4 1 41 2 42

1 hA e P A P A              

(A.4) 

 1 2 11

1

2
B P B




               

(A.5) 

 2 2 21B P B                 (A.6) 

where A11, A12, A21, A22, A31, A32, A41, A42, B11, B12, and Δ are 

known functions. 

 2 2

11 1 1 2h hA e e h         2
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Appendix B 
 

k1, k2, k3 and k4 are given as: 

   4 2
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1
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Appendix C 
 

r1i, r2i, s1k, s2k, W1i, and W2i can be described as follows: 
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