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1. Introduction 
 

Over the past two decades, implementing strategies for 

preventing considerable loss of human life and property has 

become a global issue. Structural health monitoring (SHM) 

is aimed at diagnosing damage conditions and pinpointing 

damage locations. Depending on the method for 

determining the level of structural damage, SHM methods 

can be divided into two main categories: global health 

monitoring and local health monitoring. 

Global health monitoring methods are used to detect 

information about an entire structure, and such approaches 

reveal the characteristics of damage according to the 

changes in the global dynamic properties of a structure, 

such as the damping ratio, mode shape, and frequency. In 

last decades, the monitoring techniques were well 

developed base on the vibration test (Yun 2012, Li et al. 

2015). Several examples of well-known global health 

monitoring techniques are the mode shape curvature-based 

method (Pandey et al. 1991), mode shape-based method 

(Farrar and James 1997), and natural frequency-based 

method (Fan and Qiao 2011).  

Local health monitoring methods are applied to observe 
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the behavior of potential damage locations or critical areas 

and to track the scale of damage. Several techniques have 

been developed for damage location diagnosis, and such 

techniques are based on a few simple concepts such as 

visual inspection (Aktan and Catbas 2003), strain and 

displacement (Jang et al. 2007), and inclinometers 

(Pehlivana and Bayata 2016). Although global health 

monitoring techniques can assess the existence of damage, 

locating the damage and quantifying the damage severity 

level are relatively difficult. Moreover, time-consuming 

processes, high cost, and high accuracy requirements are all 

problems that render local health monitoring techniques 

more difficult to apply than global health monitoring 

techniques. In current research trends, the combination of 

both methods is essential for SHM. 

Mandelbrot (1983) studied the shape of nature and 

discovered the fractal phenomena. The contours of rocks or 

other natural phenomena show similarity in different scales. 

Fractal scaling behavior can be applied to interpret the 

complex, irregular, nonstationary, and fragmented changes 

in shape and time series (Peng et al. 1995, Kantelhardt 

2008). Many algorithms have been developed to describe 

the scaling behavior based on fractal theory, and the 

advantages and limitations of such algorithms have been 

compared. 

Ivanov et al. (1999) studied the multifractality of the 

human heartbeat from a biological dynamical system. They 

uncovered a loss of multifractality for congestive heart 

failure, demonstrating an explicit relationship between the 
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nonlinear features of the condition. Kantelhardt et al. (2002) 

proposed the multifractal detrended fluctuation analysis 

(MFDFA) method, a generalization of detrended fluctuation 

analysis (DFA) based on fractal theory. Ihlen (2012) applied 

MFDFA for estimating the multifractal spectrum of 

biomedical time series. The multifractal spectrum reflected 

variations in the fractal structure of the biomedical time 

series and identified pathological conditions. In addition, 

Dutta et al. (2013) applied MFDFA to study the human gait 

time series for Parkinson’s disease, Huntington’s disease, 

and individuals uninhibited by either condition. The results 

revealed that long-range correlation was responsible for 

multifractality and that the degree of multifractality of the 

normal set was greater than that of the diseased set. The 

MFDFA method can distinguish between normal sets and 

diseased sets. Recently, Haris et al. (2014) applied MFDFA 

to animal vocalizations, involving seahorse feeding clicks, 

to compare the body, sex, size, and weight of a seahorse; 

this work underscored the versatility of the MFDFA method 

in investigating bioacoustic observations and nonlinearities. 

In many studies, the multifractal properties of natural 

phenomena are validated by MFDFA; however, this method 

is not sufficient for determining the details of different sets. 

In the field of civil engineering, Su et al. (2016) utilized 

MFDFA to identify the fractal characteristics in the 

measured time series of dam structural behavior. Then, the 

iterated function system algorithm is studied to build the 

fitting model. Finally, the iterated function system is 

combined with the variable dimension fractal model to 

build the forecasting modal of dam structural behavior. 

