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1. Introduction  
 

The classical plate theory (CPT) was developed by 

Kirchhoff in 1850 and according to this theory, the straight 

line normal to the un-deformed mid-plane remains straight 

and normal to the deformed mid-plane and do not undergo 

thickness stretching. This model neglects the transverse 

shear deformation influence and thus cannot used to study 

thick plates where shear deformation influences are more 

significant. The first order shear deformation theory (FSDT) 

is proposed as improvement over the CPT and this by 

including the transverse shear deformation in the kinematic 

suppositions. It is based on the consideration that straight 

lines normal to un-deformed mid-plane remain straight but 

not necessarily normal to the deformed mid-plane. Mindlin 

et al. (1951) studied the free vibration of rectangular plate. 

Reissner (1945) was the first to propose a model which 

introduces the influence of shear. To overcome the problems 

of the FSDT (Sadoune et al. 2014, Meksi et al. 2015, Adda 

Bedia et al. 2015, Bellifa et al. 2016), a number of higher 

order shear deformation plate theories (HSDTs) are 

proposed. Recent reviews of such HSDTs are reported by 

Ghugal and Shimpi (2002), Wanji and Zhen (2008), Kreja 

(2001).  

Levy (1877) has proposed a HSDT for thick plate for 

the first time by employing sinusoidal functions in the 

displacement field. Stein (1986) utilized theory via 

trigonometric functions for investigation of laminated 

beams and plates. Shimpi and Patel (2006) proposed a two 
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variable refined plate theory for the free vibration of 

orthotropic plate. Reddy (1979, 1984) presented new mixed 

finite element models for nonlinear response of plates based 

on the CPT and FSDT. Global-local models are developed 

by Kapuria and Nath (2013) for bending and dynamic 

responses of laminated and sandwich plates. A number of 

HSDTs are also developed for analyzing beams and plates 

(Shi and Voyiadjis 2011, Bouderba et al. 2013, Bessaim et 

al. 2013, Tounsi et al. 2013, Zidi et al. 2014, Bousahla et al. 

2014, Ait Amar Meziane et al. 2014, Fekrar et al. 2014, 

Belabed et al. 2014, Hebali et al. 2014, Ait Yahia et al. 

2015, Mahi et al. 2015, Taibi et al. 2015, Kar and Panda 

2015, Ait Atmane et al. 2015, Belkorissat et al. 2015, 

Hamidi et al. 2015, Attia et al. 2015, Bourada et al. 2015, 

Meradjah et al. 2015, Merdaci et al. 2016, Tounsi et al. 

2016, Beldjelili et al. 2016, Akavci 2016, Boukhari et al. 

2016, Bounouara et al. 2016, Bennoun et al. 2016, Houari 

et al. 2016, Draiche et al. 2016, Fahsi et al. 2017, Meksi et 

al. 2017, Bellifa et al. 2017, Besseghier et al. 2017). More 

recent works are already available on the buckling and post-

buckling behaviour of structures with and without inclusion 

of geometrical distortion (Kar et al. 2017, Kar and Panda 

2017, Chikh et al. 2017, Kar and Panda 2016, Bouderba et 

al. 2016, Bousahla et al. 2016, Kar et al. 2016, Bourada et 

al. 2016, Panda and Katariya 2015, Katariya and Panda 

2014, Panda and Singh 2013a,b,c,d, Panda and Singh 

2010a,b, Panda and Singh 2009). 

This work presents a simple single variable shear 

deformation theory for buckling behavior of isotropic 

square plates under uniaxial and biaxial in-plane loads. The 

principal feature of this theory is that, in addition to 

including the shear deformation influence, the displacement 

field is modeled with only one unknown. The effectiveness 

of the developed theory is demonstrated through illustrative  
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Fig. 1 Plate subjected to in-plane forces 

 

 

examples. 

 

 

2. Mathematical formulation 
 

Consider a simply supported rectangular isotropic plate 

with the length a, width b, and thickness h. The plate is 

subjected to in-plane compressive forces ( 0 0 0, ,xx yy xyN N N ) as 

shown in Fig. 1.  

The co-ordinate system (x,y,z) chosen and the coordinate 

parameters are such a that, the plate occupies a region given 

by Eq. (1) 

ax 0 , by 0 , 2/2/ hzh   (1) 

 

2.1 Kinematics 
 

The displacement field of the present single variable shear 

deformation theory is given as follows 
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Where u, v and w are the displacements in the x, y and z-

directions respectively and β is a parameter of the proposed 

displacement model. f(z) is a shape function representing 

the distribution of the transverse shear strains and shear 

stresses through the thickness of the plate and is given as 
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The nonzero strains associated with the displacement 

field in Eq. (2) are 
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where 
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And 
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2.2 Constitutive relations 
 
