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1. Introduction  
 

Carbon nanotubes are known as an excellent 

reinforcement for the composites due to their outstanding 

thermal, mechanical and electrical properties (Liew et al. 

2015). As reinforcements, CNTs may be distributed 

uniformly or according to a functionally graded pattern in a 

matrix (Kwon et al. 2013). As a result a novel class of 

materials known as functionally graded carbon nanotube 

reinforced composites (FG-CNTRC) may be achieved 

which have the properties of FGMs and CNTs together. 

Shen (2009) was the first who compared the structural 

behaviour of FG-CNTRC and uniformly distributed (UD)-

CNTRC rectangular plates under the action of uniform 

lateral pressure. It is shown that, bending moments may be 

alleviated significantly through usage of CNTs in a 

functionally graded pattern. Following this work, various 

researches are reported up to now on the behaviour of 

composites reinforced with functionally graded CNTs. In 

the next, an overview of the works on free vibration of FG-

CNTRC plates and panels is provided. 

Kiani (2016a) investigated the free vibration 

characteristics of moderately thick FG-CNTRC rectangular 

plates integrated with two identical piezoelectric layers 

perfectly bonded to the top and bottom surfaces of the plate. 

Both open circuit and closed circuit electrical boundary 

conditions are taken into consideration for the plate and 

mechanical boundary conditions are chosen arbitrarily. 

Kiani (2017a) obtained the natural frequencies and mode 
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shapes of FG-CNTRC rectangular plates located on point 

supported. The constraints of point supports are inserted 

into the total functional of the plate using the concept of the 

Lagrangian multipliers. Based on the concept of negative 

stiffness, Mirzaei and Kiani (2016a) obtained the 

frequencies of rectangular FG-CNTRC plates containing a 

centric cut-out using the conventional Ritz method. Free 

vibrations of cylindrical panels and spherical panels are 

studies by Mirzaei and Kiani (2016b), Kiani (2017d) using 

the Ritz method. In the analysis of Mirzaei and Kiani 

(2016b) the Chebyshev polynomials are used as the basic 

functions to construct the shape functions whereas the 

analysis of Kiani (2017d) uses the Gram-Schmidt process to 

generate an orthogonal set of shape functions suitable for 

arbitrary combinations of boundary conditions. Zhang et al. 

(2015a) obtained the mode shapes and natural frequencies 

of triangular plates using the first order shear deformation 

theory and element-free IMLS-Ritz method. Natarajan et al. 

(2014) developed a finite element formulation based on the 

QUAD-8 shear flexible element to analyse the free 

vibration of FG-CNTRC plates and sandwich plates with 

FG-CNTRC face sheets based on a higher order shear and 

normal deformable plate theory. Numerical results of this 

study are confined to plates with simply supported edges. 

Based on an element free IMLS Ritz formulation, Zhang et 

al. (2015b) obtained the natural frequencies of FG-CNTRC 

rectangular plates resting on a two parameters elastic 

foundation. 

Malekzadeh and Zarei (2014) developed a two 

dimensional generalised differential quadrature solution to 

obtain the natural frequencies of arbitrary quadrilateral 

plates containing FG-CNTRC layers. Zhang et al. (2015c) 

obtained the natural frequencies of skew plates using a 
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mesh-free method based on the first order shear 

deformation plate theory. Kiani (2016b) applied the Ritz 

method to the total functional of a skew FG-CNTRC plate 

to obtain the natural frequencies of the plate with arbitrary 

boundary conditions. In this research a transformation is 

provided to use an oblique coordinate system instead of the 

conventional Cartesian system. Garcia-Macias et al. (2016) 

also obtained the natural frequencies of skew plates. The 

shell element is formulated in an oblique coordinates. The 

theoretical development rests upon the Hu-Washizu 

principle. 

In comparison to linear free vibration of FG-CNTRC 

plates, less attention is devoted to nonlinear free vibration. 

This is expected due to the geometrically nonlinear nature 

of the governing equations for large amplitude vibrations 

which makes the solution method more complicated. Wang 

and Shen (2011, 2012a, b) and Shen and Xiang (2014) 

applied the two step perturbation technique to obtain the 

nonlinear frequencies of an FG-CNTRC rectangular plate, 

sandwich plates with FG-CNTRC face sheets and FG-

CNTRC cylindrical panel. Solution method of these 

researches is suitable for plates which are simply supported 

all around in flexure while are movable or immovable in 

axial direction. Various effects such as elastic foundation 

and thermal environment and temperature dependency of 

constituents are also taken into account. Fan and Wang 

(2016) investigated the effects of matrix cracking on linear 

and nonlinear frequencies of completely simply supported 

FG-CNTRC rectangular plates using the von Kármán plate 

formulation and a two step perturbation technique. 

As the above literature survey reveals, nonlinear free 

vibration of rectangular FG-CNTRC plates has been the 

subject of a few researches. However all of those researches 

are limited to plates which are simply supported all around 

and the nonlinear vibration mode shape and linear vibration 

mode shape are chosen the same. The present research 

proposes a solution method based on the Chebyshev-Ritz 

method suitable for arbitrary combinations of boundary 

conditions in FG-CNTRC plates. However, results of this 

study are confined to plates with simply supported or 

clamped edges. Numerical results are compared with the 

available data in the open literature to assure the accuracy 

and correctness of the developed formulation. Afterwards 

parametric studies are given to explore the influences of 

involved parameters on the nonlinear frequencies of the 

plate. 

 

 

2. Basic formulation 
 

Consider a composite plate reinforced with aligned 

single walled carbon nanotubes (SWCNT). As usual, 

thickness, width and length of the plate are denoted by, ℎ, 

𝑏 and 𝑎, respectively. An orthogonal coordinate system is 

assigned to the center of the mid-plane of the plate. 