Zhou (2008) proposed a method called multifractal 

detrended cross-correlation analysis (MFDXA), which is 

based on detrended covariance, for investigating the 

multifractal behaviors between two time series or high-

dimensional quantities. The MFDXA method was applied to 

the daily closing prices of the Dow Jones Industrial Average 

and National Association of Securities Dealers Automated 

Quotation indices, showing a power-law dependence with 

positive q-order. In earthquake engineering, Shadkhoo 

(2009) used MFDXA to investigate the cross-correlation of 

temporal and spatial interevent seismic data; the results 

showed that the interevents of temporal and spatial seismic 

series exhibited weak multifractality, despite their strong 

multifractal behavior. In the financial field, a previous study 

applied MFDXA to investigate the cross-correlation of 

agricultural futures markets in two highly correlated 

economies: China and the United States (He 2011). The 

study validated the strong cross-correlation of the 

agricultural futures markets of China and the United States, 

which share similar multifractal structures. Moreover, Wang 

(2013) found that price and load time series in the 

California power market and JPM power market exhibited a 

long-term correlation. In the biomedical field, Ghosh et al. 

(2014) used MFDXA to study the electroencephalographic 

data of epileptic patients in 2014; they revealed the degree 

of cross-correlation to be higher among seizure and seizure-

free intervals in the epileptogenic zone, indicating that the 

data are significant for diagnosis. Recently, Dutta et al. 

(2016) studied the human gait pattern of disease-free 

individuals and patients suffering from Parkinson’s disease.  

 

Fig. 1 Flowchart of the proposed SHM system 

 

 

They revealed that the degree of multifractality and the 

degree of correlation were greater for the disease-free set 

than for the diseased set, verifying that the results of the 

MFDFA method were not sufficient for distinguishing 

between the two sets. Nie et al. (2016) investigated the 

long-range cross-correlation between urban impervious 

surface and land surface temperatures with detrended cross-

correlation analysis and multifractal detrended cross-

correlation analysis. The observed correlations show the 

cahange of the urbanization of Shanghai in early 21st 

century. In summary, the above-mentioned literatures show 

the potential ability to analyze complex signal in numerous 

fields. 

Over the past decades, MFDFA and MFDXA have 

provided outstanding findings in various fields, especially 

biomedicine, economics, and finance. As reliabilty and 

practicability are still the core concern hindering the 

existing SHM methods, the main goal of this study was to 

provide a novel insight in the field of SHM by exploiting 

the advantages of MFDFA and MFDXA for damage 

condition and location detection. MFDFA was introduced to 

determine the damage condition of a structure by measuring 

the dynamic signal from a single sensor on each floor. 

Moreover, MFDXA was used for locating the damaged 

floor of the structure. The flowchart of the proposed SHM 

system is shown in Fig. 1, and the remainder of this paper is 

organized as follows: First, the basic concepts of MFDFA 

and MFDXA, and the proposed damage index are 

described. Second, based on a practical experimental 

verification process conducted using a seven-storey steel 

benchmark structure located at the National Center for 

Research on Earthquake Engineering (NCREE), the damage 

condition and location are assessed. Finally, a summary is 

presented and conclusions are drawn. 

 

 

2. Proposed SHM method 
 

2.1 Multifractal detrended fluctuation analysis 
 

A brief theoretical overview is presented in this section. 

For a time series of finite length N, the first step involves 
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the subtraction of the mean Xave from the vibration time 

series X(i). 
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Y(i) is defined as the cumulated data series, which is 

divided into Ns nonoverlapping bins of equal length s, 

Ns=int(N /s). To avoid omitting the short segment at the end 

of the profile, the same process is repeated from the 

opposite end of the time series. Hence, 2Ns bins are 

obtained, and the local linear trend for each bin is calculated 

by a least-square fitting for each segment ν. For ν=1,2,...,Ns, 

the variance is calculated by 
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where yv(i) is the linear fitting polynomial in the segment ν. 

Finally, for each of the 2Ns segments, the q-order 

fluctuation function is obtained. 
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In general, q can be any real value except zero. For q = 

0, 
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The scaling behavior of the fluctuation function is 

determined by analyzing the slope of the log-log plots, Fq(s) 

versus s for different q. If the series X(i) exhibits a long-

range power-law correlation, Fq(s) with s is described as 

( )( ) H q
qF s s  (7) 

where H(q) is the slope and can be considered the 

generalized q-order Hurst exponent. For a stationary time 

series, where q is equal to 2, H(2) is identical with the Hurst 

exponent. The positive and negative values of q describe 

scaling behaviors with large and small fluctuations, 

respectively. 

