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1. Introduction 
 

Due to wide application of high-strength light-weight 

construction materials and advanced construction 

technology, long-span floors are becoming increasingly 

popular in designs of public buildings like offices, shopping 

centers, convention centers and stadiums in order to provide 

multifunctional space. The long-span floors are 

characterized by their low vibration frequencies and low 

damping. As a result, they may experience strong vibrations 

caused by occupant‟s daily activities like walking or 

jumping when the human action‟s frequency is close to that 

of the floor (Rainer 1987). The vibration can be annoying to 

people on the floor, leading to the so-called vibration 

serviceability issue. To tackle this problem, many design 

guidelines require, in addition to the safety (strength) and 

static deflection assessment, vibration performance check 

for long-span floors at their design stage, such as AISC 

(Murray 1997), British Standard BS 5400 (1999), Japanese 

load code AIJ (2004) and Chinese code for design of 

concrete structures GB 50010-2010 (2015), to name a few. 

In some projects, the vibration serviceability issue can 

dominate the floor‟s structural design (Chen et al. 2015). 

To fulfill the assessment task, in current design practice, 

the dynamic responses of a floor subjected to walking load 

are calculated and compared with design criteria. So far, 

extensive experimental studies have been conducted on 
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walking load and many numerical models have been 

proposed. All these models differ from each other in many 

aspects including function forms, orders of components, 

dynamic load factors, phase angles and representative 

human body weights. It is easy to deduce that responses of a 

structure, when subjected to different walking models, are 

different. The degree of the differences, however, is not 

clear to design engineers, who usually select a load model 

objectively based on their own experience. Therefore, a 

comparative study on effects of all the walking load models 

in structural response calculation is imperative.  

To this end, this study has collected 19 walking load 

models from literature and design guidelines, and conducted 

a thorough investigation on their influence on structural 

responses. Section 2 describes all the walking load models 

we gathered. General comparisons of all the models are 

presented in Section 3. Section 4 further compares these 

models using response spectra of a single-degree-of -

freedom system (SDOF), followed by Section 5 as case 

studies. The main findings of this paper are summarized 

finally in Section 6.  

 

 

2. Walking load models 
 

We gathered 19 walking load models available in 

literature and various design guidelines. Almost all of these 

models are mathematically expressed by Fourier series 

function  

1

( ) sin(2 π )
n

p vi p vi

i

F t G G i f t 


    (1) 

where G is the pedestrian‟s body weight (N), n is the order  
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Abstract.  Excessive vibrations can occur in long-span structures such as floors or footbridges due to occupant‟s daily activity 

like walking and cause a so-called vibration serviceability issue. Since 1970s, researchers have proposed many human walking 

load models, and some of them have even been adopted by major design guidelines. Despite their wide applications in structural 

vibration serviceability problems, differences between these models in predicting structural responses are not clear. This paper 

collects 19 popular walking load models and compares their effects on structure‟s responses when subjected to the human 

walking loads. Model parameters are first compared among all these models including orders of components, dynamic load 

factors, phase angles and function forms. The responses of a single-degree-of-freedom system with various natural frequencies 

to the 19 load models are then calculated and compared in terms of peak values and root mean square values. Case studies on 

simulated structures and an existing long-span floor are further presented. Comparisons between predicted responses, guideline 

requirements and field measurements are conducted. All the results demonstrate that the differences among all the models are 

significant, indicating that in a practical design, choosing a proper walking load model is crucial for the structure‟s vibration 

serviceability assessment. 
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(a) DLF values for Rainer‟s model 

(b) DFL values of Yoneda‟s model 

(c) kv for Guidebook 2 for Eurocodes model 

(d) Values of reduction factor for EN02 model 

Fig. 1 Parameters of DLF values for four models 
 

Table 1 Parameters of DLFs for first five (sub) harmonics 

for Živanović‟s model 

Harmonic 

No. i 
αvi 

Mean 

αvi 

SD 

Sub-

harmonic 

No. i 

s

vi  

1 

3 20.2649 1.3206 1.7597 0.7613p p pf f f   
 

3 20.2649 1.3206 1.7597 0.7613p p pf f f     
0.16 1 10.026 0.0031v    

2 0.07 0.03 2 10.074 0.0100v   

3 0.05 0.02 3 10.012 0.0160v   

4 0.05 0.02 4 10.013 0.0093v   

5 0.03 0.015 5 10.015 0.0072v   

 

 

number of the function, αvi 
is the Fourier‟s coefficient of the 

i th component which is usually called dynamic load factor 

(DLF), fp is the walking frequency (Hz), φvi is the phase 

angle of the i th harmonic. Brief descriptions of these 19 

models are given in this section. Unless otherwise specified, 

the values of DLF and phase angle of each model are listed 

in Table 2.  

