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1. Introduction 
 

In multibody systems, kinematic joints are generally 

assumed to be ideal i.e., without clearance. In real 

mechanical joints, there is a distance between journal and 

bearing. This clearance exists due to machining tolerances, 

wear, material deformations, and imperfections, and it can 

worsen the mechanism performance when the precision and 

smoothly-working are intended. This is because of the 

impact forces applied between the journal and the bearing.  

Three main types of clearance model could be found in 

the literature, namely, the massless link approach, the 

spring-damper approach, and the momentum exchange 

approach. In the momentum exchange approach, which is 

used in this research, the clearance is modeled as two 

colliding bodies. There will be no kinematic constraints 

between the journal and the bearing and the impact-contact 

force between them controls the dynamic behavior of the 

system. These impacts in the clearance joint lead to high 

contact force and consequently high acceleration. This 

model is more realistic than two other approaches, because 

it considers the contact forces as a function of surface 

elasticity in addition to taking into account the energy 

dissipation during impact (Flores and Ambrosio 2004). 

The contact problem is a challenging subject in 

mechanical systems. This phenomenon is greatly paid 
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attention in the literature (see for example Garrido et al. 

1994, Liu and Yang 1998, Li et al. 2015, Oner et al. 2015 

and Gandhi et al. 2015). Contact happens repeatedly in 

multibody systems with clearance. Clearance in mechanical 

joints has attracted many researchers in recent decades. 

Dubowsky and Freudenstein (1971) used impact pair model 

for joint clearance. In their model, contact surface was 

considered as a spring-damper element which was apart 

from the other surface as far as the clearance size. In 

addition, Rhee and Akay (1996) investigated the response 

of a four-bar mechanism with a clearance joint and showed 

that a nonlinear dependence on both the clearance size and 

the coefficient of the friction between the journal and the 

bearing exists. In addition, the pin trajectories and the 

Poincare maps indicated that the motion of the pin can be 

simple periodic, periodic motions with periods that are 

multiples of the crank revolution and in some cases, it can 

be chaotic. It was also presented that at moderately high 

coefficient of friction, the pin motion is simple periodic 

with a period the same as that of crank rotation. Ravn 

(1998) analyzed a slider-crank mechanism with a clearance 

in joint between the coupler and the slider. He used the 

continuous contact force model in which the contact force 

was a function of the amount of penetration between journal 

and bearing. This force controls the dynamic behavior of 

the journal and the bearing. Schwab et al. (2002) made a 

comparison between several continuous contact force 

models and an impact model. It was achieved that the 

compliance of the links or lubrication of the joint smooths 

the peak values of the contact forces. Flores et al. (2004) 

investigated the clearance in a multibody system 

considering lubrication. The compressive force applied by 

the lubricant, when there is no contact between journal and 
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bearing, was taken into account in the equations of motion. 

Khemili and Romdhane (2008) studied the dynamic 

behavior of a planar flexible slider-crank mechanism with 

clearance. Simulation and experimental tests were carried 

out and the model was built under the software ADAMS for 

the simulation tests. It was shown that in the presence of 

clearance, the coupler flexibility has a role of suspension for 

the mechanism. Mukras et al. (2010) presented a procedure 

to analyze planar multibody systems in which wear occurs 

at one or more revolute joints. The wear was computed 

based on Archard’s wear model and validated with an 

experimental slider-crank mechanism. The wear in 

clearance joints is also investigated in other papers (Feng et 

al. 2013, Zhao et al. 2013, Pei et al. 2013). Zhang et al. 

(2014) analyzed a 3-RRR parallel mechanism with six 

clearance joints. They showed that the joint clearances have 

considerable effects on the displacement and velocity of the 

moving platform, and have great influence on the 

acceleration and driving moments. Zhang et al. (2015) 

presented a multiobjective problem in which the effect of 

the clearance on the slider acceleration, contact force and 

power consumption was investigated. For more papers on 

the optimization of the mechanical systems with clearance, 

the reader is referred to (see for example Erkaya and Uzmay 

2009, Sardashti et al. 2013, Varedi 2015). The interested 

reader could refer to many other researches dealing with 

clearance joint such as (Lankarani and Nikravesh 1994, 

Qiang Tian et al. 2009, 2010, 2011, 2013, 2015). 