H(q) is directly related to the classical scaling exponent 

τ(q). The relationship between H(q) and τ(q) can be 

represented as 

( ) ( ) 1   q q H q  (8) 

Another means of characterizing a multifractal series is 

with the singularity spectrum, also termed the q-order 

singularity dimension Dq, which is related to τ(q) through a 

Legendre transform:  

'( ) ( ) '( )   hq q H q q H q  (9) 

( )Dq q hq q    (10) 

where hq is the singularity exponent or strength, and Dq 

represents the dimension of the subset of the series. 

For an N-floor structural dynamic time series, the 

existing multifractal properties can be verified by MFDFA; 

however, as MFDFA does not consider the influence of 

signals between different floors, the damage location cannot 

be reflected by applying the MFDFA process.  

 

2.2 Multifractal detrended cross-correlation analysis 
 
MFDXA is adopted to study the degree of correlation 

between two nonstationary time series. Considering two 

time series X(i) and Y(i) of length N, where i=1, 2.., N, the 

accumulated deviation series are formed by subtracting the 

mean values of Xave and Yave from their time series, 

respectively. 
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The integration can reduce the level of measurement 

noise presented in the experimental data. Each of the 

accumulated series are divided into Ns nonoverlapping bins 

of equal length s, Ns=int(N /s). According to this step of the 

MFDFA procedure, 2Ns segments are obtained. 

Concurrently, for ν=1,2,...,Ns, the covariance is calculated 

by 
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and for each segment ν, ν=Ns+1,...2Ns 
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where xν(i) and yν(i) are the fitting polynomials in the 

segment ν. The q-order detrended function Fq(s) is then 

obtained after averaging two Ns bins. 
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When q is equal to zero, Fq is infinite. A logarithmic 

averaging procedure is applied as follows 
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This procedure is repeated by varying the value of s. If 
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the series have a long-range power-law correlation, then 

Fq(s) exhibits power-law behavior 

( )( ) q

qF s s  (17) 

The scaling exponent λ(q) represents the degree of 

cross-correlation between the two series.  

For positive q, λ(q) describes the scaling behaviors of 

segments with large fluctuations, and for negative q, λ(q) 

describes the scaling behaviors of segments with small 

fluctuations. λ(q)=0.5 indicates an absence of cross-

correlation; λ(q)>0.5 indicates persistent long-range cross-

correlation, where a high value in one variable is likely to 

be followed by a high value in another variable; and 

λ(q)<0.5 indicates antipersistent cross-correlation, where a 

high value in one variable is likely to be followed by a low 

value in another variable (Sadegh Movahed 2008). When 

the damage occurs, the covariance surfaces of damaged 

floors show significant differences with other surfaces. 

 

2.3 Proposed damage index 
 
To improve the accuracy of the SHM system in 

diagnosing the damage location of a structure, a damage 

index is proposed. The detrended covariance of a healthy 

case is set as the reference value, and thus, the detrended 

covariance for different q-orders and scales is processed to 

obtain the damage index. 

The signal measured from the ground floor was cross-

correlated with that of the other floors. For a structure with 

N floors, a total of N+1 MFDXA curved surfaces can be 

derived: G*G, G*1F, G*2F, ..., G*NF. The undamaged and 

damaged conditions are expressed respectively as 

 * *1 *2 *( ) , , ,...,
Tdamaged

q G G G F G F G NFF s D D D D  (18) 

 * *1 *2 *( ) , , ,...,
Tundamaged

q G G G F G F G NFF s U U U U
 

(19) 

The symbol DG*G represents the G*G surface for the 

damaged structure. Similarly, UG*G represents the G*G 

surface for the undamaged structure. To clarify the change 

between each cross-correlated surface in one damaged case, 

the difference between all adjacent floor pairs is calculated, 

and the difference over the surface is summarized to present 

the condition of each floor. 