Blanchard et al. (1977) suggested a simple harmonic 

walking load model with merely the first harmonic. They 

also mentioned that for structures with natural frequency of 

4-5 Hz, αvi 
should be reduced and the second harmonic 

needs to be considered.  

Bachmann and Ammann (1987) reported a five-order 

load model. Later, they proposed another walking load 

model, of which the DLF value for the first harmonic varies 

from 0.4 (at fp=2.0 Hz) to 0.5 (at fp=2.4 Hz) with linear 

interpolation in between. Rainer et al. (1987) suggested 

DLF values of the first four harmonics being determined 

according to Fig. 1(a) of the relationship between the DLF 

values and the walking frequency, which was obtained from 

experiment.  

Allen and Murray (1993) presented a model in a slightly 

different form of Eq. (2), and DLF values can be obtained 

by Eq. (3). An updated version of the above model later 

appeared in „Design Guide 11: Floor Vibration due to 

Human Activity‟ (Murray and Allen 1997) in the form of 

Eq. (4). 

1

( ) 1 cos 2 π
n

p vi p

i

F t P i f t


 
  

 
  (2) 

where  

0.83exp( 0.35 )vi pif    (3) 

( ) cos(2 π )i vi pF t P i f t  (4) 

Petersen (1996) put forward a model with three 

harmonics. DLF values and phase angles for three specific 

walking frequencies were given. Linear interpolation was 

recommended for values of other walking frequencies. 

Based on extensive experiments, Kerr (1998) suggested a 

three-order model in which DLF of the first harmonic was 

expressed by a polynomial function of walking frequency, 

DLFs of the second and third harmonics were taken as 

constant.  

For footbridges, British standard BS 5400-2 (1999) 

suggested  

 180sin 2πp nF f t  (5) 

0.9   [m/s]t nv f  (6) 

As we can see, Eq. (5) represents an effective harmonic 

force due to walking which results in resonance response at 

the natural frequency fn of a bridge. The maximum vertical 

acceleration of the bridge due to the pedestrian, who crosses 

the bridge at a specified speed vt (Eq. (6)), should be lower 

than a threshold value. There is a reduction of threshold 

value by a factor varying linearly from 100% at fn=4 Hz to 

70% at fn=5 Hz. The same approach was previously used by 

OHBDC (1983). 

After collecting and analyzing a lot of experimental data, 

Arup (Willford et al. 2005) suggested a design value set in 

Table 2, taken from the statistical mean values of 

experiments plus 0.7 times of the standard deviations, 

representing a 25% probability of exceedance. 

Yoneda (2002) advised a load model 
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   cos 2πp pF t G f t  (7) 

where α (DLF) is obtained by curve in Fig. 1(b). 

 

 

Swedish standard for design and construction of bridges, 

Bro 2004 (SRA 2004), assumed a stationary pulsating load 

model for the calculation of root-mean-square vertical 

acceleration of footbridges 

Table 2 Single pedestrian vertical walking load models proposed by different authors 

No. Year Scholar DLFs Phase angles 
Body weight 

(N) 

Walking 

frequency range 

M1 1977 Blanchard 
1 0.257v 

 
-- 700 -- 

M2 1987 
Bachmann & 

Ammann 

1 0.37v  ，
2 0.10v  ， 

3 0.12v  ，
4 0.04v  ，

5 0.08v   
-- -- 2.0 Hz 

M3 1988 
Bachmann et 

al. 
1 0.4 ~ 0.5v   (linear interpolated 

with
pf )

2 3 0.1v v    

2 π / 2v 
 

3 π / 2v   
-- 2.0-2.4 Hz 

M4 1988 Rainer 
vi  given in Fig. 1(a) -- 735 1.7-2.3 Hz 

M5 1993 
Allen & 

Murray 

1 0.5v  ，
2 0.2v  ， 

3 0.1v  ，
4 0.05v  ，

 

