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1. Introduction 
 

Reinforced concrete (RC) members undergo torsional 

loading under various conditions (Mondal and Prakash 

2015a). Torsion in bridge columns can be induced by 

skewed or horizontally curved bridges, bridges with 

outrigger bents and unequal spans or column heights. 

Therefore, RC columns should be properly designed to 

dissipate seismic energy adequately through inelastic 

deformation under vibrations during earthquakes in the 

presence of torsional loading. Seismic analysis of RC 

columns requires development of accurate hysteresis model 

that can predict the stiffness degradation, strength 

degradation, ductility and damage characteristics of the 

members under cyclic loading (Prakash 2009, Prakash and 

Belarbi 2010, Belarbi et al. 2010, Goodnight et al. 2013).  

Moreover, understanding the effects of torsion on hysteretic 

energy dissipation is essential for developing the damage 

based design approaches for designing new structural 

elements as well as for determining retrofit solutions for 

existing elements. Owing to all these reasons it is important 

to have a proper hysteresis model which can accurately 

predict the cyclic torsional behavior of RC members 

considering strength and stiffness degradation along with 

the pinching effects. 

A review of previous studies indicates that, hysteresis 

modelling approaches adopted by different researchers in 
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the past are predominantly of two types, namely polygonal 

hysteresis models (PHMs) and smooth differential models 

(SDM). In polygonal hysteresis models, the response of an 

entity is represented by a set of path defining piecewise 

linear or nonlinear functions. The PHMs are governed by 

empirical laws derived based on experimental observations 

representing a certain range of the parameters that influence 

the behavior under cyclic loading. On the other hand, 

smooth differential models predict the response of a 

member to a reversed cyclic loading using set of ordinary 

differential equations.  

In polygonal hysteresis models, the hysteresis response 

of the structural member is predicted using set of control 

points and paths defined by piecewise linear or nonlinear 

functions. The control points are established where the 

change in slope occurs due to the opening and closing of 

cracks or due to the pinching effect in the case of cyclic 

loading. The control points and the rules governing the 

behavior are established from experimental observations 

and analyzing the experimental data closely. The response 

of the member is analyzed and is observed to vary with the 

selected sectional and geometric parameters, the 

corresponding trend in variation will be the law that 

governs the behavior.  Polygonal hysteresis model by 

Clough and Johnston (1966) is well known in literature, 

which uses bilinear primary curve. The primary curve is the 

response of the member under monotonic loading which 

acts as basic envelope or backbone and is essential in close 

prediction of the cyclic response. The accuracy in 

predicting the cyclic response depends on the accuracy in 

prediction of the primary curve. Takeda et al. (1970) 

proposed a tri-linear primary curve by including the  
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(a) H/D(6)-T/M(∞)-0.73% 

 
(b) H/D(3)-T/M(∞)-1.32% 

Fig. 1 Primary curves of circular columns under torsion 

 

 

stiffness change at cracking point in the primary curve and 

the rules governing the behavior were proposed based on 

the experimental observations. In the pivot hysteresis model 

developed by Dowell et al. (1998), the envelope curve 

under monotonic loading had four branches characterizing 

elastic stiffness, strain hardening, strength degradation and 

linearly decreasing residual strength. The loading and 

unloading paths were governed by two pivot points which 

determine the level of softening with increasing 

displacement and also the degree of pinching on load 

reversal. Some other notable works in PHM include Fukada 

(1969), Aoyama (1971), Atalay and Penzien (1975), Nakata 

et al. (1978), Mansur and Hsu (2005) which were 

developed from the study of flexure and shear. However, all 

these models are incapable of predicting the torsional 

behavior (Wang et al. 2014) due to significant pinching, 

strength and stiffness degradation. Notable work in studying 

the behavior of structural members under torsion were that 

of Tirasit and Kawashima (2007), Wang et al. (2014). The 

authors conducted experimental study on behavior of 

columns under torsion and proposed a semi-empirical 

approach for predicting the primary curve. In their 

approach, the yielding torsional moment in the primary 

curve was calculated using space truss analogy (Rahal and 

Collins 1995, Mo and Yang 1996) which has its own 

limitations.  