In addition to the researches related to the modeling of 

the clearance, vibrational analysis of the mechanical 

systems with clearance is also considered in the literature. 

Vaidya and Padole (2010) considered a four-bar linkage 

with clearance. They modeled the bearing stiffness as a 

linear and torsional spring and added this stiffness to the 

assembled stiffness matrix to find out the effect of joint 

flexibility on natural frequencies. In addition, Zhao et al. 

(2016) used a hybrid method for identifying the bearing 

joint stiffness of high speed spindles which can effectively 

have influence on its dynamic characteristics. The bearing 

stiffness was modeled based on the Hertz contact theory. 

Erkaya (2012) investigated the effect of the clearance on the 

vibration of the bearing of a slider-crank mechanism. He 

designed a neural network for the different clearance sizes 

and velocities. He collected the data from three 

accelerometers to find out the vibration of the system. Time, 

clearance size, velocity and the material of the mechanism 

were the network inputs and three accelerometers data were 

its outputs. Yang et al. (2012) investigated the vibrational 

modes of a cantilever beam with a block mounted on it with 

a clearance. Ebrahimi et al. (2017a) tried to find the 

instantaneous natural frequencies of a flexible fourbar 

mechanism with a single clearance joint. Salahshoor et al. 

(2016), Ebrahimi et al. (2017b) tried to obtain an analytical 

solution for a mechanical system with clearance joint using 

multiple scales method. Due to the high nonlinearity of the 

clearance joint behavior, some effort has been devoted to 

the investigation of the chaos and bifurcation in multibody 

systems with clearance (see for example Chunmei et al. 

2002, Rahmanian and Ghazavi 2015).  

Although there is a vast amount of researches on 

modeling of the clearance and its effect on the dynamic 

behavior of the multibody systems, very little attention has 

been paid to the energy of the systems with clearance joints. 

The major contribution of this work is devoted to the effect 

of clearance on the energy of the system. At first, a rigid 

slider-crank mechanism which has a clearance joint 

between the slider and the coupler is used as a 

demonstrative sample. The clearance is modeled using the 

momentum exchange approach. The continuous contact 

force model is used to evaluate the contact force and the 

friction force is achieved by the modified Coulomb’s 

friction law. Energy of the system for different initial crank 

angular velocity and various coefficients of friction is 

presented. Finally, the coupler is considered as a flexible 

body and its effect on the energy of the system is 

investigated when there is clearance in the system. The 

floating frame of reference formulation is used to model the 

flexible coupler and Rayleigh damping is assumed for the 

damping of the flexible body. 

 

 

2. Multibody system dynamics 
 

2.1 Equations of motion for rigid multibody systems 
 
A multibody system is defined as a set of interconnected 

rigid bodies that can have large displacements and rotations. 

In order to determine the position and orientation of a rigid 

body, a coordinate system is attached to that body. The 

origin of this body-fixed coordinate system is specified with 

respect to the global coordinate system as 

T[ ]i xi yi iR R q  (1) 

where θi is the relative angle between the body reference 

frame and the global coordinate system, Rxi and Ryi 

determine the position of the body reference frame origin 

with respect to the global coordinate system. There are 

some constraints between two adjacent bodies which are 

connected by means of joints. These constraints are 

expressed as 

 ,t C q 0  (2) 

where q is a set of generalized coordinates which specify 

the position and orientation of all the bodies of the 

multibody system. If the number of the constraints equals to 

the number of the generalized coordinates, the system is 

said to be kinematically driven (Shabana 2001). 

Differentiating Eq. (2) yields two equations through which 

velocities and accelerations are achieved  

t 
q

C q C  (3) 

  2 t tt d    q q qq
C q C q q C q C Q

 
(4) 

where Cq is the Jacobian matrix and is a square matrix for a 

kinematically driven system. However, if the number of 

constraints is less than the number of degrees of freedom, 

the force analysis is required and the equations of motion 

are expressed as 
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Fig. 1 Flexible body kinematics (Ebrahimi 2007) 
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 (5) 

where M is the mass matrix, q
 

is the acceleration vector, 

λ is the vector of Lagrange multipliers and Qe 
is the 

generalized force vector which is calculated when the 

external force applies to the system. 