Therefore plate occupies the domain −0.5𝑎 ≤ 𝑥 ≤ +0.5𝑎, 

−0.5𝑏 ≤ 𝑦 ≤ +0.5𝑏, and −0.5ℎ ≤ 𝑧 ≤ +0.5ℎ.  

SWCNT as reinforcements may be uniformly 

distributed (UD) or functionally graded (FG) according to a 

prescribed dispersion for volume fraction of CNTs. This  

Table 1 Volume fraction of CNTs as a function of thickness 

coordinate for various cases of CNTs distribution  

CNTs Distribution 𝑉𝐶𝑁 

UD CNTRC 𝑉𝐶𝑁
∗  

FG-O CNTRC 2𝑉𝐶𝑁
∗ (1 − 2

|𝑧|

ℎ
) 

FG-X CNTRC 4𝑉𝐶𝑁
∗
|𝑧|

ℎ
 

FG-V CNTRC 𝑉𝐶𝑁
∗ (1 + 2

𝑧

ℎ
) 

 

 

type of composite is referred to as functionally graded 

carbon nanotube reinforced composite (FG-CNTRC). 

Various types of functionally graded profiles may be 

considered for the FG-CNTRC. However due to their 

consistency with the fabrication processes, only linear 

distributions of volume fraction of CNT across the plate 

thickness have attracted attention. Three types of FG-

CNTRC are considered in the present research which are 

FG-O, FG-V and FG-X. 

In Table 1 distribution function of CNTs across the plate 

thickness is provided. 

It is easy to check from Table 1 that, all of these types 

have the same value of volume fraction. The total volume 

fraction across the plate thickness in all of these cases is 

equal to 𝑉𝐶𝑁
∗ . In FG-X type, distribution of CNT is 

maximum near the top and bottom surfaces whereas the 

mid-plane is free of CNT. For FG-O, however, top and 

bottom surfaces are free of CNTs and the mid-surface of the 

plate is enriched with CNTs. In FG-V type, the top surface 

is enriched with CNT and the bottom surface is free of 

CNT. In UD type, each surface of the plate through the 

thickness has the same volume fraction of CNTs. 

Generally, the effective mechanical properties of the 

FG-CNTRC rectangular plate are obtained using the well-

known homogenization schemes, such as Mori-Tanaka 

scheme (Shi et al. 2004) or the rule of mixtures (Fidelus et 

al. 2005). For the sake of simplicity, in the present research, 

the rule of mixtures is used to obtain the properties of the 

composite plate. However to account for the scale 

dependent properties of nanocomposite media, efficiency 

parameters are introduced. This approach has been used 

extensively for beams, plates and shells (Tohidi et al. 

(2017), Mohammadimehr et al. (2016) and Mosallaie 

Barzoki et al. 2015). Accordingly, the effective material 

properties may be written as 

𝐸11 = 𝜂1𝑉𝐶𝑁𝐸11
𝐶𝑁 + 𝑉𝑚𝐸

𝑚 
𝜂2
𝐸22

=
𝑉𝐶𝑁

𝐸22
𝐶𝑁 +

𝑉𝑚
𝐸𝑚

 

𝜂3
𝐺12

=
𝑉𝐶𝑁

𝐺12
𝐶𝑁 +

𝑉𝑚
𝐺𝑚

 

(1) 

In the above equations, 𝜂1, 𝜂2 and 𝜂3 are the so called 

efficiency parameters and as mentioned earlier are 

introduced to account for the size dependent material 

properties of the plate. These constants are chosen to equal 

the obtained values of elasticity moduli and shear modulus 

from the present modified rule of mixtures with the results 

obtained according to the molecular dynamics simulations 
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(Shen 2011). In Eq. (1), 𝐸11
𝐶𝑁 , 𝐸22

𝐶𝑁  and 𝐺12
𝐶𝑁  are the 

elasticity moduli and shear modulus of SWCNTs, 

respectively. Furthermore, 𝐸𝑚  and 𝐺𝑚  indicate the 

corresponding properties of the isotropic matrix. 

In Eq. (1), volume fraction of CNTs and matrix are 

denoted by 𝑉𝐶𝑁  and 𝑉𝑚 , respectively, which satisfy the 

condition 

𝑉𝐶𝑁 + 𝑉𝑚 = 1 (2) 

The effective Poisson ratio depends weakly on position 

(Shen 2011) and is expressed as 

𝜈12 = 𝑉𝐶𝑁
∗ 𝜈12

𝐶𝑁 + 𝑉𝑚𝜈
𝑚 (3) 

Conventional rule of mixtures approach is used to obtain 

the equivalent mass density of the composite media which 

reads (Wang and Shen 2011, 2012a) 

𝜌 = 𝑉𝐶𝑁𝜌
𝐶𝑁 + 𝑉𝑚𝜌

𝑚 (4) 

where in the above equation, 𝜌𝐶𝑁 and 𝜌𝑚 are the mass 

density of the constituents. 

First order shear deformation theory (FSDT) of plates 

suitable for moderately thick and thick plates is used in this 

study to estimate the kinematics of the plate (Reddy 2003). 

According to the FSDT, displacement components of the 

plate may be written in terms of characteristics of the mid-

surface of the plate and cross section rotations as 

𝑢(𝑥, 𝑦, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑦, 𝑡) + 𝑧𝜑𝑥(𝑥, 𝑦, 𝑡) 

𝑣(𝑥, 𝑦, 𝑧, 𝑡) = 𝑣0(𝑥, 𝑦, 𝑡) + 𝑧𝜑𝑦(𝑥, 𝑦, 𝑡) 

𝑤(𝑥, 𝑦, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑦, 𝑡) 

(5) 

In the above equation 𝑢, 𝑣, and 𝑤 are the through-the-

length, through-the-width and through-the-thickness 

displacements, respectively. Mid-plane characteristics of the 

plate are designated with a subscript 0. Besides, transverse 

normal rotations about the 𝑥 and 𝑦 axes are denoted by 

𝜑𝑦 and 𝜑𝑥, respectively. 