-- 700 1.6-2.2 Hz 

M6 1996 Petersen 

1 0.073v  ，
2 0.138v  ，

3 0.018v   

1 0.408v  ，
2 0.079v  ，

3 0.018v 
 

1 0.518v  ，
2 0.058v  ，

3 0.041v 
 

2 3 π / 5v v  

2 3 π / 5v v  

2 3 2π / 5v v  
 

-- 

1.5 Hz 

2 Hz 

2.5 Hz 

M7 1999 Kerr 

3 2

1 0.265 1.321 1.760 0.761v p p pf f f     

2 0.07v 
， 3 0.05v 

 

-- -- 1.6-2.2 Hz 

M8 1999 BS 5400  180sin 2πp pF f t  -- -- 1.5-2.5 Hz 

M9 2001 Arup 

 1 0.41 0.95 0.56v pf    ,

2 0.069 0.0056(2 )v pf   ， 

3 0.033 0.0064(3 )v pf   ， 

4 0.013 0.0065(4 )v pf   ，
 

-- -- 

1-2.8 Hz 

2-5.6 Hz 

3-8.4 Hz 

4-11.2 Hz 

M10 2002 Yoneda 
   cos 2πp pF t G f t

 
  given in Fig. 1(b)

 

--
 

700 -- 

M11 2004 Bro 2004 
   1 2 sin 2π  p pF t k k f t  

1 20.1 ,  150 k BL k N   
-- -- -- 

M12 2004 
Japanese Load 

Code 1 0.4v  ，
2 0.2v  ，

3 0.06v 
 

--
 

-- 1.7-2.3 Hz 

M13 2005 
Guidebook 2 

for Eurocodes 

   280 ( )sin 2π   p v n nF t k f f t  

 vk given in Fig. 1(c) 
-- 700 1.0-3.0 Hz 

M14 2006 French Guide 
1 10.4,  ( 0.5 for 2.4 Hz)v v pf   

 
2 3 0.1v v  

 

2 π / 2v 
 

3 π / 2v   
700 1.6-2.4 Hz 

M15 2006 Živanović see Table 1
 

--
 

750 -- 

M16 2007 

Background 

document 

of EN02 

    2cos 2π  [N/m ]pp t P f t n  , 

280 P N    cos 2π  [N]p pF t P f t , 

 given in Fig. 1(d) 

--
 

-- 
1.25- 

2.3 Hz 

M17 2007 ISO 10137 

1 0.37( 1.0)v pf   ， 

2 0.1v  ，
3 0.06v  , 

4 0.06v  ，
5 0.06v   

π / 2   vi n pf if  

0   vi n pf if    
750 1.2-2.4 Hz 

M18 2009 Smith 

 1 0.436 0.95v pf    

 2 0.006 2 12.3v pf    

 3 0.007 3 5.2v pf    

 4 0.007 4 2.0v pf    

1 0v   

2 π / 2    

3 πv   

4 π / 2v   

746 

1.8-2.2 Hz 

3.6-4.4 Hz 

5.4-6.6 Hz 

7.2-8.8 Hz 

M19 2014 Chen 

1 0.2358 0.2010v pf   ， 

2 0.0949v  ，
3 0.0523v   

4 0.0461v  ，
5 0.0339v   

1 π / 4  

4 π / 4v 

5 π / 2v 
 

-- 1.2-3.0 Hz 
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   1 2 sin 2π  p pF t k k f t  (8) 

where 
1 20.1 ,  150 Nk BL k   are loading constants. B 

is the width of a bridge and L is the length of the bridge 

between supports.  

Japanese load code (AIJ 2004) introduced a three-order 

model. Guidebook 2 for Eurocodes - Design of footbridges 

(Pietro 2005) recommended that pedestrian load could be 

defined by two separate models consisting of a concentrated 

force (as Eq. (9)) and a uniformly distributed load (as Eq. 

(10)) of vertical direction. Fn,v(t) should be positioned at the 

most adverse point on the bridge deck, while Fs,v(t) be 

applied on the whole deck of the bridge uniformly. 

   , 280 ( )sin 2  [N]n v v v vF t k f f t  (9) 

    2
, 15 ( )sin 2  [N/m ]s v v p pF t k f f t  (10) 

where kv is the suitable coefficients of walking frequency 

according to Fig. 1(c). 

The model adopted by French footbridge guide (Sétra 

2006) has three harmonics and Živanović et al. (2007) put 

forward a stochastic model. The mean values and standard 

deviations describing the normal distributions of the first 

five harmonics are listed in Table 1. As for sub-harmonics, 

Živanović et al. established relationships between 
s

vi  

(DLF for the sub-harmonics) and αv1 (DLF for the first main 

harmonic), as presented in Table 1. Evidently, the 

magnitude of the DLF for the sub-harmonics can be 

obtained merely in the case that αv1 is known.  