Among all SDMs studied previously, the one proposed 

by Bouc (1967), Baber and Wen (1981) is most widely used 

owing to its versatility and robustness. It is also  

 
(a) TP-92 

 
(b) Missouri 

Fig. 2 Primary curves of square columns under torsion 

 

 

computationally efficient and mathematically tractable. The 

model was subsequently modified by Baber and Noori 

(1985, 1986) to include the effect of strength and stiffness 

degradation and pinching and the improved model is 

popularly known as Bouc-Wen-Baber-Noori (BWBN) 

model. In the past, Bouc-Wen type models have been used 

to predict the cyclic response of different structural systems 

such as, reinforced concrete beams and beam-column joints 

(Kunnath et al. 1997, Sengupta and Li 2013). However, 

BWBN models have limitations in predicting the torsion 

dominant behavior which exhibit significant pinching, 

strength and stiffness degradation. 

 

 

2. Research significance 
 

Only a few investigations in the past have focused on 

understanding the shear dominant hysteresis behavior 

including torsion which is the focus of the present 

investigation. A mechanics based approach using tension 

stiffened softened truss model previously developed by the 

authors for circular and square columns (Mondal and 

Prakash 2015b, 2015c, Ganganagoudar et al. 2016a, 2016b) 

is used for predicting the primary curve. By adopting a 

more reliable primary curve, torsional hysteresis response 

can be better predicted. Torsional stiffness reduces 

drastically after cracking and this important behavior was 

ignored in the previous models. This stiffness change is 

accurately captured in the proposed model. Loading and  
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Fig. 3 Idealized primary curve 

 

 

unloading rules for hysteresis behavior is formulated 

depending upon the trend observed during the statistical 

analysis of the experimental data. An additional control 

point has been introduced in the unloading path to capture 

the pinching behavior more accurately. The comparison of 

predictions indicates that the proposed model is able to 

predict the measured experimental behavior closely as 

explained in the following sections. The proposed model 

can also be extended to understand the hysteresis behavior 

under combinations of flexure, shear and torsion loading. 

 

 

3. Experimental corroboration  
 

The experimental data of circular and square columns 

used in this study were tested at University of Missouri 

Rolla under pure cyclic torsion (Prakash et al. 2010). One 

square column (TP-92) was tested at University of Tokyo 

(Tirasit and Kawashima 2007). The circular columns had 

different aspect ratio and percentage of transverse 

reinforcement. The square column tested at University of 

Missouri (Prakash et al. 2012) had octagonal ties. However, 

the column tested at University of Tokyo had usual square 

ties. More details about the experiments can be found 

elsewhere (Prakash and Belarbi 2009, Tirasit and 

Kawashima 2007). Due to paucity of test data, development 

of the proposed model was based on experimental results of 

limited number of test specimens. Validation of the model 

for a larger database is a scope of future work. 

 

 

4. Description of hysteresis model 
 

The model consists of a primary envelope curve (Figs. 

1-3) and a set of loading and unloading rules (Fig. 4). The 

control points (Figs. 4(b) and 4(d)) which are estimated by 

the loading and unloading rules predict the hysteresis loops. 

Branches that join the successive points are shown in Figs. 

4(a) and 4(c). The transition from one control point to 

another is governed by a set of rules that are determined  

 

(a) Definition of parameters ( ) 

 
(b) Hysteresis paths ( ) 

 
(c) Definition of parameters ( ) 

 
(d) Hysteresis paths ( ) 

Fig. 4 Characteristics of hysteresis loops 
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empirically from the experimental data. The details of the 

model are described in the following sections. Analytical 

prediction for the primary curves are obtained using tension 

stiffened-softened truss model (TS-STM) (Mondal and 

Prakash 2015b, 2015c) developed by the authors. 

 
4.1 Unloading rules 
 

Unloading rules are determined by statistical analysis of 

experimental data. It was found that the unloading rules are 

not singular and that they depend on the load reversal point 

(Fig. 4). Accordingly, separate set of rules were proposed 

based on the position of the load reversal point on the 

primary curve. For torsional hysteresis, the unloading rules 

are mainly governed by physical phenomenon like 

pinching. 

1. The unloading path follows the initial stiffness of the 

primary curve (path 1→0, 5→0) (Fig. 4) if torsion at the 

beginning of the unloading is less than the cracking 

torsion (
cm TT

~~
 ), and 

cT
~

 has not been previously 

exceeded in either direction.  