Following the FSDT, in-plane strain components are 

written in terms of mid-plane strains and change in 

curvatures. Besides, through-the-thickness shear strain 

components are assumed to be constant. Therefore, one may 

write 

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}

 
 

 
 

=

{
 
 

 
 
휀𝑥𝑥0
휀𝑦𝑦0
𝛾𝑥𝑦0
𝛾𝑥𝑧0
𝛾𝑦𝑧0}

 
 

 
 

+ 𝑧

{
 
 

 
 
𝜅𝑥𝑥
𝜅𝑦𝑦
𝜅𝑥𝑦
𝜅𝑥𝑧
𝜅𝑦𝑧}

 
 

 
 

 (6) 

To account for the large deflection of the plate in free 

vibration regime, von Kármán type of geometrical 

nonlinearity is used. Accordingly, the mid-surface 

components of strain take the form  

{
 
 

 
 
휀𝑥𝑥0
휀𝑦𝑦0
𝛾𝑥𝑦0
𝛾𝑥𝑧0
𝛾𝑦𝑧0}

 
 

 
 

=

{
 
 

 
 
𝑢0,𝑥 + 0.5𝑤0,𝑥

2

𝑣0,𝑦 + 0.5𝑤0,𝑦
2

𝑢0,𝑦 + 𝑣0,𝑥 + 𝑤0,𝑥𝑤0,𝑦
𝜑𝑥 + 𝑤0,𝑥
𝜑𝑦 +𝑤0,𝑦 }

 
 

 
 

 (7) 

and the components of change in curvature compatible 
with the FSDT are 

{
 
 

 
 
𝜅𝑥𝑥
𝜅𝑦𝑦
𝜅𝑥𝑦
𝜅𝑥𝑧
𝜅𝑦𝑧}

 
 

 
 

=

{
 
 

 
 
𝜑𝑥,𝑥
𝜑𝑦,𝑦
𝜑𝑥,𝑦 + 𝜑𝑦,𝑥
0
0 }

 
 

 
 

 (8) 

where in the above equations (),𝑥  and (),𝑦  denote the 

derivatives with respect to the 𝑥  and 𝑦  directions, 

respectively. 

For linear elastic materials, stress field may be written 

as a linear function of strain field as 

{
 
 

 
 
𝜍𝑥𝑥
𝜍𝑦𝑦
𝜏𝑦𝑧
𝜏𝑥𝑧
𝜏𝑥𝑦}

 
 

 
 

=

[
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄12 𝑄22 0 0 0
0 0 𝑄44 0 0
0 0 0 𝑄55 0
0 0 0 0 𝑄66]

 
 
 
 

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
𝛾𝑦𝑧
𝛾𝑥𝑧
𝛾𝑥𝑦}

 
 

 
 

 (9) 

Here 𝑄𝑖𝑗 ’s (𝑖, 𝑗 = 1,2,4,5,6) are the reduced material 

stiffness coefficients compatible with the plane-stress 

conditions and are obtained as follow 

𝑄11 =
𝐸11

1 − 𝜈12𝜈21
, 𝑄22 =

𝐸22
1 − 𝜈12𝜈21

,  

 𝑄12 =
𝜈21𝐸11

1 − 𝜈12𝜈21
 

𝑄44 = 𝐺23, 𝑄55 = 𝐺13, 𝑄66 = 𝐺12 

(10) 

The governing equations for the nonlinear free vibration 

analysis of a plate may be obtained according to the 

Hamilton principle (Reddy 2003). For the nonlinear free 

vibration problem, where the external forces are absent, 

Hamilton principle takes the form 

∫  
𝑡2

𝑡1

𝛿(𝑈 − 𝑇)𝑑𝑡 = 0 

𝑡 = 𝑡1, 𝑡2: 𝛿𝑢0 = 𝛿𝑣0 = 𝛿𝑤0 = 𝛿𝜑𝑥 = 𝛿𝜑𝑦 = 0 

(11) 

where 𝛿𝑈 is the virtual strain energy of the FG-CNTRC 

plate which may be calculated as 

𝛿𝑈 = ∫  
+0.5𝑎

−0.5𝑎

∫  
+0.5𝑏

−0.5𝑏

∫  
+0.5ℎ

−0.5ℎ

(𝜍𝑥𝑥𝛿휀𝑥𝑥 + 𝜍𝑦𝑦𝛿휀𝑦𝑦 + 𝜏𝑥𝑦𝛿𝛾𝑥𝑦 

+𝜅𝜏𝑥𝑧𝛿𝛾𝑥𝑧 + 𝜅𝜏𝑦𝑧𝛿𝛾𝑦𝑧)𝑑𝑧𝑑𝑦𝑑𝑥 

(12) 

Where the shear correction factor is set to 𝜅 = 5/6. 
Also 𝛿𝑇 is the variation of kinetic energy of the plate 

which also may be written as 

𝛿𝑇 = ∫  
+0.5𝑎

−0.5𝑎

∫  
+0.5𝑏

−0.5𝑏

∫  
+0.5ℎ

−0.5ℎ

 

𝜌(𝑧)(�̇�𝛿�̇� + �̇�𝛿�̇� + �̇�𝛿�̇�)𝑑𝑧𝑑𝑦𝑑𝑥 

(13) 

 

 