According to a background document for Eurocode  02 

(Heinemeyer et al. 2007), the walking load model is 

expressed as  

    2cos 2π  [N/m ]pp t P f t n   (11) 

   cos 2π  [N]p pF t P f t  (12) 

This model is defined by a uniformly distributed 

harmonic load p(t) [N/m
2
] representing the equivalent 

 

 

pedestrian stream and a concentrated force Fp(t) [N] 

standing for the harmonic load due to a single pedestrian. n’ 

is the equivalent number of people walking simultaneously 

on the bridge. ψ is the reduction factor shown in Fig. 1(d). 

The value of P corresponding to vertical component is 280 

N.  

ISO 10137 (2007) also proposed a Fourier series in the 

form of Eq. (1). It recommended a conservative approach 

for the phase angle by introducing a phase lag of 90° for the 

harmonic contributions below resonance. 

Similarly, „Design of Floors for Vibration: A New 

Approach‟ (Smith 2007) introduced the walking excitation 

force having four harmonic components calculated from 

Fourier analysis given by 

   sin 2πp h p h

h

F t Q hf    (13) 

where αh 
 can be obtained from Table 2, and static force 

exerted by an „average person‟ with a weight of 746 N. 

Chen et al. (2014) proposed a five-order continuous 

walking load model featured with comprising sub-

harmonics and all the model parameters were given based 

on experimental data.  

Table 2 summarizes all computational details of the 

above 19 walking load models, hereafter denoted as M1-

M19, including DLF values, phase angles, representative 

pedestrian weight and applicable walking frequency range. 

 

 

3. General comparison 
 

General comparison among models M1-M19 is 

discussed in this section in terms of model parameters, data 

source and applicable scope.  

 

3.1 Model parameters 
 

Fig. 2 compares the synthesized load time histories from 

the 19 models at the same walking frequency of 2 Hz. 

Calculation parameters follow each model‟s specific 

requirements, and for those that have not provided the body 

 
Fig. 2 Simulated walking load time histories of 19 different models at fp=2.0 Hz 
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weight or phase angles, we use G=700 N and φvi=0. Note 

that the same rule for generating loads are also applied to 

calculations in Section 4 and Section 5.1.  

It is seen from Fig. 2 that the 19 load curves differ from 

each other in the features like amplitude, number of peaks, 

mean value and variation pattern. This is not surprising 

given that these models have quite different model 

parameters as function orders, DLFs, representative body 

weight and phase angles. For instance, the order of function 

varies from one to five. Majority of the models consist of 

three or four harmonics. It is worth noting that the fourth 

and fifth harmonics are rarely significant where human 

perception is of concern, but may not be neglected for 

buildings accommodating vibration-sensitive instrument. 

The DLFs are either defined as constants or variables 

depending on walking frequency. Some models also 

consider contributions of sub-harmonics. The representative 

body weight values are given without their corresponding 

statistical significance, e.g. mean value of a population or a 

value with certain guarantee rate. Finally, phase angles are 

ignored in 13 of the total 19 models though they are very 

important in defining the variation pattern of the load. 

Furthermore, when it comes to crowd load, phase angles 

play a decisive part in dealing with crowd synchronization. 

 
3.2 Data source 

 
One aspect to explain the big differences among all the 

19 models, as demonstrated in Fig. 2, is the data source. It is 

well acknowledged that a reliable load model relies heavily 

on a large number of real records, such as for earthquake 

and wind. Data source for developing many of the above 

walking models, however, are not distinct. Important 

experimental information is missing like number, age, 

gender and body weight of test subjects, test protocol (e.g., 

walking frequency range, interval and test sequence) and 

force measurement device adopted. For several models 

having clear data source, Table 3 compares their 

experimental conditions. Note that these experiments have 

significant difference in the experimental conditions. 

Moreover, some models are proposed based on the same 

data sources. A well-accepted test protocol seems to be 

necessary for further experimental investigations. 

