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1. Introduction 
 

Elliptic paraboloid shells have been widely used in 

important aerospace, aircraft, industrial engineering and 

civil structural members which provide an optimal 

combination of minimum weight and necessary strength. 

Therefore, there are real, practical needs for investigating 

the behavior of these structures. 

There have been extensive research carried out in the 

past years to investigate the behavior and design of circular 

shell structures but the literature on the analysis of non-

circular shells is limited when compared with circular 

shells. Concerning the analysis of elliptic paraboloid type of 

non-circular shells, there is a much smaller amount of work. 

One of the earliest works in element formulations for the 

analysis of elliptical parabolic shells was reported by Aass 

(1963) who applied it to elliptic paraboloid shells. Mohraz 

and Schnobrich (1966) studied the analysis of shallow shell 

structures including elliptic paraboloid shells by a discrete 

element system. Chun et al. (2009) presented a shear 

deformable four-noded finite element based on a 

hybrid/mixed assumed stress for the analysis of anisotropic 

laminated elliptical and parabolic shells, and conducted  a 

parametric study of anisotropic elliptical and parabolic 

shells of various configurations to investigate the effects of 

aspect and height ratios as well as layer lay-up schemes. 

Shell and plate members often contain openings 

intended for certain reasons. These openings may 

significantly change the behavior of these members. A few 

references dealing with dynamic behavior of shells with 

openings or cutouts are available. Jullien and Limam (1998) 

studied the effects of openings on the stability problem of 

cylindrical shells with cutouts and also investigated the 

effect of the location and the number of the holes. Shariati 

and Rokhi (2010) carried out analysis of steel cylindrical 
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shells with various diameter and length having an elliptical 

cutout subjected to axial compression and investigated the 

the influence of the cutout size, cutout angle and the shell 

aspect ratios on the pre-buckling, buckling, and post-

buckling responses. Singh and Kumar (2010) investigated 

the effects of cutout shape (i.e., circular, square, diamond, 

elliptical-vertical and elliptical-horizontal) and size on 

buckling and post buckling response of quasi-isotropic 

composite laminate under uni-axial compression. Kang 

(2014) presented a three dimensional method of analysis for 

determining the free vibration frequencies of joined 

hemispherical-cylindrical shells of revolution with a top 

opening. Ghazijahani et al. (2014) investigated the effect of 

circular openings on the behavior and failure mode of 

circular hollow sections (CHS) members. Nicholas et al. 

(2014) studied the buckling optimization of laminated 

composite plates with elliptical cutout using artificial neural 

network, and explored the effectiveness of the proposed 

method. Torabi and Shariati (2014) studied the buckling of 

steel thin-walled semi-spherical shells with square cutout 

due to axial compressive loads, and determine the influence 

of the cut out size-to-location and the thickness-to-diameter 

on the mean collapse load of the semi-spherical shells. 

Chernobryvko et al. (2014) numerically analyzed the 

properties of eigen-frequencies and eigen-modes of 

parabolic shells by using the Rayleigh-Ritz method. 

Ghazijahani et al. (2015) investigated the structural 

behavior of tubes with door-shaped cutouts under axial 

loading and examined the buckling modes and effect of 

geometric parameters of a cutout. Kang (2015) presented a 

three-dimensional method of analysis for determining the 

free vibration frequencies of shallow or deep, clamped 

parabolic shells having variable thickness by the Ritz 

method. Xie et al. (2015) studied the free vibration analysis 

of functionally graded spherical and parabolic shells of 

revolution with arbitrary boundary conditions by using a 

Haar Wavelet Discretization method-based solution 

approach. Rajanna et al. (2016) investigated the influence 

of centrally placed circular and square cutouts on vibration 

and buckling characteristics of different ply-oriented 
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laminated panels under the action of compressive and/or 

tensile types of non-uniform in-plane edge loads. Javed et 

al. (2016) studied the free vibration of antisymmetric angle-

ply conical shells having non-uniform sinusoidal thickness 

variation for different support conditions. Darılmaz (2017) 

investigated the static and free vibration of orthotropic 

elliptic paraboloid shells. 

The paper aims to investigate the free vibration response 

of orthotropic elliptic paraboloid shells with openings at the 

top with a parametric study by varying the aspect ratio, 

height ratio, opening ratio, and material angle. 