 

2.2 Flexibility modeling 
 
Traditionally, dynamic analysis of multibody systems 

was based on the rigid body assumption. This assumption is 

correct for a multibody system operating at low speeds and 

when the links behave as rigid bodies. But when the 

systems operate at higher speeds, the links deform 

considerably and the rigid body assumption is no longer 

valid. Dynamic analysis of elastic bodies is much different 

from that of rigid ones (Jablokow et al. 1993). 

 

2.2.1 Floating frame of reference 
The floating frame of reference approach is the most 

widely used method in flexible multibody dynamics. 

However, its use has been confined to applications in which 

the deformation of the body with respect to its coordinate 

system is assumed to be small. In this approach, 

configuration of each flexible body in the multibody system 

is specified by using two sets of coordinates: reference and 

elastic coordinates. Reference coordinates define the 

location and orientation of a body reference attached to the 

elastic body. Elastic coordinates determine the body 

deformation with respect to the body reference (Shabana 

2005). To explain the floating frame of reference 

formulation in more details, consider Fig. 1 which shows 

inertial and body reference frames necessary for 

determining the position of all points of the body i.  

Therefore, the position of an arbitrary point p
i

 
is 

expressed as 

   

i i i i i i

p

i i i i i i i i i

o e o e

    

    

r R u R A u

R A u u R A u S q
 (6) 

where A
i
 is the transformation matrix, i

u is the local 

position vector of point p, 
i

ou is the position of point p in 

the undeformed state, S
i
 is a space-dependent shape matrix, 

and qe 
is the vector of time-dependent elastic generalized 

coordinates of the deformable body i. The coordinates of 

body i can be defined as 

T
i i i

e
   q R θ q  (7) 

where R
i
 and θ

i

 are the reference coordinates and qe is the 

vector of elastic coordinates. Differentiating Eq. (6) with 

respect to time yields 

   

T

1

...

r

i i i

p

i i i i i i i

e

i i i i i

i i

n 



      

  
  
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r L q

L I B A S q R θ q

B A u A u

 
(8) 

where I is a unity matrix and nr is the number of total 

rotational coordinates of the reference of body i. The vector 
i

R is the absolute velocity vector of the origin of the body 

reference, 
i i i

eA S q is the velocity of point p due to the 

deformation of the body, defined with respect to an observer 

placed on the body and i i
B θ  is the result of differentiation 

of the transformation matrix with respect to time. 

Differentiating Eq. (8) with respect to time yields 

i i i i i

p  r L q L q  (9) 

where 
i i

L q  is a quadratic velocity vector that contains the 

Coriolis component. Considering the kinetic energy of a 

deformable body, one can obtain the mass matrix as 

(Shabana 2005) 

 

 

   
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i

i

T
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(10) 

The equations of motion and the constraints can be 

expressed as a matrix equation similar to Eq. (5) 

0

T

e v

d

      
    

      

q

q

Q Q Kq DqM C q

QC λ
 (11) 

where D  is the damping matrix, 
vQ  is the quadratic 

velocity vector and K  is the stiffness matrix of the body i. 

The quadratic velocity vector and the stiffness matrix are 

obtained as (Shabana 2005) 

 

 

T

T

1

2

0 0 0

0 0 0 ,

0 0

T

ee

i

ee

i i i i i i

v i

i i i i i i i

i V

dV

 
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 
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

Q M q q M q
q

K K D S E D S

K

 
(12) 
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where D
i
 is a differential operator that relates the strain 

vector to the deformation vector and E
i
 is the symmetric 

matrix of elastic coefficients. The damping coefficient 

matrix is sometimes approximated with a so-called 

proportional or Rayleigh damping as a linear combination 

of the mass matrix and the stiffness matrix (see Ebrahimi 

2007 and Ebrahimi et al. 2008) 

0 0 0

0 0 0 ,

0 0 [ ]

ee ee ee

ee

d m k

d

 

 
 

  
 
  

D  (13) 

where α and β are two constant parameters, which can be 

determined from two given damping ratios ξ1 and ξ2 that 

correspond to two different frequencies ω1 and ω2 

 

 

1 2

1 2 2 12 2

2 1

2 2 1 12 2

2 1

2
,

2


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 
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 

 


 


 (14) 

mee is the mass matrix element associated with the elastic 

coordinates. For determining ω1 and ω2, the procedure 

presented in (Bathe 1996) is used in this paper.  