 

 

3.3 Applicable scope of the models 
 

The applicable scope of the models are different, some 

are applicable only for footbridges, some for long-span 

floors and some for both. From the point of view of 

structural system, there are at least two main differences 

between footbridges and floors. First, the walking route and 

direction of a pedestrian (or a group) on a footbridge, 

because of its line-like shape, is predictable. Thus, the 

walking load path is known for numerical analysis of 

dynamic responses of the footbridge. For long-span floors, 

on the other hand, there are many possible routes and 

directions for a pedestrian. A most unfavorable situation 

must be selected before the analysis. Second, the long-span 

floors usually have closely-spaced modes of vibration due 

to their similar geometrical features in orthogonal 

directions. Therefore, contributions from multi-modes must 

be considered when assessing vibration performance of a 

floor, and consequently walking load models that can 

arouse higher modes of vibration are preferable. The 

vibration of a footbridge is usually dominated by one mode. 

Table 4 summarizes the applicable scope of all the walking 

models. 

 

 
4. Comparison of response 

 

The influence of the 19 models on structural responses is 

investigated in this section by comparing their response 

spectra. The main process is that, separately, apply each 

load model to a SDOF system with unit modal mass and a 

given damping ratio. The natural frequency of the system 

varies from 0.05 Hz to 12 Hz with an increment of 0.05 Hz, 

covering the extent of very soft to very stiff structures. In 

this study, the walking frequency is supposed as 2 Hz, 

damping ratio ζ=0.05. The calculation results are illustrated 

as Fig. 3 in which x label is natural frequency of the 

structure and y label is root mean square (RMS) of 

acceleration of steady state.  

 

4.1 Peak responses 
 

As illustrated in Fig. 3, when subjected with each model,  

 

 
 

Table 3 Experimental conditions of several walking load models 

No. Scholar 
Test subject 

No. of  

records 
Experimental Setup 

Walking 

Freq. range Nationality Number Pedestrian Weight 

M14 Rainer et al.
 

Canadian 3 
735 N 

(recommended) 
-- 

17 m span floor 

strips 
3.0 Hz 

M10 Yoneda et al.
 

Japanese -- 700 N (recommended) -- -- -- 

M7 Kerr British 
32 Male 

8 Female 

750 N 

(recommended) 
882

 

Raised platform 

Force plates 
1.0-3.0 Hz 

M19 Chen et al. Chinese 
59 Male 

14 Female 

65.1 kg 

54.2 kg 
5004 

3D motion capture 

3D force plates
 1.2-3.0 Hz 

M15 
James Brownjohn -- 

1 Male 

1 Male 

1 Female 

65 kg 

62 kg  

46 kg 

30 
Treadmill 

Force plates 

2.5 km/h- 

7.5 km/h 

Živanović et al. Based on Kerr‟s and Brownjohn‟s data 

M9 Arup Mainly based on Kerr‟s data 
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Fig. 3 Responses spectra of all 19 walking load models 

(walking frequency of 2 Hz, modal mass of 1 kg and 

damping ratio 0.05) 
 

 

the structure presents a fair large disparity in peak 

acceleration response. At the natural frequency of 2 Hz, the 

ratio of the maximum response among all the load models 

(Guidebook 2 for Eurocodes model) and the minimum 

 

 
(a) Simulated walking load time history 

 
(b) RMS 

Fig. 4 Kerr‟s and Živanović‟s (mean values as DLFs) 

models at fp=2 Hz, mass of 1 kg and ζ=0.05 

Table 4 Information of models from design codes and guidelines 

No. Scholar Name of the references Applicable scope 

M1 Blanchard et al. 
Design criteria and analysis for dynamic loading of 

footbridges 
Bridges with 4 Hznf   

M4 Rainer et al. Dynamic loading and response of footbridges Footbridges with 10 Hznf   

M5 Allen & Murray Floor vibrations vue to human activity Floor and bridges 

M6 Petersen Dynamik der Baukonstruktionen Footbridges 

M7 Kerr Human induced loading on staircases Footbridges 

M8 BS 5400 Steel, concrete and composite bridges Foot or cycle track bridges 

M9 Arup Improved floor vibration prediction methodologies Floors and bridges 

M10 Yoneda et al. 