The constitutive relations of the isotropic plate can be 

written as 
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Where (σx, σy,
 
τyz, τxz, τxy) and (εx, εy,

 
γyz, γxz, γxy) are the stress 

and strain components, respectively. The stiffness 

coefficients, Cij, can be defined as 

,
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2.3 Governing equations 
 
The governing equations can be derived using the 

principle of virtual work. The principle can be written in the 

following form 
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Where Ω is the top surface 

Substituting Eqs. (4), (2) and (7) into Eq. (9) and 

integrating through the thickness of the plate, Eq. (9) can be 

rewritten as 
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In which the stress resultants M, S
 
and Q are expressed 

by 
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Substituting Eqs. (4) and (7) into Eq. (10) and 

integrating through the thickness of the plate, the governing 

differential equations in-terms of stress resultants are as 

follows 
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2.4 Governing equations in terms of displacements 
 
From Eqs. (4), (7) and (11), the stress resultants can be 

expressed as below 
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The governing differential equations in-terms of 

unknown displacement variable used in the displacement 

field (w0) obtained are as follows 
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3. Analytical solutions 
 

In this work, the studied simply supported rectangular 

plate is subjected to in-plane forces in two directions (
0 0 0

0,x y xN N N kN   and 00 xyN ). Based on Navier 

solution procedure, the displacements are assumed as 

follows 
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where λ=mπ/a, μ=nπ/b, Wmn is the unknown maximum 

displacement coefficient, and ω is the angular frequency.  

Substitute Eq. (16) in the governing differential Eq. (15) 

resulting the following equation form 
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Fig. 2 The loading conditions of square plate for (a) 

uniaxial compression, (b) biaxial compression and (c) 

tension in the x direction and compression in the y direction 
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4. Numerical results and discussion 
 

In this section, a simply supported square plate under 

the loading conditions, as presented in Fig. 2, is examined 

to demonstrate the accuracy of the proposed theory in 

investigating the stability behavior of the isotropic plate.  

The expression of shape parameter „β‟ is evaluated in 

the post-processing phase and is found to be as follows 
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Where θ=a/h and the values of the other coefficients are 

computed in the post-processing phase and are found to be 

A1=0.67515 A2=0.58471, x0=2.4099, dx=1.60645. 

For validation purpose, the computed results are 

compared with those obtained by the third shear 

deformation theory (TSDT) of Reddy (1984), the 

exponential shear deformation theory (ESDT) of Sayyada 

and Ghugal (2012) and CPT and FSDT of Mindlin (1951). 

Following material characteristics of isotropic plates are 

employed 

210E GPa and 3.0  (20a) 

77E GPa and 33.0  (20b) 

For convenience, the following non-dimensional 

buckling load is utilized 

3

2
0
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Table 1 Comparison of non-dimensional critical stability 

load ( crN ) of square plates under to uniaxial compression 

(k=0, E=210 GPa and v=0.3)  

Mode for 

the plate 

(m,n) 

Theory 
a/h 

5 10 20 50 100 

(1, 1) 

Present 2.9552 3.4234 3.5652 3.6071 3.6132 

ESDT(*) 2.9603 3.4242 3.5654 3.6072 3.6132 

TSDT 2.9512 3.4224 3.5649 3.6068 3.6130 

FSDT 2.9498 3.4222 3.5649 3.6071 3.6130 

CPT 3.6152 3.6152 3.6152 3.6152 3.6152 

(*) 
Taken from Sayyada and Ghugal (2012) 

 

Table 2 Comparison of non-dimensional critical stability 

load ( crN ) of square plates under to biaxial compression 

(k=1, E=210 GPa and v=0.3) 

Mode for 

the plate 

(m,n) 

Theory 
a/h 

5 10 20 50 100 

(1, 1) 

Present 1.4776 1.7117 1.7826 1.8035 1.8066 

ESDT(*) 1.4802 1.7121 1.7827 1.8038 1.8065 

TSDT 1.4756 1.7112 1.7825 1.8034 1.8065 

FSDT 1.4749 1.7111 1.7825 1.8035 1.8065 

CPT 1.8076 1.8076 1.8076 1.8076 1.8076 

(*) 
Taken from Sayyada and Ghugal (2012) 

 

Table 3 Comparison of non-dimensional critical stability 

load ( crN ) of square plates under tension in the x direction 

and compression in the y direction (k=1, E=210 GPa and 

v=0.3) 

Mode for 

the plate 

(m,n) 

Theory 
a/h 

5 10 20 50 100 

(1, 2) 

Present 4.8444 6.6039 7.2798 7.4896 7.5211 

ESDT(*) 4.8798 6.6133 7.2777 7.4898 7.5212 

TSDT 4.8274 6.6024 7.2754 7.4893 7.5201 

FSDT 4.8158 6.6010 7.2753 7.4895 7.5211 

CPT 7.5317 7.5317 7.5317 7.5317 7.5317 

(*) 
Taken from Sayyada and Ghugal (2012) 

 

 

Tables 1-3 presents the comparison of critical stability 

load for the steel plates whereas Tables 4-6 present the 

comparison of critical stability load for the aluminum plates 

under in-plane loads. In case of plate under to uniaxial 

compression (Fig. 2(a)) and biaxial compression (Fig. 2(b)), 

buckling force is critical when mode for the plate is (1, 1) 

whereas in case of plate under tension in x  direction and 

compression in y direction (Fig. 2(c)), buckling force is 

critical when mode for the plate is (1, 2). 