3. Solution procedure 
 

While the complete set of nonlinear equations and the 

associated boundary conditions for the nonlinear free 

vibration problem may be achieved through the application 

of Green-Gauss theorem to the expression (11), energy 

based methods also may be used to deduce the governing 

equations associated to the Eq. (11). In the present research, 
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the conventional Ritz method with Chebyshev basis 

polynomials is used to extract the motion equations in a 

matrix representation. Accordingly, each of the essential 

variables may be expanded via Chebyshev polynomials and 

auxiliary functions such that 

𝑢0(𝑥, 𝑦, 𝑡) = 𝑅
𝑢(𝑥, 𝑦)∑  

𝑁𝑥

𝑖=1

∑ 

𝑁𝑦

𝑗=1

𝑈𝑖𝑗(𝑡)𝑃𝑖(𝑥)𝑃𝑗(𝑦) 

𝑣0(𝑥, 𝑦, 𝑡) = 𝑅
𝑣(𝑥, 𝑦)∑  

𝑁𝑥

𝑖=1

∑ 

𝑁𝑦

𝑗=1

𝑉𝑖𝑗(𝑡)𝑃𝑖(𝑥)𝑃𝑗(𝑦) 

𝑤0(𝑥, 𝑦, 𝑡) = 𝑅
𝑤(𝑥, 𝑦)∑  

𝑁𝑥

𝑖=1

∑ 

𝑁𝑦

𝑗=1

𝑊𝑖𝑗(𝑡)𝑃𝑖(𝑥)𝑃𝑗(𝑦) 

𝜑𝑥(𝑥, 𝑦, 𝑡) = 𝑅
𝑥(𝑥, 𝑦)∑  

𝑁𝑥

𝑖=1

∑ 

𝑁𝑦

𝑗=1

𝑋𝑖𝑗(𝑡)𝑃𝑖(𝑥)𝑃𝑗(𝑦) 

𝜑𝑦(𝑥, 𝑦, 𝑡) = 𝑅
𝑦(𝑥, 𝑦)∑  

𝑁𝑥

𝑖=1

∑ 

𝑁𝑦

𝑗=1

𝑌𝑖𝑗(𝑡)𝑃𝑖(𝑥)𝑃𝑗(𝑦) 

(14) 

where in the above equation 𝑃𝑖(𝑥) and 𝑃𝑗(𝑦) are the 𝑖-th 

and 𝑗 −th Chebyshev polynomials of the first kind which 

are defined by 

𝑃𝑖(𝑥) = cos((𝑖 − 1)arccos(2𝑥/𝑎)) 

𝑃𝑗(𝑦) = cos((𝑗 − 1)arccos(2𝑦/𝑏)) 
(15) 

Besides, functions 𝑅𝛼(𝑥, 𝑦), 𝛼 = 𝑢, 𝑣, 𝑤, 𝑥, 𝑦  are the 

boundary functions corresponding to the essential boundary 

conditions. It is known that in Ritz family methods, 

adoption of a shape function depends only on the essential 

boundary condition. Three types of boundary conditions are 

used in this study, i.e., clamped (C), simply supported type 

one (S) and simply supported type two (S
*
). For a clamped 

edge, all of the in-plane and out-of-plane essential variables 

are restrained. For a simply supported edge of type one, all 

of the three displacement components are restrained at the 

support. For a simply supported edge of type two, normal, 

tangential and lateral displacements and tangential slope are 

restrained at the supports. Therefore, the boundary 

conditions for a completely clamped plate may be written as 

𝑥 = ±𝑎/2: 𝑢0 = 𝑣0 = 𝑤0 = 𝜑𝑥 = 𝜑𝑦 = 0 

𝑦 = ±𝑏/2: 𝑢0 = 𝑣0 = 𝑤0 = 𝜑𝑥 = 𝜑𝑦 = 0 
(16) 

For a type one simply supported plate 

𝑥 = ±𝑎/2: 𝑢0 = 𝑣0 = 𝑤0 = 0 

𝑦 = ±𝑏/2: 𝑢0 = 𝑣0 = 𝑤0 = 0 
(17) 

and for a type two simply supported plate 

𝑥 = ±𝑎/2: 𝑢0 = 𝑣0 = 𝑤0 = 𝜑𝑦 = 0 

𝑦 = ±𝑏/2: 𝑢0 = 𝑣0 = 𝑤0 = 𝜑𝑥 = 0 
(18) 

The shape functions of the Ritz method should be 

chosen according to the above essential variables. All of the 

Chebyshev functions are nonzero at both ends of the 

interval. Therefore, auxiliary functions 𝑅𝛼 , 𝛼 = 𝑢, 𝑣, 𝑤, 𝑥, 𝑦 

should satisfy the essential boundary conditions on each 

edge of the plate. Each of the functions 

𝑅𝛼 , 𝛼 = 𝑢, 𝑣, 𝑤, 𝑥, 𝑦 may be written as  

𝑅𝛼(𝑥, 𝑦) = (1 +
2𝑥

𝑎
)𝑝(1 −

2𝑥

𝑎
)𝑞(1 +

2𝑦

𝑏
)𝑟(1 −

2𝑦

𝑏
)𝑠 (19) 

Each of the variables 𝑝, 𝑞, 𝑟  and 𝑠  depends on the 

essential boundary conditions and are equal to zero or one. 

The present research focuses on plates which are clamped 

all around or simply supported all around. Therefore the 

auxiliary functions for each of the three cases are as 

follows: 

For a completely clamped (CCCC) plate 

𝑅𝑢(𝑥, 𝑦) = (1 +
2𝑥

𝑎
)(1 −

2𝑥

𝑎
)(1 +

2𝑦

𝑏
)(1 −

2𝑦

𝑏
) 

𝑅𝑣(𝑥, 𝑦) = (1 +
2𝑥

𝑎
)(1 −

2𝑥

𝑎
)(1 +

2𝑦

𝑏
)(1 −

2𝑦

𝑏
) 

𝑅𝑤(𝑥, 𝑦) = (1 +
2𝑥

𝑎
)(1 −

2𝑥

𝑎
)(1 +

2𝑦

𝑏
)(1 −

2𝑦

𝑏
) 