The damaged case and undamaged case can be 

expressed respectively as follows 

 *1 * *2 *1( ), ( ),G F G G G F G FFD D D D D          

* *( 1)..., ( )
T

G NF G N FD D   ,and 
(20) 

 *1 * *2 *1( ), ( ),G F G G G F G FFU U U U U     

* *( 1)..., ( )
T

G NF G N FU U   

(21) 

After FD and FU are derived, the proposed damage 

index for a specific floor can be expressed as 

    i i iDI FU FD  (22) 

Table 1 Details of experimental structure 

Items Size 

Height of each floor 110 cm 

Floor area 150x110 cm 

Column 150x25 mm 

Bracing 65x65x6 mm 

Additional mass 500 kg/floor 

 

 

where i represents the floor number. A positive damage 

index value indicates the absence of damage, which means 

that the covariance of a specific floor does not change 

significantly; whereas a negative damage index value 

indicates the existence of damage on the floor, because of 

the sharp covariance variation of the damaged floor.  

Since a negative q value tends to reflect the behavior of 

small fluctuations easily influenced by ambient 

interference, this study considered q values ranging from 1 

to 5 for damage index diagnosis. Moreover, for the 

instability of the ambient vibration signal, the covariance Fq 

is normalized to prevent extreme values that influence the 

accuracy of the damage index. 

 

 

3. Description of experimental data 
 

A seven-story benchmark structure, located at the 

NCREE, was employed for experimental verification to 

demonstrate the performance of the proposed SHM system. 

A total of eight velocity sensors were mounted both on the 

benchmark structure and at ground level. 

The dimensions of the scaled-down steel specimen are 

presented in Fig. 2(a). The height, length, and width of each 

story were 1.1, 1.5, and 1.1 m, respectively. L-shaped steel 

angles measuring 65×65×6 mm were adopted for bracing 

the structure. An additional mass of 500 kg was applied to 

each floor to simulate the practical structural characteristics. 

A VSE-15D velocity sensor manufactured by Tokyo 

Sokushin Co., Ltd., was used for the experiment and 

installed in the center of each floor for data acquisition. 

Layouts of a single floor is shown in Fig. 2(b), and the 

details of the experimental specimen are listed in Table 1. 

Damage was simulated by removing the two installed 

bracings in the weak axis direction for every story. The 

removal of the bracings indicated a change in the stiffness 

of the structure at a certain story as the cause of potential 

damage. Figs. 2(c) and (d) show the detailed bracing of the 

experiment. To roughly reflect the stiffness variation caused 

by the removal of the bracings, Fast Fourier Transform 

(FFT) was conducted to evaluate the corresponding 

structural frequency, and the result is showed in Table 2. 

The gradually decreasing trend of the frequency implies the 

reduction of the stiffness. However, the slight variations in 

the cases of damage on the low floors may be affected by 

the temperature and other environmental variables (Yan et 

al. 2005). The proposed SHM system is designed for 

operation modal analysis, where the properties of a 

structure is identified based on vibration data collected 

when the structure is under ambient vibration. To avoid any  
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possible noise during the test, the environment vibration is 

conducted during midnight. The data were recorded at a 

sampling rate of 200 Hz in the longitudinal direction. For 

each damage case, the total signal recording time was 20 

min, which was divided into four segments with each 

segment being treated as a single run of a specific damage 

condition. Details of damage in all 6 categories and 16 

cases are listed in Table 2. The ambient vibration signal 

measured from the 6th floor under different damage cases is 

shown in the Fig. 3. As depicted, no significant variation 

was observed between different damage cases, which 

demonstrates the necessity of the proposed SHM system.  

 
 

4. Evaluation of the proposed SHM system 
 
4.1 Damage condition (MFDFA) 
 
The Hurst exponent derived through the MFDFA 

procedure was first used to detect the damage condition of 

 

 

 

the structure. The minimum and maximum scales were set 

to two to the power of n, where n varies from 4 to 10, 

respectively. The range of q-orders value was set from 5 to -

5 for the purpose of reflecting the macro and micro 

fluctuations of the time series. The q-order fluctuation 

function was then calculated by equation 5. In addition, the 

Hurst exponents in different q-orders could be estimated by 

detecting the relationship between the q-order fluctuation 

and scale. The total Hurst exponents with different q-orders 

were averaged as an overall exponent for a specific damage 

case.  