It is well known that some of general shaped shells have 

been quite successfully solved by flat-shell elements of 

rectangular or quadrilateral shapes. For practical purposes, 

the behavior of a curved surface can be reasonably well 

approximated by using small flat elements. The flat element 

approximation also allows an easy coupling with the edge 

beams which sometimes difficult to implement in the 

curved element formulation. In this paper, a flat shell 

element which is a combination of membrane element and a 

plate element is used, based on the classical hybrid stress 

method which was first developed by Pian (1964). The 

element is generated by a combination of a hybrid plane 

stress element with drilling d.o.f. and a hybrid plate 

element. The validity and efficiency of the element can be 

found in previous studies of the author, Darılmaz (2007, 

2012). 

 

 

2. Element stiffness formulation 
 

The assumed-stress hybrid method is based on the 

independent prescriptions of stresses within the element and 

displacements on the element boundary. The element 

stiffness matrix is obtained using Hellinger-Reissner 

variational principle. The Hellinger-Reissner functional of 

linear elasticity allows displacements and stresses to be 

varied separately. This establishes the master fields. Two 

slave strain fields appear, one coming from displacements 

and one from stresses. 

The Hellinger-Reissner functional can be written as 

         
T T

RH

V V

1
D u  dV S  dV

2
      

 

(1) 

where {ζ} is the stress vector, [S] is the compliance matrix 

relating strains, {ε}, to stress ({ε}=[S]{ζ}), [D] is the 

differential operator matrix corresponding to the linear 

strain-displacement relations ({ε}=[D]{u}) and V is the 

volume of structure. 

The approximation for stresses and displacements can 

now be incorporated in the functional. The stress field is 

described in the interior of the element as 

   [ P]    (2) 

and a compatible displacement field is described by 

   u [ N ] q  (3) 

where [P] and [N] are matrices of stress and displacement 

interpolation functions, respectively, and {β} and {q}are the 

unknown stress and nodal displacement parameters, 

respectively. Intra-element equilibrating stresses and 

compatible displacements are independently interpolated. 

Since stresses are independent from element to element, the 

stress parameters are eliminated at the element level and a 

conventional stiffness matrix results. This leaves only the 

nodal displacement parameters to be assembled into the 

global system of equations. 

Substituting the stress and displacement approximations 

Eq. (2), Eq. (3) in the functional Eq. (1) yields 

         
T T

RH

1
G q H

2
       (4) 

where 

      
T

V

H P S P  dV   (5) 

       
T

G P D N dV   (6) 

Now imposing stationary conditions on the functional 

with respect to the stress parameters {β} gives 

       
1

H G  q


   (7) 

Substitution of {β} in Eq. (4), the functional reduces to  

             
T T 1 T

RH

1 1
q G H G q q K q

2 2


    (8) 

where 

       
T 1

K G H G


  (9) 

is recognized as a stiffness matrix. 

The solution of the system yields the unknown nodal 

displacements {q}. After {q} is determined, element 

stresses or internal forces can be recovered by use of Eq. (7) 

and Eq. (2). Thus 

       
1

P H G q


   (10) 

 
 
3. Governing equations 
 

Consider an elliptic paraboloid shell of uniform 

thickness which the orthotropic material property may be 

arbitrarily oriented at an angle  with reference to the x-axis 

of the local coordinate system Fig. 1. 

 

 

 

Fig. 1 Global and local axis of elliptic paraboloid shell 
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The stress-strain relation with respect to x, y and z axes 

can be written as 

x 11 12 16 x

y 12 22 26 x

16 26 66 xyxy

      
      

       
           

 

 



 (i,j=1,2,6) (11) 

xz xz44 45

yz yz45 55

        
    

        

 

 
 (12) 

. ij
    in Eqs. (11) and (12) is defined as 

   
1 T

ij 1 ij 1T T
 

          (i,j=1,2,6) (13) 

   
1

ij 2 ij 2T T


          (i,j=4,5) (14) 

in which 

 

cos sin sin cos

sin cos sin cos

sin cos sin cos cos sin

2 2

2 2
1

2 2

2

T 2

 
 
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 
   

   

   

     

 (15) 

 
cos sin

sin cos
2T

 
  
 

 

 
 (16) 

11 12

ij 12 22

66

0

0

0 0

  
        
  

 (i,j=1,2,6) (17a) 

44
ij

55

0

0

 
       

 (i,j=4,5) (17b) 

1
11

12 21

E

1
 

 
12 2

12
12 21

E

1
 





 

 2
22
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(18a) 

66 12G   44 13G   55 23G   (18b) 

 
i j

ij

ij ji

E E
G

2 1

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 (i,j=1,2,3) (18c) 

The stress resultants are given by 

 
/

/

x x xh 2

y y y

h 2
xy xy xy

N M

N M 1 z dz

N M


   
   

   
   
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







 (i,j=1,2,3) (19a) 

/

/

h 2
x xz

y yzh 2

Q
 dz

Q


   
   