2. After cracking, the unloading path becomes a function 

of internal variables such as displacement (rotational) 

ductility (
cm 

~~
 for 

ymc 
~~~

 , 
ym 

~~
 for 

ym 
~~

 ) 

and current deformation level. From a given unloading 

point on the primary curve (
mm T

~
,

~
 ), the hysteresis path 

is directed towards (
11

~
,

~
urur T ) (path 2→3, 6→7, 11→12, 

15→16, a→b, f→g, m→n, t→u) (Fig. 4) which is 

estimated using the expressions shown in Eq. (1) (Figs. 

5, 6, 7, and 8).  
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b. Square columns   
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3. In case of unloading beyond the yield point (
ym 

~~
 ), 

from (
11

~
,

~
urur T ), the unloading path leads to (

22

~
,

~
urur T ) 

(path b→c, g→h, n→o, u→v) (Fig. 4), which is given 

by Eq. (2) (Figs. 9 and 10). However, this branch is non-

existent for unloading before the yield point (

ymc 
~~~

 ).  
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b. Square columns:  
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4. Next, the hysteresis loop proceeds straight towards (

0,
~

su ) on the zero load axis (path 3→4, 7→8, 12→13, 

16→17, c→d, h→i, o→p, v→w) (Fig. 4). The reloading 

point ( 0,
~

su ) can be calculated as shown in Eq. (3) (Figs. 

11 and 12). It may be noted here that, at this point there 

is some residual deformation even though torsional 

resistance is zero. This can be attributed to the inelastic 

behavior of the materials. 
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4.2 Loading/reloading rules 
 
Loading/reloading rules are another essential component 

of PHMs which are generally governed by physical  
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(a) 
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(b) 
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Fig. 5 Dependence of 
mur 

~~
1

 on ductility ratio for 

circular columns 

 

 

phenomena like strength and stiffness degradation. 

 1. Initial loading and reloading follow the primary 

curve (path 1→0, 5→0) (Fig. 4) until the load is 

reversed at a level higher than the cracking load. 

2. After cracking, the first loading in the opposite 

direction is directed towards the cracking load in the 

opposite direction (path 4→5) (Fig. 4). 

3. When cracking load on both directions has been 

reached, the reloading path, till yielding, the load path 

follows a straight line (paths 8→9, 13→14) (Fig. 4) 

having a slope given by Eq. (4) (Fig. 13) and it extends 

up to the rotational level from where load was reversed 

in the previous half-cycle. Since the rotation of the 

target point is known, and the slope of the branch is also 

known, therefore, the torsional moment at the target 

point can be easily computed.  
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b. Square columns: 
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4. After yielding, reloading path up to 
cr

~  (i→j, p→q) 

(Fig. 4) follows a straight line passing through (
pm T

~
,

~
 ). 

 
(a)  

 
(b)  

Fig. 6 Dependence of 
mur 

~~
1

 on ductility ratio for square 

columns 

 

 

cr
~  can be estimated from Eq. (5a) or Eq. (5c) (Figs. 

14(a) and 15(a)) depending upon the shape of the cross-

section. 
m

~
 is the rotation level from where load was 

reversed in the previous half-cycle, which is known. 
pT

~
 

is obtained from the relation shown in Eq. (5b) or, Eq. 

(5d) (Figs. 14(b) and 15(b)). 
crT

~
 can be computed 

utilizing the knowledge of the values for 
m

~
, 

pT
~

 and 

cr
~

. 
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(a)  

 
(b)  

Fig. 7 Dependence of  on ductility ratio for circular 

columns 
 

 
(a)  

 
(b)  

Fig. 8 Dependence of  on ductility ratio for square 

columns 
 

 

 
Fig. 9 Dependence of  and  on  for 

circular columns 
 

 

 

Fig. 10 Dependence of  and  on  

for square columns 
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(a)  

 
(b)  

Fig. 11 Dependence of 
msu 

~~
 on ductility ratio for 

circular columns 
 

 

where, n is counter, indicating number of cycles repeated at 

unloading point 
m

~
. n is assigned a value of 1 when first 

unloading takes place at a given deformation level (
m

~
) and 

incremented every time the load is reversed from any 

deformation level falling within the range of 
m

~
)05.01(  . 

n is computed separately for each direction of loading.  

5. A slope change is observed at (
crcr T

~
,

~
 ) due to full 

closure of cracks. From this point, the loading path 

proceeds towards (
mm T

~
,

~
 ) (paths j→k, q→r) (Fig. 4). 