The damage conditions evaluated for the 16 damage 

cases are presented in Figs. 4(a) and (b). Each damage case 

involved four 5-min segments, which are included in the 

figure, and the results for each case clearly revealed the 

existence of damage. The presence of damage can be 

reflected by an increase in H(q) due the interaction between 

signals, which shows the long-correlation characteristic. 

This trend indicates that the H(q) value of a healthy case 

is the closest value to 0.5, which represents the absence of a 

 

 
  

(a) Experimental specimen (b) Velocity meter and mass block of a single floor (c) braced (d) without bracing 

Fig. 2 Layouts of experimental structure 

 
(a) Healthy condition 

 
(b) Damaged 3&4F 

 
(c) Damaged all 

Fig. 3 Ambient vibration of the 6th floor under different damage cases 
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Table 2 Total damage cases and category 

Damage 

case 

Damage 

Category 
Damage Floors Frequency(Hz) 

1 Undamaged None 3.345 

2 

Slight damage 

1F 2.075 

3 2F 2.124 

4 3F 2.124 

5 4F 2.295 

6 5F 2.612 

7 6F 2.881 

8 7F 3.198 

9 
Moderate-

damage 

1 & 2F 1.636 

10 3 & 4F 1.831 

11 5 & 6F 2.319 

12 
Severe-damage 

1 & 2 & 3F 1.44 

13 4 & 5 & 6F 1.88 

14 Ultimate 

damage 

1 & 2 & 3 & 4F 1.33 

15 4 & 5 & 6 & 7 F 1.855 

16 All damage 1-7F 1.245 

 

 

long-range correlation; specifically, all floors on the 

structure have virtually uncorrelated behavior which means 

the behavior of each floor does not affected by any damage 

on the structure. If the damage exists, the signal of the 

undamaged floor will be impacted by the damaged floor 

that causes the long memory between two signals. The 

damage on the first floor (1F), which could have a larger 

contribution to the global structural behavior when 

compared with the damage on the second floor (2F) was 

more closely associated with a higher H(q) value. However, 

in the slightly damaged case, where the damage on the 

higher floor, fifth, sixth, and seventh floor, the H(q) value is 

close to the healthy case. As the high-story damage has less 

contribution to the global structural behavior, this 

phenomenon may be caused by the varying environmental 

conditions (temperature, humidity) and the boundary 

condition between structure and ground, which make the 

H(q) value fluctuated.  It also demonstrates that structures 

with insignificant damage is still a tough task for the 

existing SHM methods.  

Similar trends could also be observed in other damage 

conditions. Cases with damage on the first and second 

floors (12F) demonstrated a significantly higher H(q) value 

than that of cases with damage on the third and fourth floors 

(34F) and fifth and sixth floors (56F). Only a minor error 

was observed for damage on the second floor (2F), which 

showed a lower value than that of the third floor (3F). 

Therefore, when H(q) is applied, the possible damage 

condition can be rapidly detected. The comparison of H(q) 

value is a relative method to determine the damage 

condition. The initial measured data, referred as a health 

structure, is critical to the quantification of different levels 

of damage. 

 

4.2 Damage location (MFDXA) 
 
MFDXA was employed to identify the damage location. 

From the seven-story structure, eight MFDXA curved 

 
(a) The average H(q) from UD to 7F 

 
(b) The average H(q) from 12F to AD 

Fig. 4 Distribution of Hurst exponent for different damage 

cases 

 

 

surfaces, namely G*G, G*1F, G*2F, G*3F, G*4F, G*5F, 

G*6F, and G*7F, were generated through a cross-

correlation procedure between the ground signal and other 

signals. The healthy structure was first analyzed. The 

increment between adjacent surfaces, calculated by 

subtracting the curved surface for a particular floor (e.g., 

G*G) from the curved surface for the floor above (e.g., 

G*1F), was recognized as a reference in the MFDFA 

method, as shown in Fig. 5(a). This figure implies that the 

increment of covariance on each floor did not indicate 

significant differences between surfaces under the healthy 

condition.  