Simplified method to evaluate pedestrian-induced 

maximum response of cable-supported pedestrian 

bridges 

Footbridges 

M11 Bro 2004 
Vägverkets allmänna tekniska beskrivning för 

nybyggande och förbättring av broar - 
Bridges with 3.5 Hznf   

M12 Japanese Load Code Recommendations for loads on buildings Buildings 

M13 Guidebook 2 for Eurocodes Design of bridges Footbridges 

M14 French Footbridges Guide 

Technical guide-foodbridges – Assessment of 

vibrational behavior of footbridges under pedestrian 

loading 

Footbridges 

M15 Živanović et al. 
Probability-based prediction of multi-mode vibration 

response to walking excitation 
Slender footbridges 

M16 
Background document 

of EN02 

Design of lightweight footbridges for human induced 

vibrations 
Footbridges 

M17 ISO 10137 
Human exposure to continuous and shock-induced 

vibrations in buildings 
Buildings and walkways 

M18 Smith et al. 
Design of floors for vibration: 

a new approach 

All steel-framed floor and 

building types 
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Table 5 Ratios of DLF and RMS at the points of frequency 

multiplication 

Order 1 2 

Model M2 M17 M19 Ratio M2 M17 M19 Ratio 

DLF 0.37 0.37 0.271 1:1.00:0.73 0.1 0.1 0.0949 1:1.00:0.95 

RMS 

(m/s2) 
1835 1834 1334 1:1.00:0.73 514 506 477 1:0.98:0.93 

Order 3 4 

Model M2 M17 M19 Ratio M2 M17 M19 Ratio 

DLF 0.12 0.06 0.0523 1:0.50:0.44 0.04 0.06 0.0461 1:1.50:1.15 

RMS 

(m/s2) 
603 312 269 1:0.51:0.45 237 310 235 1:1.32:0.99 

 

 

response (Blanchard‟s model) is 4.669. When the natural 

frequency is 4 Hz, ratio of the maximum response (Allen 

and Murray‟s model) and the minimum (Blanchard‟s 

model) reaches more than 20. Thus, though the responses of 

each load model share roughly the same tendency, the 

corresponding peak RMS accelerations vary a lot in values.  

 
4.2 The influence of orders of the models 
 

Merely considering the mean values of main harmonics 

of Živanović‟s model as its DLFs, Kerr‟s and Živanović‟s 

models share the same first two dynamic load factors, but 

Živanović‟s model has three additional harmonic 

components. To exclude the effect of phase angles, here all 

the phase angles are assigned zero. The load time history 

and RMS response spectrum are shown in Fig. 4. 

From Fig. 4(a), DLFs of higher orders have an effect on 

load time history; as for Živanović‟s model, twin peaks 

occur; for Kerr‟s model there is only one peak value in 

every load cycle. In the response spectrum (Fig. 4(b)), when 

the system is at one and two times of walking frequency, the 

peaks appear and roughly share the same value; when the 

system is at three, four and five times of walking frequency, 

there exist peaks in Živanović‟s model while no peak in 

Kerr‟s. Hence, for structural frequency corresponding to the 

same contributing harmonic components of different 

models, there is rarely distinction; for that of higher orders, 

there are obvious distinctions. 

 

4.3 The influence of dynamic load factors 
 

Making a comparison of Bachmann and Ammann‟s 

(1987), ISO 10137 (2007) and Chen‟s (2014) models who 

possess the same orders of harmonics, but different DLF 

values, the results can be seen in Figs. 2-3 curve M2, curve 

M17 and curve M19, based on which Table 5 is produced. 

All phase angles are set zero in the calculation. 

Noting that in accordance with Table 2, the ratios of 

DLFs are approximately equal to the corresponding ratios 

of RMS. In other words, when natural frequency of a 

structure is of a certain integer multiple of walking 

frequency, RMS of the structure is in proportion to the same 

integer multiple order of DLF with respect to different 

models. 

 

 
(a) Simulated walking load time history 

 
(b) RMS 

Fig. 5 Six random phase cases of Bachmann and Ammann‟s 

model at fp=2 Hz, mass of 1 kg and ζ=0.05 
 
 
4.4 The influence of phase angles  
 

Take different phase angles of Bachmann and Ammann‟s 

model (Bachmann and Ammann 1987) to carry on this 

analysis. Phase angle values of this model are taken 

randomly within [0, π]. The result is presented in Fig. 5. In 

terms of structural responses, the difference is not obvious, 

especially in peak acceleration (Fig. 5(b)).  

 
4.5 The influence of the function form 
 

Almost all the walking load models have been proposed 

based on Fourier decomposition. However, some of these 

models are composed of the pedestrian‟s body weight as a 

constant term and a combination of harmonic forces while 

some do not include the constant term such as BS 5400 

code, Yoneda‟s, Pietro‟s and background document of 

EN02 models. Take Blanchard‟s and BS 5400 models as an 

example. The amplitudes of the two Fourier decomposition 

expressions are the same. Results are shown as Figs. 2-3 

curve M1 and curve M8. 