𝑅𝑥(𝑥, 𝑦) = (1 +
2𝑥

𝑎
)(1 −

2𝑥

𝑎
)(1 +

2𝑦

𝑏
)(1 −

2𝑦

𝑏
) 

𝑅𝑦(𝑥, 𝑦) = (1 +
2𝑥

𝑎
)(1 −

2𝑥

𝑎
)(1 +

2𝑦

𝑏
)(1 −

2𝑦

𝑏
) 

(20) 

For a plate which is simply supported all around (SSSS) 

𝑅𝑢(𝑥, 𝑦) = (1 +
2𝑥

𝑎
)(1 −

2𝑥

𝑎
)(1 +

2𝑦

𝑏
)(1 −

2𝑦

𝑏
) 

𝑅𝑣(𝑥, 𝑦) = (1 +
2𝑥

𝑎
)(1 −

2𝑥

𝑎
)(1 +

2𝑦

𝑏
)(1 −

2𝑦

𝑏
) 

𝑅𝑤(𝑥, 𝑦) = (1 +
2𝑥

𝑎
)(1 −

2𝑥

𝑎
)(1 +

2𝑦

𝑏
)(1 −

2𝑦

𝑏
) 

𝑅𝑥(𝑥, 𝑦) = 1 

𝑅𝑦(𝑥, 𝑦) = 1 

(21) 

For a plate which is simply supported all around 

(S
*
S

*
S

*
S

*
)  

𝑅𝑢(𝑥, 𝑦) = (1 +
2𝑥

𝑎
)(1 −

2𝑥

𝑎
)(1 +

2𝑦

𝑏
)(1 −

2𝑦

𝑏
) 

𝑅𝑣(𝑥, 𝑦) = (1 +
2𝑥

𝑎
)(1 −

2𝑥

𝑎
)(1 +

2𝑦

𝑏
)(1 −

2𝑦

𝑏
) 

𝑅𝑤(𝑥, 𝑦) = (1 +
2𝑥

𝑎
)(1 −

2𝑥

𝑎
)(1 +

2𝑦

𝑏
)(1 −

2𝑦

𝑏
) 

𝑅𝑥(𝑥, 𝑦) = (1 +
2𝑦

𝑏
)(1 −

2𝑦

𝑏
) 

𝑅𝑦(𝑥, 𝑦) = (1 +
2𝑥

𝑎
)(1 −

2𝑥

𝑎
) 

(22) 

Finally substitution of Eq. (14) into the Eqs. (11) results 

in an eigenvalue problem as 

(𝐊𝐿 + 𝐊𝑁𝐿1 + 𝐊𝑁𝐿2)𝐗 + 𝐌�̈� = 𝟎 (23) 

where 𝐊𝐿  is the linear elastic stiffness matrix. The two 

other stiffness matrices, i.e., 𝐊𝑁𝐿1 and 𝐊𝑁𝐿2 are nonlinear 

due to the presence of the von Kármán strains. Matrix 𝐊𝑁𝐿1 

has elements which are dependent linearly to the unknown 

displacement vector 𝐗 and 𝐊𝑁𝐿2 has elements which are 

dependent quadratically to the unknown displacement 

vector 𝐗. Besides, 𝐌 is mass matrix which is linear. The 

above system is a non-linear eigenvalue problem which 
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should be solved using a displacement control strategy. It is 

also worth-noting that, displacement vector 𝐗 contains the 

time-dependent unknown coefficients 𝑈𝑖𝑗 , 𝑉𝑖𝑗 ,𝑊𝑖𝑗 , 𝑋𝑖𝑗  and 

𝑌𝑖𝑗  where 𝑖 = 1,2, . . . 𝑁𝑥 and 𝑗 = 1,2, . . . , 𝑁𝑦. 

Considering a periodic vibration with only one 

harmonic, the vector 𝐗  may be expressed as 𝐗 =
�̂�sin(𝜔𝑡) where 𝜔 is the frequency of vibration and the 

vector �̂�  contains value of the nodal displacement 

parameters at the instant that maximum displacement 

occurs. Substitution of the approximated displacement 

vector into the Eq. (23) results in a residue as 

𝐑 = (𝐊𝐿 + �̂�𝑁𝐿1sin(𝜔𝑡) + �̂�𝑁𝐿2sin2(𝜔𝑡))�̂�sin(𝜔𝑡) 

−𝜔2𝐌�̂�sin(𝜔𝑡) 
(24) 

To eliminate the time parameter 𝑡 from Eq. (24), the 

weighted residual method is employed. To this end, Eq. (24) 

which is a residual vector is multiplied by the weight 

function sin(𝜔𝑡)  term and integrated over the domain 

[0, 𝜋/(2𝜔)] which results in 

(𝐊𝐿 +
8

3𝜋
�̂�𝑁𝐿1 +

3

4
�̂�𝑁𝐿2) �̂� − 𝜔2𝐌�̂� = 𝟎 (25) 

The above system should be treated as a standard 

nonlinear eigenvalue problem. The procedure to obtain the 

nonlinear frequencies is mentioned below: 

1) At first a linear eigenvalue analysis is carried out to 

obtain the natural frequencies and the associated mode 

shapes. After this step, nonlinear free vibration analysis 

begins. 

2) An element of the displacement vector �̂� is assumed 

to be known. In this study when the nodal variable of the 

�̂�11 from the linear analysis of step 1 is nonzero, �̂�11 is 

considered to be known. Otherwise the known degree of 

freedom is chosen to be �̂�12. 

3) The eigenvector associated to the linear analysis is 

scaled up according to the assumed displacement of step 

(2). 

4) The nonlinear components of the elastic matrix are 

computed with the displacement vector of step (3). 

5) A linear eigenvalue analysis at this step may be done. 

6) Note that, the obtained results at the end of step (5) 

are just approximate because of step (3). The procedure of 

steps (3) to (6) is performed iteratively to reach a converged 

frequency and the associated eigenvector (mode shape). 