The damage diagnosis result for the first floor (1F) is 

shown in Fig. 5(b). The result clearly reveals that the first 

floor surface increased precipitously, meaning the similarity 

between the first floor and the other floors sharply declined, 

whereas the other surfaces remained similar to each other. 

Compared with the increment of reference, this trend shows 

the presence of damage on the first floor. Fig. 5(c) presents 

the case with damage on the third and fourth floors (34F). 

The jump of surfaces on the third and fourth floors 

indicated the occurrence of damage on these floors, in 

addition to implying a decrease in behavioral similarity 

between the third floor, fourth floor, and other floors. 

Similar trends were observed, as illustrated in Fig. 5(d), 

which represents the case of damage from the first floor to 

the third floor (123F). The surfaces of increment for the 

first, second, and third floors ascended rapidly, which 

formed a wide region between these and the other floors.  
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Table 3 The accuracy of MFDXA and damage index 

method for different noise levels 

Damage 

location 

SNR=60 SNR=40 SNR=20 

MFDXA 
Damage 

index 
MFDXA 

Damage 

index 
MFDXA 

Damage 

index 

1F C C C C C C 

2F C C C C C C 

3F C C C C C C 

4F C C C C C C 

5F C C C C C C 

6F C C C C C C 

7F F C F C F C 

1&2F C C C C C C 

3&4F C C C C C C 

5&6F C C C C C C 

1&2&3F C C C C F C 

4&5&6F C C C C F F 

1&2&3&4F C C C C C C 

4&5&6&7F F C F C F F 

Damaged all F F F F F F 

Accuracy(%) 80% 93.33% 80% 93.33% 66.67% 73.33% 

 

 

Moreover, a phenomenon was noticed that the increment of 

the low-floor damage is larger than that of the high-floor 

damage in the Fig. 5(c) and (d). It could be resulted from 

the significant contribution of the low-floor damage to the 

whole structure. However, the results of the cases of 

damage from the fourth floor to the seventh floor did not 

follow the expected trend; an error was observed on the 

surface of the seventh floor, which did not form a region 

 

 

between the other undamaged floors, as shown in Fig. 5(e). 

As the damage on the top floor only has a slight impact on 

the structure, which may be obscured as the environmental 

interferences, misjudgment was perceived. Furthermore, in 

all damage cases, the seven surfaces did not follow this 

trend; the increment between adjacent surfaces did not 

present an obvious damage as in other cases. 

 
4.3 Damage location (Damage index) 
 
Although most of the damage locations could be 

distinguished by the MFDXA surfaces, the absence of 

quantization renders this method unpersuasive. Therefore, 

the proposed damage index was employed to improve the 

reliability and practicability of the SHM system. The 

damage index values for the five selected cases are 

provided in Fig. 6. 

As shown in Fig. 6(a), negative damage index values 

clearly occurred on the first floor, while the other index 

values remained positive. This phenomenon was caused by 

the stiffness reduction, which was set by removing the brace 

on the first floor. Hence, the change on the first floor was 

different from that observed under the healthy condition. 

The damage location could be detected by the damage 

index. 

Similar trends were observed in the case of damage on 

the third and fourth floors, where the proposed damage 

index accurately detected damage locations (Fig. 6(b)). 

Negative values were observed on the third and fourth 

floors while the other floors remained positive. As expected, 

the case of damage from the first floor to the third floor was 

also diagnosed correctly (Fig. 6(c)). The damage index  

   
(a) Healthy condition (b) Damage on the first floor (c) Damage on the third and fourth floors 

   
(d) Damage from the first to the third 

floors 

(e) Damage from the fourth to the 

seventh floors 
(f) Damage on all floors 

Fig. 5 Experimental MFDXA curved surfaces 
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Table 4 Damage location detection for different methods 

Damage 

Location 

Method 

Detrended 

Cross-

Correlation 

Analysis 

(DCCA) 

Damage Index 

(DCCA) 

Multifractal 

Detrended 

Cross-

Correlation 

Analysis 

(MFDXA) 

Damage 

Index 

(MFDXA) 