Though the two load time histories as curve M1 and 

curve M8 in Fig. 2 seem entirely different, they have barely 

any disparity in shape. That is because M8 does not contain 

the body weight, while M1 does. In addition, the structural 

responses have substantially the same tendency. It is not 

hard to explain this: a constant term of a load only has great 

influence on displacement of a structure, but no influence  
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on accelerations. Besides, it also proves that DLF 

contributes largely to the structural response. 

 

 
5. Case study 
 

5.1 Comparison with design criterion  
 

Many criteria for human comfort have been proposed 

over the years. To make a comparison on the different 

models when encounter different criteria, we consider two 

examples here: one structure has a modal mass of 70 t and 

the other structure has a modal mass of 5 t, supposing that a 

structure‟s vibration due to walking load is dominated by 

one mode. For both cases, the natural frequency of the 

dominating mode is 2.0 Hz and the damping ratio is 0.05. 

The response spectra obtained from the two structures 

applied on the 19 load models are shown in Figs. 6(a)-(b), 

respectively.  

The commonly adopted design criterion curves for nine 

different scenarios are also depicted in Fig. 6 for 

comparison purpose (Murray 1997, Ellingwood 1984, BS 

6472 1992, ISO 10137 2007). 

Noting from Fig. 6(a) that for one given criteria (say 

 

 

curve 4 of daytime upper response limit for office and 

residential buildings), assessment of several load models 

(M13, M15, M18 etc.) indicates that most occupants on the 

building would perceive annoying vibration (i.e., negative 

assessment result), while others (M19, M8, M17 etc.) 

believe that majority of the occupants would be unaware of 

the vibration (i.e., positive assessment result). The same 

conclusion can be made for Fig. 6(b) that different models 

may lead to completely opposite assessment result. 

 

5.2 Comparison with field measurements  
 

To do some experimental verification, a 10 m 6 m  

rectangular concrete floor was constructed which casted in 

place with concrete grade C40 of 110 mm in thickness. It 

was simply supported at two ends of the long span and 

dynamic characteristics of the floor were extracted from the 

measurements. The natural frequencies of the first four 

vibration modes are 3.52, 6.16, 8.97, 13.19 Hz, and the 

corresponding modal masses are 8583, 2587, 9625 and 

2423 kg (Liu and Chen 2014). Test data was obtained from 

record of seven accelerometers (Lance LC0132T, USA) 

installed beneath the floor. 

Single person walking test was conducted on the floor: a  

 
(a) RMS at fp=2 Hz, modal mass of 70 t, damping 0.05 

 

 

(b) Peak acceleration at fp=2 Hz, mass 5 t, damping 0.05 

Fig. 6 Structural response in logarithm scale of different models at fp=2 Hz and vibration criteria 

Curve 1: Critical baseline                     Curve 2: Residential for night 

Curve 3: Residential for day lower limit 

Curve 4: Office and residential for day upper limit 

Curve 5: Workshop                          Curve 6: Ellingwood and Talling's criterion for shopping malls 

Curve 7: Office, residential                    Curve 8: Indoor footbridge, Shopping mall, Dining and Dancing 

Curve 9: Rhythmic activities and outdoor footbriges 
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Fig. 7 Finite element model of the floor and load exerting 

method 
 

 

test subject weighed 813.4 N was required to walk straight 

on the midline along the long span at walking frequencies 

guided by a metronome, with stride of about 0.75 m, same 

as the path in Fig. 7. One of the test response time histories 

at walking frequency of 1.75 Hz is shown in Fig. 8 which is 

obtained from record of the accelerometer at the floor 

center. Details of field measurements of this floor can be 

found in Liu and Chen‟s paper (2014). We then applied the 

19 walking load models (with the same walking frequency 

1.75 Hz) on a finite element model of this floor (Fig. 7) 

established by a software, Midas-Gen, to calculate its 

dynamic responses. 

Walking load as expressed by Eq. (1) can be translated 

as a point force exerted on the floor, as a function of time 

and pedestrian position. Noting that x is the pedestrian 

position in relation to the structure, the load of a pedestrian 

moving at constant speed v can therefore be represented as 

the product of a time component F(t) by a space component 

δ(x – vt), where δ being the Dirac operator, defined as 

     ,P x t F t x vt   (14) 

Based on this, the load exerting method on the finite 

element model is illustrated in Fig. 7. 