 

 

3. Clearance modeling 
 

Three main types of clearance model could be found in 

the literature, namely, the massless link approach, the 

spring-damper approach, and the momentum exchange 

approach. In this paper, the third model, the momentum 

exchange approach, which is more realistic, is used.  In this 

approach, the constraint equation between two bodies is 

cancelled and the contact force controls the dynamic 

behavior of the colliding journal and bearing. Three 

conditions are expected during motion, free flight motion, 

impact mode and continuous contact mode. In the free flight 

motion, the journal moves freely inside the bearing 

boundary and there is no contact. At the end of the free 

flight motion, impact mode could happen in which the 

contact forces are applied and removed in the system and 

there will be a discontinuity in the kinematic and dynamic 

characteristics. A sudden change will occur in the 

momentum of the colliding bodies. In the continuous 

contact mode, there will be a permanent contact between 

the journal and the bearing and a sliding motion exists. The 

contact force proposed by Lankarani and Nikravesh is 

expressed as 

 
 

 

2

1

22

3 1
1

4

14
,

3

rn

N

i j k

k

i j ki j

e
F K

R R
K h k i j

R R Eh h










 
  
 
 

  
   

   

 (15) 

where FN is the normal contact force, K is a constant 

depending on the material properties and geometry of the 

colliding bodies, δ is the penetration between the journal 

and the bearing, er is the coefficient of the restitution,   is  

 

Fig. 2 Geometric description of a revolute clearance joint 

and a slider-crank with its reference coordinates (Flores and 

Ambrosio 2004) 

 

 

the penetration velocity, 
 


 is the initial penetration 

velocity, Ri and Rj are the radii of the journal and the 

bearing, υ is the Poisson’s ratio and E is the elastic modulus 

of the colliding bodies. To improve the model, the friction 

force is applied at the contact point. This force is calculated 

using a modification of Coulomb’s friction law proposed in 

(Flores and Ambrosio 2004). This friction force is as 

follows 

T
T f d N

T

c c F 
v

F
v

 (16) 

where cf 
is the coefficient of friction, vT is the relative 

tangential velocity and cd is a dynamic correction 

coefficient which is expressed as 

0

0

1 0

1 0

1

0 if

if

1 if

T

T

d T

T

v v

v v
c v v v

v v

v v

 



  


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 (17) 

where v0 and v1 are given tolerances for velocity (Flores 

2004). In order to determine the direction of the contact 

force, the contact point and the amount of penetration has to 

be formulated. To do this, consider Fig. 2.  

In this figure, two bodies which are joined together with 

a clearance revolute joint are shown. The eccentric vector is 

calculated as 

   i i i j j j

D B   e R A u R A u  (18) 

where R
i
 and R

j
 denote the vectors joining the global origin 

to the origins of body i and j, respectively. A
i
 and A

j
 are the 

transformation matrices from the body-fixed coordinates to 

the global reference frame. 
i

Du and 
j

Bu are the local 

position vectors of the journal and bearing centers w.r.t the 

corresponding body-fixed coordinate systems. Now the 

position of the contact point is determined as follows 
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,k k k k

c kR k i j   r R A u n  (19) 

where 
k

cr  is the position vector of the contact point w.r.t 

the journal or the bearing and n is the unit vector in the 

direction of contact. 

, e
e

 
e

n e  (20) 

The penetration between journal and bearing is 

calculated as 

 j ie R R     (21) 

The penetration velocity is required to determine the 

contact force and it is achieved as 

,
,k k k k

c k kR k i j


   r R A u n  (22) 

where
,

k


A is the derivative of the transformation matrix 

w.r.t. the body-fixed frame orientation. Then the normal and 

tangential penetration velocities are computed as 

 

 

.

.

i j

n c c

i j

t c c

 

 

v r r n

v r r t
 (23) 

where t is the tangential unit vector. Having obtained the 

contact force, it must be added to the generalized external 

vector in Eqs. (5)-(11). To do this, the contact force is 

transferred to the origin of the colliding bodies reference 

frame and it requires considering the moment of the contact 

force. 

 

3.1 Contact detection 
 
Determining the instant of contact in multibody systems 

with clearance is necessary. In addition, calculation of the 

contact force requires knowing the pre-impact conditions. 