The examination of Tables 1-6 show that the critical 

stability load predicted by proposed single variable shear 

deformation theory (SVSDT) and Reddy‟s theory (TSDT) is 

in excellent agreement with each other even though the 

plate is very thick due to inclusion of effect of transverse 

shear deformation. It is noted that, the present theory 

involves only one unknown variable against the three 

unknown variables in case of TSDT, ESDT and FSDT. 
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Table 4 Comparison of non-dimensional critical stability 

load ( crN ) of square plates under to uniaxial compression 

(k=0, E=70 GPa and v=0.33) 

Mode for 

the plate 

(m,n) 

Theory 
a/h 

5 10 20 50 100 

(1, 1) 

Present 3.0154 3.4956 3.6408 3.6836 3.6898 

ESDT(*) 2.9991 3.4886 3.6388 3.6833 3.6898 

TSDT 2.9893 3.4866 3.6383 3.6833 3.6896 

FSDT 2.9877 3.4865 3.6383 3.6832 3.6900 

CPT 3.6919 3.6919 3.6919 3.6919 3.6919 

(*) 
Taken from Sayyada and Ghugal (2012) 

 

Table 5 Comparison of non-dimensional critical stability 

load ( crN ) of square plates under to biaxial compression 

(k=1, E=70 GPa and v=0.33) 

Mode for 

the plate 

(m,n) 

Theory 
a/h 

5 10 20 50 100 

(1, 1) 

Present 1.5077 1.7478 1.8204 1.8418 1.8449 

ESDT(*) 1.4995 1.7443 1.8194 1.8416 1.8449 

TSDT 1.4947 1.7433 1.8192 1.8416 1.8448 

FSDT 1.4939 1.7433 1.8192 1.8415 1.8450 

CPT 1.8459 1.8459 1.8459 1.8459 1.8459 

(*) 
Taken from Sayyada and Ghugal (2012) 

 

Table 6 Comparison of non-dimensional critical stability 

load ( crN ) of square plates under tension in the x direction 

and compression in the y direction (k=1, E=70 GPa and 

v=0.33) 

Mode for 

the plate 

(m,n) 

Theory 
a/h 

5 10 20 50 100 

(1, 2) 

Present 4.9142 6.7392 7.4332 7.6483 7.6806 

ESDT(*) 4.9083 6.7172 7.4208 7.6468 7.6803 

TSDT 4.8523 6.7055 7.4184 7.6465 7.6804 

FSDT 4.8398 6.7040 7.4183 7.6465 7.6810 

CPT 7.6915 7.6915 7.6915 7.6915 7.6915 

(*) 
Taken from Sayyada and Ghugal (2012) 

 

 

Furthermore, it can be also noted that, the FSDT requires 

the use of a shear correction factor. In contrast, present 

theory does not require a shear correction factor. From the 

results that CPT overestimates the values of critical stability 

load due to neglect of transverse shear deformation. Also, 

we found that in case of CPT, critical stability load is 

independent of side-to-thickness ratio (a/h).  

Figs. 3-5 demonstrate that, for the higher value of side 

to-thickness ratio (a/h), the results computed by the present 

SVSDT, ESDT, TSDT, FSDT and CPT are more or less 

same. 

 

 

5. Conclusions 
 

In this article, a simple single variable shear deformation 

theory for buckling behavior of isotropic thick plates is 
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Fig. 3 The influence of side-to-thickness ratios on the 

critical buckling load of square plate subjected to uniaxial 

compression 
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critical buckling load of square plate subjected to 
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Fig 5 The influence of side-to-thickness ratios on the 

critical buckling load of square plate subjected to tension in 

the x direction and compression in the y direction 

 

 

presented. Some of the important aspects of the plate theory 

presented herein can be summarized as follows: 

• The governing differential equation of the theory 

involves only one unknown variable. 

• The displacement field of the present plate theory 

gives rise to a realistic parabolic variation of transverse 

shear stress across the thickness. Furthermore, present 

theory does not require a shear correction factor. 

• Efficacy of the proposed theory is demonstrated 

through illustrative examples for buckling of thick 

isotropic plates. The obtained numerical results are 

compared with those of other first-order and higher-

order shear deformation plate theory results. The results 

obtained are found to be accurate. 

• It can be concluded that the proposed theory with only 

one unknown variable can accurately predict the critical 

buckling loads of the isotropic plates. 
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