The acceleration at the center point of the floor was 

extracted for each model. Peak acceleration, maximums of 

1 s RMS and 10 s RMS and RMS along the whole time 

calculated from the finite element model were normalized 

with the corresponding values from field measurements (the 

last row in Table 6, denoted with an asterisk), as listed in 

Table 6.  

Taking peak acceleration values as comparison variable, 

six models (M2, M6, M7, M9, M15, and M19, those 

marked in grey) lead to a prediction having less than 15% 

error to the measured response. The other models, however, 

can lead to either significant overestimation or serious 

underestimation for this particular case. One common 

feature for those models seriously underestimating the 

response (M8, M10, M11, M13 and M16) is that they only 

focus on the first harmonic of the Fourier series, but 

actually, this testing floor with the fundamental frequency 

of 3.52 Hz was resonant to the walking loads (fp=1.75 Hz) 

at twice the walking frequency. Thus, these models only suit 

for structures with fundamental frequency within the 

common range of human walking frequency. This jumps to 

the same conclusion with Section 4.2.  

In addition, it is not hard to find that M5 and M12 show 

greater response than other models. Back to the functions of 

the models, we can see that this phenomenon accounts for  

 
Fig. 8 Walking response time histories of 19 models and 

test case at fp=1.75 Hz 
 

Table 6 Response of acceleration ratio between 19 walking 

load models and the test result 

Model RMS 
Max. of 

1 s RMS 

Max. of 

10 s RMS 
Peak Acc. 

Test 1 1 1 1 

M1 0.7294 0.8068 0.7654 0.8277 

M2 1.3320 1.0282 1.1072 1.1482 

M3 1.1485 0.8293 0.9158 0.8124 

M4 1.2967 1.0272 1.0936 1.1554 

M5 2.2954 1.4357 1.7703 1.4307 

M6 1.3292 0.9726 1.0699 1.0739 

M7 1.0718 0.9214 0.9459 1.0344 

M8 0.0313 0.0301 0.0281 0.0276 

M9 1.2264 0.9761 1.0368 1.0974 

M10 0.2566 0.2828 0.2682 0.2949 

M11 0.0541 0.0519 0.0486 0.0477 

M12 2.2917 1.4316 1.7655 1.4228 

M13 0.1461 0.1403 0.1312 0.1287 

M14 1.1492 0.8312 0.9170 0.8144 

M15 1.1233 1.0086 1.0182 1.1187 

M16 0.2933 0.3232 0.3065 0.3370 

M17 1.5058 1.1978 1.2727 1.3630 

M18 1.0864 0.6534 0.8230 0.3910 

M19 1.1755 0.8403 0.9379 0.9271 

Test 

(cm/s2)* 
1.7337 3.9832 2.9349 9.5088 

*Values in the last row are the absolute experimental 

measurement values in cm/s
2
. 

 

 

the DLF values of these two models being larger than the 

rest. We can say: for structures with natural frequencies 

among the common range of fp, DLF is the most significant 

factor of walking load. 

 

 

6. Conclusions 
 

Vibration serviceability problem due to human-induced 
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loads becomes an important, even dominate design issue for 

long-span and flexible structures like floors and footbridges. 

Many load models are available for engineers when 

designing such structures. However, the differences among 

these models in predicating a structure‟s dynamic responses 

are not clear. To solve this problem, this paper has collected 

19 walking load models. These models are compared 

against each other in terms of model parameters and 

structural response. Among all the model factors discussed, 

the DLF values are the most important one for peak 

structural responses, the phase angle has little effect on 

structural response due to an individual walking but is very 

important for describing synchronization of a walking 

crowd.  

The comparisons reveal that different load models will 

lead to significantly different structural responses that can 

either be overestimation or underestimation compared with 

the field measured response, and can therefore result in 

opposite assessment conclusions. This difference can be 

explained by different function form, model parameters, 

data source and applicable scope among all the models. 

Therefore, it is difficult to select one best model from all the 

19 models. Nevertheless, the present comparison studies 

indicate that it is better to try more load models, besides that 

specified in certain design guidelines for structural vibration 

serviceability assessment, and those models considering 

contributions of higher harmonics might be proper for 

designing structures with multi-mode vibration. It is of 

great significance to concern with the applicable scope of 

every model in ahead. What is more, a well-accepted test 

protocol is necessary for further experimental investigations 

and is important for developing the next generation of 

walking load model.  
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