In this paper, the second strategy suggested by Flores and 

Ambrosio (2010) is used to estimate the instant of contact. 

In this strategy, when the penetration sign changes from 

negative to positive, i.e., contact is happening, the step time 

for integration of the equations of motion is reduced, and it 

continues until the penetration becomes less than a 

predetermined value. This time is taken as the impact time 

and the penetration velocity is used to calculate the contact 

force. 
 

 

4. Energy characterization 
 

Kinetic and potential energies of a multibody system are 

added to constitute the total energy of the system. The 

kinetic energy is calculated as 

T1
.

2
K E  q Mq  (24) 

where M is the mass matrix of the system and q  is the 

vector of generalized velocities of the system. The potential 

energy of the system is calculated as 

Table 1 Properties of the slider-crank mechanism 

 crank coupler slider 

Length (cm) 5 12 - 

Mass (kg) 0.3 0.21 0.14 

Mass moment of inertia (kg.m2) 0.0001 0.00025 0.0001 

 

 

T

1

1
.

2

bn

i i

i

P E m gh


  q K q  (25) 

where nb is the total number of bodies. The first term is the 

gravitational potential energy and the second one indicates 

the strain energy related to the flexible bodies. Apparently, 

when the multibody system is assumed to be rigid, the 

second term vanishes. 

 

 

5. Application to a slider-crank mechanism 
 

To investigate the effect of clearance on the energy of a 

multibody system, a slider-crank is used as an example 

(Fig. 2). Table 1 shows the properties of this mechanism. 

The modulus of elasticity of the slider and coupler is 

E=207 Gpa, the poisson’s ratio is υ=0.3, and the coefficient 

of restitution is er=0.9. The revolute joint between the slider 

and the coupler is assumed to be non-ideal. The radius of 

the bearing is 10 mm and the clearance varies to see its 

effect on the energy of the system. The crank rotates with an 

initial angular velocity and the initial crank angle is 

supposed to be 0°. The reason for considering the initial 

angular velocity without applying any moment to the crank 

is that the energy is the subject of interest and it is assumed 

that no external energy is given to the system. When 

clearance exists, the initial conditions are assumed to be the 

same as the ones when the joints are ideal and the centers of 

the journal and the bearing are coincident initially. The 

Runge-Kutta-Fehlberg method was used to integrate the 

equations of motion (Schiling and Harris 1999). In order to 

prevent constraint violation, the coordinate partitioning 

technique proposed by Wehage, was used in which the 

independent accelerations were separated from the 

dependent ones and integrated forward to obtain the 

independent coordinates and velocities (Shabana 2001). 

 

5.1 Results and discussion 
 
5.1.1 Dynamic response 
Validation of the model 
At first, the dynamic response of the rigid system is 

compared with the literature. For this purpose, a crank 

slider having a clearance in the joint between the slider and 

the coupler with the properties of Table 1 taken from Flores 

and Ambrosio (2004) is considered. The journal trajectory 

inside the bearing is plotted in Fig. 3(a) for clearance 0.01 

mm and without friction. In addition, the crank moment 

applied for obtaining the constant crank angular velocity 

(5000 rpm) is plotted in Fig. 3(b) for clearance 0.5 mm and 

coefficient of friction 0.1. As it can be seen, an acceptable 

agreement exists between the results of the rigid system 

formulation presented here and those of the literature  
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(Flores and Ambrosio 2004). 

 

Dynamic response with initial angular velocity 
As mentioned, the crank rotates with an initial angular 

velocity to facilitate analyzing the energy of the system. In 

this part, the dynamic response is plotted for the initial 

angular velocity 150 rad/s and coefficient of restitution 0.8. 

The clearance is set to be 0.01 mm and the friction is 

neglected. The journal trajectory and the joint reaction force 

in the joint between slider and the coupler in two cases, 

with and without clearance, are plotted in Figs. 4(a)-(b), 

respectively. After four impacts, the journal and the bearing 

 

 

 

enter and stay in the continuous contact mode. In the 

transient response, the contact force is relatively high, but 

then it reduces. As it can be seen, the contact force model is 

able to model the joint reaction force in a good manner.  

In addition, it is expected that the joint force reduces 

gradually in comparison with the case no clearance exists. 