When convergence is achieved, the nonlinear frequency and 

the associated mode shape are achieved.  

 
 
4. Numerical results and discussion 
 

In the present research, nonlinear free vibration of FG-

CNTRC rectangular plates with S
*
S

*
S

*
S

*
, SSSS and CCCC 

boundary conditions is analysed. Unless otherwise stated, 

Poly (methyl methacrylate), referred to as PMMA, is 

selected for the matrix with material properties 𝐸𝑚 = 2.5 

GPa, 𝜈𝑚 = 0.34 and 𝜌𝑚 = 1150kg/m 3. (10,10) armchair 

SWCNT is chosen as the reinforcement. Elasticity modulus, 

shear modulus, Poisson’s ratio and mass density of SWCNT 

are dependent to temperature. However in this study 

temperature dependency of the constituents is ignored and  

Table 2 Mechanical properties of (10,10) armchair SWCNT 

at reference temperature (Shen and Xiang 2014) (tube 

length=9.26 nm, tube mean radius=0.68 nm, tube thickness 

=0.067 nm) 

𝑇[𝐾] 𝐸11
𝐶𝑁[𝑇𝑃𝑎] 𝐸22

𝐶𝑁[𝑇𝑃𝑎] 𝐺12
𝐶𝑁[𝑇𝑃𝑎] 𝜈12

𝐶𝑁 𝜌𝐶𝑁[𝑘𝑔/𝑚 3] 

300 5.6466 7.0800 1.9445 0.175 1400 

 

 

material properties are considered at reference temperature 

𝑇 = 300 K. Shen and Xiang (2014) reported these 

properties at reference temperature 𝑇 = 300  K. The 

magnitudes of 𝐸11, 𝐸22, 𝐺12, 𝜌  and 𝜈12  for CNTs at 

reference temperature are given in Table 2. 

Han and Elliot (2007) performed a molecular dynamics 

simulation to obtain the mechanical properties of 

nanocomposites reinforced with SWCNT. However in their 

analysis, the effective thickness of CNT is assumed to be at 

least 0.34 nm. The thickness of CNT as reported should be 

at most 0.142 nm (Wang and Zhang 2008). Therefore 

molecular dynamics simulation of Han and Elliot (2007) is 

re-examined (Shen 2011). The so-called efficiency 

parameters, as mentioned earlier, are chosen to match the 

data obtained by the modified rule of mixtures of the 

present study and the molecular dynamics simulation results 

(Shen 2011). For three different volume fractions of CNTs, 

these parameters are as: 𝜂1 = 0.137 and 𝜂2 = 1.022 for 

𝑉𝐶𝑁
∗ = 0.12 . 𝜂1 = 0.142  and 𝜂2 = 1.626  for 𝑉𝐶𝑁

∗ =
0.17 . 𝜂1 = 0.141  and 𝜂2 = 1.585  for 𝑉𝐶𝑁

∗ = 0.28 . For 

each case, the efficiency parameter 𝜂3 is equal to 0.7𝜂2. 

The shear modulus 𝐺13  is taken equal to 𝐺12  whereas 

𝐺23 is taken equal to 1.2𝐺12 (Shen 2011). 

In whole of the numerical results, in each direction, 10 

shape functions are chosen after the examination of 

convergence. Furthermore, displacement at the midpoint of 

the plate is denoted by 𝑊. 

In this section at first three comparison studies are 

provided for nonlinear free vibrations of cross-ply 

laminated plates and also free vibrations of FG-CNTRC 

plates. Afterwards, parametric studies are given for free 

vibrations of FG-CNTRC plates. 

 
4.1 Comparison studies 
 

For the first comparison study, nonlinear free vibration 

of composite laminated plates with cross-ply lamination 

schemes is compared with the available data in the open 

literature. It should be mentioned that, in cross-ply 

lamination schemes, the stiffness components 𝐴𝑖6, 𝐵𝑖6 and 

𝐷𝑖6, 𝑖 = 1,2  are absent and therefore the present 

formulation also may be used for these types of composites. 

In this analysis, material properties are taken from Singha et 

al. (2009) and are as follows 𝐸11/𝐸22 = 40, 𝐺12/𝐸22 =
𝐺13/𝐸22 = 0.6, 𝐺23/𝐸22 = 0.5, 𝜈12 = 0.25  and 𝜌 = 1 . A 

square plate with side to thickness ratio 𝑏/ℎ = 100  is 

considered. Lamination scheme is [0/90/0/90/0]. 

Comparison is carried out in Table 3. It is observed that, 

results of our study are in close agreement with the results 

of Singha et al. (2009) for both CCCC and S
*
S

*
S

*
S

* 
types 

of boundary conditions which guarantees the accuracy and 

correctness of the developed formulation. 
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For the second comparison study, natural frequencies of 

fully clamped FG-CNTRC plates are obtained and 

compared with the available data in the open literature. 

Results of this study are presented in Table 4 and compared 

with those given by Garcia Macias et al. (2016), Zhang et 

al. (2015c). In this study, a very thin square plate, i.e., 

𝑎/ℎ = 1000 is considered. Numerical results are provided 

for three different volume fraction of CNTs and also two 

different types of CNT dispersion profiles. It is observed 

that, results of our study match well with those of Garcia 

Macias et al. (2016), Zhang et al. (2015c), especially with 

those of Garcia Macias et al. (2016). This comparison study 

also approves that, mass and stiffness matrices of FG-

CNTRC rectangular plates are evaluated correctly. 