   





 (i,j=1,2,3) (19b) 

From Eqs. (19a) and (19b) the constitutive equations of 

the elliptic paraboloid shell are obtained as 

    F E   (i,j=1,2,3) (20) 

where 

   , , , , , , ,x y xy x y xy x yF N N N M M M Q Q  (21) 

   , , , , , , ,x y xy x y xy xz yz          (22) 

The elasticity matrix can be expressed as 

 

ij ij

ij ij

ij

A B 0

E B C 0

0 0 D

    
    
         
  

  

 (23) 

in which 

/

/

h 2

ij ij

h 2

A dz



        , 
/

/

h 2

ij ij

h 2

B z dz



        ,  

/

/

h 2
2

ij ij

h 2

C z dz



         (i,j=1,2,6) 

(24.a) 

/

/

h 2

ij ij

h 2

D dz



          (i,j=4,5) (24.b) 

 
 
4. The hybrid stress element 

 

The element is generated by a combination of a hybrid 

membrane element and a hybrid plate element.   

 
4.1 Membrane component of the element with drilling 

degree of freedom 
 

Generally membrane elements have two translational 

d.o.f (u,v) per node but the need for membrane elements 

with a drilling degree of freedom arises in many 

engineering problems. A drilling rotation is defined as 

inplane rotation about the axis normal to the plane of 

element. This type of element is useful in solving folded 

plate structures and provides an easy coupling with edge 

beams which have six d.o.f per node. Inclusion of a drilling 

degree of freedom gives also the improved behavior of the 

element (Allman 1984). The possibility of membrane 

elements with drilling d.o.f was opened by Allman (1984), 

Bergan and Felippa (1985). The concept has been further 

elaborated by many other researchers (Cook 1986, MacNeal 

and Harder 1988, Yunus et al. 1989, Ibrahimbegovic et al. 

1990, Choi and Lee 1996) for more improved elements.  

Formulation of drilling d.o.f for the present element is 

based on the procedure given by Yunus et al. (1989). The 

displacement fields are expressed in terms of translational 

and rotational d.o.f.’s at the corner nodes only.  

The membrane displacement field for the 4-node 

element is derived from an 8-node element, Fig. 2. 
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(a) 8-node membrane 

 
(b) 4-node membrane 

Fig. 2 Displacements 

 

 
Fig. 3 Side displacement produced by drilling degrees 

of freedoms zi and zj 

 

 

Rotational d.o.f. are associated with parabolic displaced 

shapes of element sides. In Fig. 3, rotational d.o.f. zi and zj 
are shown at nodes i and j of the element side of length L. 

δ can be regarded as quadratic in side-tangent 

coordinates. zi and zj produce the edge normal 

displacement δ and midside value δm 

 
( )

zi zj

s L s

2L


      m zi z j

L

8
     (25) 

The x and y components of δ are δcosα and δsinα. 

Therefore, after adding the contribution to displacement 

from nodes i and j, the total displacements u and v of a 

typical point on the edge are 

 
 

cos

sin

ji

z j zi

ji

uuu L s sL s s

vvv L L 2L


   

     
       
      


 


 (26) 

Side 1-5-2 of the element, Fig. 2 d.o.f. at node 5 are 

related to d.o.f. at nodes 1 and 2 of the element. By 

evaluating Eq. (26) with s=L/2 with i=1, j=2, Lcosα=y2−y1 

and Lsinα=x2−x1, yields 

 zj zi5 1 2 2 1

5 1 2 1 2

u u u y y1 1

v v v x x2 2 8

        
         

      

 
 (27) 

After doing the same for d.o.f. at nodes 6, 7 and 8 d.o.f. 

in Fig. 2(a) and (b) by the transformation, the complete 

relation can be written 

     .....
T T

1 1 8 8 membrane16 x12
u v u v T q  (28) 

where 

   ...1 1 z1 4 4 z4membrane 1x12
q u v u v    (29) 

So the midside nodal displacements can be written in 

terms of the corner nodal displacements and rotations and 

the displacement field for the 4-node, twelve d.o.f. 

membrane element can be derived from an 8-node 

membrane element. This is done through the use of the 

transformation matrix [T]. The form of [T] is given in 

Appendix. 

The biggest difficulty in deriving hybrid finite elements 

seems to be the lack of a rational methodology for deriving 

stress terms, Feng et al. (1997). It is recognized that the 

number of stress modes m in the assumed stress field should 

satisfy 

m n r   (30) 

with n the total number of nodal displacements, and r the 

number of rigid body modes in an element. If Eq. (30) is not 

satisfied, use of too few coefficients in {β}, the rank of the 

element stiffness matrix will be less than the total degrees 

of deformation freedom and the numerical solution of the 

finite element model will not be stable and produces on 

element with one or more mechanism.  