1F C C C C 

2F C C C C 

3F C C C C 

4F C C C C 

5F C C C C 

6F F(2&6F) F(5&6F) C C 

7F F(1&2&3F) C F(7F) C 

1&2F C C C C 

3&4F C C C C 

5&6F C C C C 

1&2&3F C C C C 

4&5&6F C C C C 

1&2&3&4F C C C C 

4&5&6&7F F(4&5&6F) C F(7F) C 

Damaged all F(1&2&3&4F) F(2&3&4&7F) F(all floors) 
F(3&4 

&5&6F) 

Accuracy(%) 75% 87.5% 80% 93.33% 

* C: Correct, 

F: False 
    

 

 

values of the damaged floors were negative, whereas those 

of the undamaged floors were positive. 

Fig. 6(d) shows the damage index for damage from the 

fourth floor to the seventh floor. Most of the damaged floors 

could be detected; only the signal recorded in the second 5-

min segment had an extremely low positive value on the 

sixth floor, and therefore caused misjudgment; however, as 

shown in the Fig 6(e), misjudgment occurred for damage on 

all floors The damage index revealed complex manners 

compared with the preceding damage cases. The all 

damaged case could be considered as another type of 

healthy case with insignificant correlation between each 

floor, indicating that the stiffness of each floor was 

approximately equivalent. 

Furthermore, to ensure the practical robustness of the 

proposed MFDXA method, different levels of noise are 

randomly added into the original time series to evaluate the 

effect of noise interference. The noise is generated by 

utilizing a Gaussian white-noise; the signal-to-noise ratio 

(SNR) values are chosen to be 60 dB, 40dB, and 20dB. The 

evaluation is performed by examining whether the damage 

location can be correctly diagnosed by the MFDXA and 

damage index methods. As shown in the Table 3, the 

accuracy of the method based on MFDXA remains a great 

performance under the cases of SNR 60 and 40; however, 

the accuracy decreases to 66.67% under SNR20. The 

performance of the damage index supports the same result 

under SNR 60 and 40. For a higher noise level (SNR 20), 

the damage index provides a robust result on damage 

location assessment compared with the MDFXA method. 

   

(a) Damage on the first floor (b) Damage on the third and fourth floors (c) Damage from the first to the third 

floors 

  
(d) Damage from the fourth to the seventh floors (e) Damage on all floors 

Fig. 6 Damage index of experimental conditions 
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The result has demonstrated that the proposed methods are 

reliable under the influence of the possible external noise. 

The MFDXA method was compared with other methods 

of SHM. A total of 15 damage cases were analyzed using 

the detrended cross-correlation analysis (DCCA) method, 

DCCA-based damage index, MFDXA, and the proposed 

damage index, and the results are listed in Table 4 (Fajri and 

Lin 2015). As indicated, the accuracy rates of DCCA and 

the DCCA-based damage index were 75% and 87.5%, 

respectively; nevertheless, the accuracy rate of MDFXA 

was 80%. In addition, the proposed damage index could 

improve the accuracy to 93.33%, and only the case of all 

floors being damaged failed, the result showed that by 

utilizing multifractality, a SHM method more reliable than 

the DCCA method is provided. 

 
 
5. Conclusions 

 

By adopting multifractal analysis, which can interpret 

complex, irregular, and disordered phenomena, a SHM 

system based on MFDFA and MFDXA is proposed. 

MFDFA was employed to determine the damage condition 

of a structure, and the Hurst exponent value, an important 

parameter in MFDFA, was applied to show the degree of 

damage. MFDXA was also used to localize the damage 

location in the structure. The detrended covariance, derived 

from the MFDXA algorithm, was utilized to identify the 

damage location. Additionally, the proposed damage index 

could quantify the damage location and simplify the 

diagnosis process.  

An experimental verification was carried out on a seven-

story scaled-down benchmark structure at NCREE. Sixteen 

damage cases were executed and analyzed. On the basis of 

the MFDFA method, the damage condition could be 

assessed through H(q). Moreover, the damage location 

could be localized using the MFDXA technique with 80% 

accuracy, and the accuracy could be further improved to 

93.33% when the proposed damage index was employed. 

As only ambient vibration signal is required as a set of 

initial reference measurements, the proposed system offers 

an easy and alternative strategy for practical SHM. 
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