The reason refers to this fact that in the clearance model, the 

hysteresis damping is considered which reduces the energy 

of the system. This energy dissipation is not considered 

when the system is modeled as if there is no clearance. The 

peaks of the joint force in the case of clearance come down 

gradually in the first second which could be the result of  

  

(a) left plot: our simulation, right plot: results of simulation from Flores and Ambrosio (2004) 

  

(b) left plot: our simulation, right plot: results of simulation from Flores and Ambrosio (2004) 

Fig. 3 Comparison of the results with Flores and Ambrosio (2004): (a) crank moment for clearance 0.5 mm and coefficient of 

friction 0.1, (b) journal center trajectory inside the bearing for clearance 0.01 mm and without friction 

 

Fig. 4 (a) Journal center trajectory with respect to the bearing with and without clearance, (b) The joint force in two cases, 

with and without clearance 
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Fig. 6 Penetration and penetration velocity at the beginning 

of the motion 

 

 

clearance damping. 

 

The effect of the clearance size 
In this section, a comparison between the total energy 

(sum of the kinetic and potential energies) of the slider-

crank without clearance and the one with a clearance 

between the slider and the coupler is made. For this 

purpose, different clearance sizes are used for simulation. 

The crank initial angular velocity is set to be 150 rad/s 

counterclockwise, the coefficient of restitution is 0.8 and 

the fiction is neglected. The simulations were done for three 

clearance sizes, 0.01 mm, 0.1 mm and 0.5 mm. The results 

are shown in Fig. 5.  

When there is no clearance, the total energy is constant 

as expected. This is due to this fact that there is no source of 

energy dissipation. As it can be seen, the reduction rate of 

the system energy with clearance size of 0.5 mm is 

approximately more than other clearance sizes. When the 

 

 

 

 

slider-crank starts to move, a sudden change in the energy 

happens in comparison with the case of no clearance.  

This sudden change occurs because at the beginning of 

the motion, some impacts happen until the journal goes to 

the continuous contact mode. These impacts cause a 

relatively large penetration and penetration velocity. As a 

result, a sudden reduction in the energy could happen due to 

the hysteresis damping considered in the contact force 

model. These relatively large penetration and penetration 

velocity are shown in Fig. 6. 

It is noteworthy that the horizontal parts of the zoomed 

area of the energy diagram correspond to the free flight 

motion in which there is no contact between the journal and 

the bearing and hence no energy loss will exist. The 

oscillation of the amount of energy is due to the first term of 

the contact force which plays the role of a nonlinear spring. 

When penetration takes place, this spring absorbs the 

energy and then gives it back when the penetration reduces. 

However, the level of the total energy does not return to its 

initial level before penetration because of the energy 

dissipation during contact. The number of collisions 

between the journal and the bearing are 4, 19 and 33 for 

clearance sizes 0.01 mm, 0.1 mm and 0.5 mm, respectively. 

This could be a reason for more sudden reduction in the 

energy of the system at the beginning of the motion for 

clearance size 0.5 mm. 

 

The effect of the crank initial angular velocity 
In this section, the effect of initial angular velocity of 

the crank on the energy of the slider-crank mechanism is 

investigated. The clearance is 0.01 mm and the friction is 

neglected. As shown in Fig. 7, increasing the initial angular 

velocity of the crank yields a sudden change of the energy 

at the beginning. Table 2 shows the amount of energy 

reduction in the interval of 0.05s at the beginning of the 

motion for different initial crank angular velocities.  

 

 

  

Fig. 5 The energy of the system for different clearance sizes neglecting the friction 

Table 2 Energy loss in the interval of 0.05s at the beginning of the motion for different initial crank angular velocities 

Initial crank 

angular velocity (rad/s) 

Energy of the mechanism 

 at the beginning of the motion (J) 

Energy of the mechanism 

at the end of the period (J) 

Energy 

 loss (J) 

Energy 

 loss ratio 

Number of collisions 

 in this period 

50 0.5777 0.5775 0.0002 0.034620% 29 

100 2.3108 2.3100 0.0008 0.034620% 22 

150 5.1992 5.1973 0.0019 0.036544% 4 

200 9.2431 9.2393 0.0038 0.041112% 3 

697



 

Saeed Ebrahimi, Esmaeil Salahshoor and Shapour Moradi 

 

 

(a) 

 

(b) 

Fig. 8 Penetration velocity for different initial crank angular 

velocities: (a) overall view, (b) zoomed view 

 

 

Although the number of collisions decreases as the initial 

crank angular velocity increases, the energy loss increases. 