Calculation of mT
~
  is governed by Eq. (6) (Fig. 16). 
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6. Beyond the intersection of reloading branch with 

primary curve, the loading path follow the primary 

curve (paths l→m, s→t) (Fig. 4). This explains why 

 
(a)  

 
(b)  

Fig. 12 Dependence of 
msu 

~~
 on ductility ratio for 

square columns 

 

 
(a) Circular column 

 
(b) Square column 

Fig. 13 Dependence of  on  
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Fig. 14 Dependence of  and  on  for 

circular column 
 

 

 

Fig. 15 Dependence of  and  on  for 

square column 
 

 

accuracy in the prediction of the primary curve greatly 

influence the accuracy of the estimation of the overall 

hysteresis behaviour.   

 
(a) Circular column 

 
(b) Square column 

Fig. 16 Dependence of  on  

 

 
(a) H/D(6)-T/M(∞)-0.73% 

 
(b) H/D(3)-T/M(∞)-1.32% 

Fig. 17 Prediction of torsional hysteresis of circular 

columns 
 

mcr 
~~

mp TT
~~

ym 
~~

mcr 
~~

mp TT
~~

ym 
~~

mm TT
~~


ym 

~~
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(a) TP-92 

 
(b) Missouri 

Fig. 18 Prediction of torsional hysteresis of square columns 
 

 

5. Results and discussions 
 

5.1 Prediction of torque–twist behavior  
 

The torque-twist behaviour predicted by the proposed 

analytical approach is presented and compared with 

experimental data in Figs. 17 and 18. It is observed that, the 

model predicted the experimental response of the columns 

reasonably well. It can also be inferred from the graphs that 

the model was able to capture complex phenomena like 

strength and stiffness degradation along with the pinching 

with reasonable accuracy.  

 

5.2 Comparison of dissipated energy 
 
Energy dissipation capacity is one of the most important 

parameters for damage assessment and health monitoring of 

reinforced concrete members. The dissipated energy is 

calculated from the area under the torque twist curves. The 

comparison of estimated and observed values of dissipated 

energy for all the columns considered in this study is 

presented in Fig. 19. Each point in the figures represent 

energies corresponding to a complete cycle of deformation. 

The figures show that the proposed analytical model can 

predict the energy dissipation capacity reinforced concrete 

columns under torsional moment with reasonable accuracy. 

 
 
 
 
 

  
(a) H/D(6)-T/M(∞)-0.73% (b) H/D(3)-T/M(∞)-1.32% 

  
(c) TP-92 Square column (d) Missouri Square column 

Fig. 19 Comparison of experimental and analytical hysteretic energy 
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5. Conclusions  
 

An improved PHM is proposed in this study for 

reinforced concrete circular and square columns subjected 

to torsion. The proposed model represents an initial 

development of a performance based design approach for 

RC bridge columns under torsional loading. A mechanics 

based primary curve is used in this study. A slope change 

has been suggested at the cracking point unlike in the 

previous models for capturing the behavior more precisely. 

Unloading and reloading rules are derived based on 

experimental observations. An additional control point is 

also introduced in the unloading branch for more accurate 

prediction of the hysteresis behavior. The predictions of 

torque-twist behavior showed close correlation with 

experimental data. Comparison of energy dissipation 

between square and circular columns of similar sectional 

details indicate that square columns exhibited lesser energy 

dissipation due to warping effect when compared to circular 

columns. The proposed model can be extended in future to 

predict the hysteretic response of bridge columns under 

combined loading including torsion. Future studies should 

also focus on computer implementation of this hysteresis 

model to realize its utility fully on seismic analysis of 

bridge systems under torsional loading. 
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Notations 
 
θc : Twist at cracking point on the primary curve. 

θy : Twist at yield point on the primary curve. 

θd : Twist at the peak on the primary curve. 

θu : 
Twist at the point where ultimate failure occurs in the 

primary Curve. 

θm : Twist at the point from where load in reversed. 

θur1 : Twist at first control point on the unloading path. 

θur2 : Twist at second control point on the unloading path. 

θsu : 
Twist on θ axis where unloading ends and reloading 

starts. 

θcr : Twist where slope changes while reloading. 

cT
~  : Torque at cracking point on the primary curve. 

yT
~  : Torque at yield point on the primary curve. 

dT
~  : Peak torque on the primary curve. 

uT
~  : 

Torque at point where ultimate failure occurs on the 

primary curve. 

1

~
urT   Torque at first control point on the unloading path. 

2

~
urT  : Torque at second control point on the unloading path. 

'~
mT  : 

Reduced strength attained while reloading at the point 

from where load was reversed. 

KTr1
 

: Reloading stiffness for  

KTr
 

: Initial pre-crack stiffness of the primary curve. 

 

 

ymc 
~~~


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