As mentioned in previous sections, large amplitude free 

vibrations of FG-CNTRC plates are reported by Wang and 

Shen (2011). For the next comparison study, results 

obtained by the present formulation are compared with 

those obtained by Wang and Shen (2011) which are 

extracted via a two step perturbation technique. Comparison 

is presented in Table 5. Thick S
*
S

*
S

*
S

* 
non-square plates 

with 𝑏/ℎ = 10  are considered. Two aspect ratios are 

considered that are 𝑎/𝑏 = 2 and 1.5. CNTs are distributed 

uniformly across the plate thickness and volume fraction of 

CNTs is set equal to 𝑉𝐶𝑁
∗ = 0.28. 

It is again observed that, large amplitude frequencies are 

in reasonable agreement with those of Wang and Shen 

(2011). Small differences among the results may belong to 

different plate theories and different solution methods. 

 

 

 
4.2 Parametric studies 
 

After validating the proposed formulation, parametric 

studies are performed to explore the influences of various 

parameters on the large amplitude frequencies of the plate. 

In whole of this section, the non-dimensional frequency is 

defined as Ω = 𝜔𝑎2/ℎ√𝜌𝑚/𝐸𝑚. 

For the first parametric study, Fig. 1 provides the large 

amplitude free vibration of a CCCC plate with 𝑎/𝑏 = 1 

and 𝑎/ℎ = 20 . Results cover four different patterns of 

CNT dispersion profile and also three different CNT 

volume fraction. In each figure, large amplitude frequency 

is provided as a function of the midpoint lateral deflection. 

The case 𝑊/ℎ = 0 belongs to the fundamental frequency 

parameter. It is verified that, with increasing the volume 

fraction of CNTs, fundamental frequency of the plate 

increases. This is accepted since with increasing the volume 

fraction of CNT, flexural stiffnesses of the plate enhances 

which results into higher stiffness of the plate. 

Comparison of different patterns of CNTs also reveal 

that, fundamental frequency is maximum for plates with 

FG-X pattern and is minimum for FG-O pattern. Similar to 

small amplitude frequency, the large amplitude frequency is 

also maximum for FG-X plate and is minimum for FG-O 

pattern.  

Also with increasing the volume fraction of CNT, 

nonlinear frequency of the plate increases. It can be further 

viewed that the large amplitude frequency increases with 

the increase in amplitude, as expected. However, it is  

Table 3 Comparison of nonlinear to linear frequency ratios, 𝜔𝑁𝐿/𝜔𝐿  in [0/90/0/90/0] cross-ply square plates with 

𝑎/ℎ = 100. Results of our study are compared with those of Singha et al. (2009) 

Boundary Conditions Source 𝑊/ℎ = 0.2 𝑊/ℎ = 0.4 𝑊/ℎ = 0.6 𝑊/ℎ = 0.8 𝑊/ℎ = 1.0 

CCCC 
Present 1.0081 1.0321 1.0708 1.1227 1.1861 

Signha et al. (2009) 1.0085 1.0335 1.0739 1.1282 1.1946 

S*S*S*S* 
Present 1.0321 1.1232 1.2614 1.4339 1.6307 

Singha et al. (2009) 1.0315 1.1210 1.2572 1.4281 1.6237 

Table 4 Comparison on the first six frequency parameters with those of Garcia Macias et al. (2016) (designated by 

A) and Zhang et al. (2015c) (designated by B). CCCC plates are considered. Frequency parameter is defined as 

�̂�𝐿 = 𝜔𝐿𝑎
2√𝜌𝑚ℎ/𝐷𝑚/𝜋2 and plate characteristics are 𝑎/ℎ = 1000 and 𝑎/𝑏 = 1 

Type 
𝑉𝐶𝑁
∗ = 0.12 𝑉𝐶𝑁

∗ = 0.17 𝑉𝐶𝑁
∗ = 0.28 

A B Present A B Present A B Present 

UD 

13.304 13.054 13.2918 16.027 15.792 16.0128 20.017 19.745 19.9988 

14.803 14.382 14.7634 18.087 17.714 18.0338 21.848 21.472 21.7981 

18.686 17.853 17.4764 23.327 22.600 23.0453 26.734 26.017 26.4680 

25.623 23.172 24.8497 32.514 31.432 31.5528 35.729 34.652 34.7780 

35.762 31.900 34.1548 43.722 41.809 43.2888 49.142 45.057 47.0094 

36.386 35.743 36.0224 44.862 43.768 43.6826 54.927 47.702 54.3763 

FG-X 

16.110 15.875 19.0965 19.429 19.155 19.4121 24.390 24.059 24.3660 

17.455 17.026 17.4158 21.352 20.810 21.2954 26.313 25.703 26.2474 

21.077 20.307 20.8748 26.432 25.419 26.1448 31.547 30.443 31.2386 

27.829 26.627 27.1064 35.680 34.078 34.6887 41.388 39.656 40.3142 

37.991 35.095 36.3646 49.364 45.527 47.1722 56.287 52.073 53.8822 

44.258 36.474 43.8177 53.251 47.365 52.7225 67.053 54.094 66.3747 
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noticed that there is a sudden drop in the increasing 

frequency trend at certain higher amplitude and then 

gradually increases with further increase in amplitude 

exhibiting hardening behavior. 

This is possibly attributed to the change in stiffness 

values, and thus leading to the redistribution of mode 

shapes associated with certain level of amplitudes of 

vibration, losing symmetry and shifting the maximum 

displacement towards one side of the plate. Results of Fig. 1 

reveal that, among the three different volume fraction of 

CNTs, the redistribution phenomenon takes place for plates 

with 𝑉𝐶𝑁
∗ = 0.28 in lower amplitudes and for 𝑉𝐶𝑁

∗ = 0.17 

for higher amplitudes.  

Also among the four possible patterns of CNTs, mode 

redistribution takes place for lower amplitudes in FG-O 

plates and at higher amplitudes for FG-X plates. 

 

 

 

Since among the three functionally graded patterns of 

CNTs, FG-X pattern results in higher frequencies, only this 

type of FG-CNTRC is included in to the subsequent 

numerical results. 