 

 

The amount of penetration velocity could be the reason as 

the equation of contact force (Eq. (15)) indicates.  

The penetration velocity for different initial crank 

angular velocities is shown in Fig. 8. It can be concluded 

that the value of the penetration velocity changes more 

frequently for the initial angular velocity 200 rad/s and it 

has the maximum value in some parts of the diagram. 

 
The effect of the coefficient of friction 
In this section, the effect of changing the coefficient of 

friction between the journal and the bearing, on the energy 

of the slider-crank is investigated. The clearance is chosen 

to be 2 mm and the initial crank angular velocity is set to be 

300 rad/s. As shown in Fig. 9(a), increasing the coefficient 

of friction up to 0.1 increases the energy loss, too. This 

result could be expected due to the role of the friction in 

energy loss. However, further increase of the coefficient of 

friction decreases the energy loss which is surprising. The 

reason could refer to this issue that when the coefficient of 

friction increases, the tangential velocity of the journal 

relative to the bearing decreases, too. Therefore, the 

dynamic correction coefficient (cd) which varies linearly 

between two tolerances for velocities (in this example 

v0=0.001 m/s and v1=0.01 m/s), decreases, too. The 

tangential velocity of the journal relative to the bearing for 

four coefficients of friction is plotted in Figs. 9(b)-(c) for a 

part of the simulation.  

 
The effect of the initial configuration 
In this section, two cases are compared with each other: 

In the first case, the journal and the bearing are initially  

 

 

Fig. 7 Energy of the system for different crank initial angular velocities: (a) 50 rad/s, (b) 100 rad/s, (c) 150 rad/s and (d) 

200 rad/s 
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(a) 

 
(b) 

 
(c) 

Fig. 9 (a) Energy of the slider-crank mechanism with 

clearance joint for different coefficients of friction, (b)-(c) 

Journal tangential velocity relative to the bearing 

 

 

concentric and in the second one the journal is very close to 

the bearing wall (near contact, e=−1×10
-8

 m (clearance)) at 

the start of the motion (Fig. 10). The reason that the journal 

and the bearing are chosen to be initially very close rather 

than to be in contact, lies in the contact force model 

formulation (Eq. (15)) which depends on the impact 

velocity that has to be determined at the moment of the 

contact. It is important to note that the crank starts to rotate 

counterclockwise. The clearance size, crank initial angular 

velocity and coefficient of the friction are set to be 2mm, 

300rad/s and 0.01, respectively. 

The result is shown in Fig. 11. As expected, at the 

beginning of the motion, the case in which the journal and 

the bearing are farther away from each other (concentric 

case), the reduction in the amount of energy of the system is 

more. 

 

Fig. 10 Two initial configurations of the journal and the 

bearing 

 

 

Fig. 11 Energy of the mechanism for two different initial 

configurations 

 

 

The effect of the coupler flexibility 
In this section, the coupler of the mechanism is 

considered as a flexible body. One element was used to 

model the flexibility of the coupler. The initial crank 

angular velocity is 150 rad/s, the clearance size is 0.01 mm, 

the friction is neglected, the coupler diameter is 1cm and 

the damping ratios are set to be 0.04. The integration time 

step for the continuous contact mode is considered to be 

0.00001s. A comparison between two cases, the rigid and 

the flexible couplers, is made and the result is shown in Fig. 

12(b). As it can be seen, clearance has a considerable effect 

on the energy loss in the case of flexible coupler, too. 

Comparing these two cases shows that the energy loss for 

the flexible coupler case is more than that of the rigid one. 

This could be the result of flexibility (internal damping) of 

the coupler. The rate of the energy reduction for the 

mechanism with flexible coupler in two cases, with and 

without clearance, is nearly the same after the impacts 

finish. At this time, the journal and the bearing enter the 

continuous contact mode. At the beginning of the motion 

(see Fig. 12(c)), there are energy reduction jumps which are 

higher for the rigid case.  

The reason is clarified when paying attention to the 

amount of penetration for the two cases shown in Fig. 

12(d). In the flexible coupler case with clearance size of 

0.01 mm, the amount of penetration is lower than that of the 

rigid one at the start of the motion. This can be due to the 

effect of coupler flexibility which makes it as a suspension 

for the mechanism (Khemili and Romdhane 2008). In 

addition, taking a look at the journal trajectory for two cases 

(Fig. 12(d)), reveals that the amount of penetration is lower 

when the coupler is considered as a flexible beam. This 

could be the reason for higher reduction of the energy at the 

start of the motion for the rigid case. 

 

Energy loss: hysteresis damping, friction and 
Rayleigh damping 
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Finally, three cases are compared with each other for the 

flexible slider-crank mechanism with a single clearance 

joint to observe the effect of any causes of the energy 

dissipation: hysteresis damping, friction and Rayleigh 

damping. In the first case, no friction and no Rayleigh  

 

 

 

damping is considered. In the second one, friction is 

included and for the third one, Rayleigh damping is also 

taken into account. The clearance size, the initial crank 

angular velocity, the coefficient of restitution and the 

coefficient of friction are set to be 0.01 mm, 150 rad/s, 0.9  

 

Fig. 12 (a) Elastic coordinates of the coupler used in the floating frame of reference formulation, (b) The energy of the 

slider-crank mechanism for two cases, rigid and flexible coupler, (c) The energy of the slider-crank mechanism for two 

cases, rigid and flexible coupler at the beginning of the motion, (d) The amount of penetration for two cases, rigid and 

flexible coupler, and (e) The journal trajectory inside the bearing for two cases, rigid and flexible couplers 

  
(a) (b) 

Fig. 13 (a) Energy variation of the mechanism for three cases, without friction, with friction, and with both friction and 

Rayleigh damping, (b) zoomed part of it (the start of the motion) 
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Fig. 14 The penetration velocity for the second case (with 

friction) and the third case (with both friction and Rayleigh 

damping) 

 

 

and 0.1, respectively. The energy variation for these cases is 

shown in Fig. 13. As can be seen, in the beginning of 

motion, the third case dissipates more energy than the 

others and so, does the second one more than the first one. 

However, the third case reaches an upper level than the 

second case after the initial sudden changes finish. The 

reason may be found by inspecting the penetration velocity 

of the two cases in Fig. 14. From Fig. 14, one can find that 

the penetration velocity for the third case is totally lower 

than the second one. This was expected since the coupler 

flexibility plays the role of suspension for the mechanism 

(Khemili and Romdhane 2008) and it can reduce the rate of 

penetration of the journal into the bearing. 

Table 3 shows the energy loss ratio for these three cases 

between t=0.05s and t=1s. As can be seen, when the 

Rayleigh damping of the coupler is included, the most 

energy loss ratio is observed in comparison with the energy 

loss ratio due to the hysteresis damping and friction caused 

by contact. 

 

 

6. Conclusions 
 

The effect of the joint clearance on the amount of energy 

loss of a slider-crank mechanism was investigated. The 

contact force model was based on the Lankarani and 

Nikravesh model and the friction force was calculated using 

the modified Coulomb’s friction law. The hysteresis 

damping included in the contact force model, dissipates 

energy in clearance joints. The other reason for the energy 

loss is the friction between the journal and the bearing. 

• It was shown that the energy reduction of the system at 

the start of the motion is more for higher initial crank 

angular velocities and clearance sizes. 

• In addition, it was concluded that the more the 

coefficient of friction was, the more energy loss would 

be up to a coefficient of friction 0.1. 

 

 

• Then the effect of initial configuration on the energy of 

the mechanism was studied. It was found that at the 

beginning of the motion, the case in which the journal 

and the bearing are initially farther away from each 

other (concentric case) reduction in energy of the system 

is more. 

• The effect of the coupler flexibility on the energy of 

the system was investigated. The energy loss for the 

flexible coupler case was more than that of the rigid one. 

In addition the lower energy reduction jump happened 

for the flexible case at the start of the motion. This 

happened due to the role of the coupler flexibility as a 

suspension which made the amount of penetration lower 

at the start of the motion when the impact occurs. 

• Finally, it was illustrated that when the Rayleigh 

damping of the coupler is included, the most energy loss 

ratio is observed in comparison with the energy loss 

ratio due to the hysteresis damping and friction caused 

by contact. 
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