Fig. 2 presents the large amplitude free vibration of 

SSSS FG-CNTRC plates with two graded patterns of CNTs 

and three different volume fraction of CNTs. In this 

parametric study also square plates with 𝑎/ℎ = 20 are 

considered. Again it is seen that, similar to CCCC plates, 

linear and nonlinear frequency increases with the 

enrichment of matrix with more CNT. Furthermore, small 

and large amplitude frequencies of FG-X plates are higher 

than those of UD-CNTRC plates. A comparison on Figs. 1 

and 2 reveal that, small and large amplitude frequencies of 

CCCC plates are higher than SSSS plates when all of the 

geometrical and physical characteristics are the same. This 

Table 5 Comparison of nonlinear to linear frequency ratios, 𝜔𝑁𝐿/𝜔𝐿  in UD-CNTRC S
*
S

*
S

*
S

*
 plates with 

𝑉𝐶𝑁
∗ = 0.28 and 𝑏/ℎ = 10. Results of our study are compared with those of Wang and Shen (2011). Linear 

frequency parameter is defined as Ω𝐿 = 𝜔𝐿𝑎
2√𝜌𝑚/𝐸𝑚/ℎ 

Aspect ratio Source Ω𝐿 𝑊/ℎ = 0.2 𝑊/ℎ = 0.4 𝑊/ℎ = 0.6 𝑊/ℎ = 0.8 𝑊/ℎ = 1.0 

𝑎/𝑏 = 2.0 
Present 28.7848 1.0397 1.1511 1.3175 1.5223 1.7529 

Wang and Shen (2011) 27.7839 1.0390 1.1483 1.3102 1.5080 1.7293 

𝑎/𝑏 = 1.5 
Present 22.7808 1.0502 1.1893 1.3940 1.6437 1.9244 

Wang and Shen (2011) 22.8989 1.0492 1.1845 1.3809 1.6162 1.8759 

  

  

Fig. 1 Nonlinear free vibration parameter in FG-CNTRC plates with different patterns, different CNT volume fraction, 

𝑎/𝑏 = 1, 𝑏/ℎ = 20 and CCCC boundary conditions 
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Fig. 2 Nonlinear free vibration parameter in FG-CNTRC 

plates with different patterns, different CNT volume 

fraction, 𝑎/𝑏 = 1 , 𝑏/ℎ = 20  and SSSS boundary 

conditions 

 

 

is expected since clamping results in higher flexural rigidity 

in comparison to a simply supported edge. Similar to the 

observations for CCCC plates in Fig. 1, for SSSS plates 

also mode redistribution phenomenon takes place which is 

designated with a sudden drop in frequency amplitude 

curves. Comparison of Figs. 1 and 2 reveal that, mode 

redistribution phenomenon takes place in smaller 

amplitudes for SSSS plates in comparison to CCCC plates. 

Fig. 3 aims to analyse the effect of thickness ratio on 

large amplitude frequencies of the plate. In this example 

CCCC plates with 𝑉𝐶𝑁
∗ = 0.17  and two different CNT 

dispersion profiles are considered. It is seen that thickness 

ratio 𝑎/ℎ changes the small and large amplitude frequency 

parameters. This property is observed in shear deformable 

plate theories. In classical plate theory where the shear 

strains are ignored, non-dimensional frequency parameter is 

independent of the thickness ratio. 

Fig. 4 analyses the influence of aspect ratio on the linear 

and nonlinear frequencies of CCCC plates with 𝑎/ℎ = 40 

and different pattern of CNTs.  

Four different aspect ratios are considered that are 

𝑏/𝑎 = 0.5,0.6,0.8 and 1. Recalling the definition of 

frequency parameter, it may be concluded that, with 

increasing the width of the plate, fundamental frequency of 

the plate decreases and also large amplitude frequency of 

the plate decreases. For rectangular plates, similar to the 

 

 
Fig. 3 Nonlinear free vibration parameter in CCCC FG-

CNTRC plates with UD and FG-X patterns, 𝑉𝐶𝑁
∗ = 0.17, 

𝑎/𝑏 = 1 and different side to thickness ratios 

 

 

 
Fig. 4 Nonlinear free vibration parameter in CCCC FG-

CNTRC plates with UD and FG-X patterns, 𝑉𝐶𝑁
∗ = 0.17, 

𝑎/ℎ = 40 and different aspect ratios 
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observation of square plates, frequencies of FG-X plates are 

higher than UD plates. 

 
 
5. Conclusions 

 

Large amplitude free vibration of FG-CNTRC 

rectangular plates is investigated in the present research. 

Formulation is based on a first order shear deformation 

plate theory which takes into account the von Kármán type 

of strain-displacement relations to capture the large 

deformation effect. CNTs are distributed across the plate 

thickness uniformly or according to a prescribed 

functionally graded pattern. Properties of the composite 

media are evaluated be means of a refined rule of mixtures 

approach which contains efficiency parameters. The 

governing equations of the system are obtained using the 

Ritz method whose shape functions are estimated with the 

aid of Chebyshev polynomials. A nonlinear eigenvalue 

problem is established and solved by means of a 

displacement control strategy. Numerical results are first 

validated for simpler cases and then gives new data for FG-

CNTRC plates with all edges clamped or simply supported. 

Results of this study shows that, small and large amplitude 

frequencies of the plate increase with increasing the volume 

fraction of CNT. Furthermore, among the four different 

cases of CNT dispersion profiles, FG-X pattern results in 

higher frequencies and FG-O pattern results in lower 

frequencies. For both CCCC and SSSS plates, the mode 

redistribution phenomenon takes plate. In such case, the 

maximum amplitude moves from center to one side of the 

plate which is also distinguished by a sudden drop in 

frequency amplitude curves. This phenomenon takes place 

is lower amplitudes for SSSS plates in comparison to 

CCCC plates. 
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