Increasing the number of β’s by adding stress modes of 

higher-order term, each extra term will add more stiffness 

and stiffens the element, Pian and Chen (1983), Punch and 

Atluri (1984), Darılmaz (2006). 
The assumed stress field for the membrane part which 

satisfies the equilibrium conditions for zero body forces and 

avoid rank deficiency is given as 

2 2
x 1 2 3 4 5 6N x y x xy y            

2 2
y 4 7 8 9 10 11N y x y x xy            

/ /2 2
xy 2 4 5 9 11 12N y 2 xy y 2 x x 2             

(31) 

 
4.1 Plate component of the element 
 

The flexural component of the element is identical to 

that of the plate bending element presented by the author, 

Darılmaz (2005), and corresponds to the Mindlin/Reissner 

plate theory. Only the assumed stress field which satisfies 

the equilibrium conditions for the plate part is given here 

x 1 4 6 8M y x xy        (32) 
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y 2 5 7 9M x y xy        

/ /2 2
xy 3 10 11 12 13M x y x 2 y 2          

x 6 11 8 13Q y y        

y 7 10 9 12Q x x        

The nodal displacements for the plate are chosen as 

   ...1 x1 y1 4 x4 y4plate 1x12
q w w      (33) 

The combination of membrane and plate element yields 

the element which has 6 d.o.f per node and totally 24 d.o.f . 

 

 

3. Element mass matrix 
 

The problem of determination of the natural frequencies 

of vibration of a plate reduces to the solution of the standard 

eigenvalue problem [K]−ω
2
[M]=0, where  is the natural 

circular frequency of the system. Making use of the 

conventional assemblage technique of the finite element 

method with the necessary boundary conditions, the system 

matrix [K] and the mass matrix [M] for the entire structure 

can be obtained. 
Element consistent mass matrix is derived from the 

kinetic energy expression, Cook et al. (2001) 

   
T

k

1
E q q dV

2
    (34) 

where  q  denotes the velocity components. 

The nodal and generalized velocity vectors are related 

with the help of shape functions 

    
4

i

i 1

q N q


  (35) 

Substituting the velocity vectors in the kinetic energy, 

Eq. (34) yields the mass matrix of an element. 

      
T T

k i i

V

1
E q N N q dV

2
    (36) 

    
T

k i i

A

1
E q m q dA

2
   (37) 

where [m] is the element consistent mass matrix and is 

given by 

     
T

V

m N N dV    (38) 

 

 

 
 
 
 
 
 
 
 

3. Numerical study 
 

An orthotropic elliptical paraboloid shell with major 

axis a and minor axis b and height h shown in Fig. 4 is 

considered. The shell has an elliptical opening at the top 

center with major axis a1 and minor axis b1. Material 

properties are chosen as, E1=60.7×10
9
 N/m

2
, E2=24.8×10

9
 

N/m
2
, G12=G13=G23=12·10

9
 N/m

2
, v12=v21=0.23, ρ=1300 

kg/m
3

 
where E1 and E2 are the modulus of elasticity along x 

and y axes of element, Gij is the shear modulus and vij is 

Poisson’s ratio, respectively. 

A parametric study is carried out to investigate the 

influence of aspect ratio (a/b), height ratio (h/b), opening 

ratio (a1/a), and material angle () on free vibration 

behavior of orthotropic elliptic paraboloid shells with 

opening at the top. For a reference solution an elliptic 

paraboloid shell without opening is also considered. 

The aspect ratio, a/b, of elliptical shell is taken as the 

ratio of the radius length of X-axis to that of Y-axis. 

Whereas, the height ratio h/b, of elliptical shell is taken as 

the radius length of Z-axis divide into that of Y-axis. 

The elliptical paraboloid shells are analyzed by varying 

the aspect ratio (a/b=0.25, 0.50 and 1.0), height ratio 

(h/b=0.25, 0.50 and 1.0), opening ratio (a1/a=0, 0.25, 0.50 

and 0.75) and material angle (=0
o
, 45

o
, 90

o
). The relative 

total mass ratios of elliptic paraboloid shells are given in 

Table 1, and the shell for a/b=1, h/b=1 and a1/a=0 is taken 

as the reference shell. 

The natural frequencies are normalized by 

  /2
21 1b 1 E      (39) 

 

 

 

Fig. 4 Geometry of elliptic paraboloid shell 
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Table 1 Relative total mass ratios for elliptic paraboloid shells 

   a/b=1   a/b=0.5   a/b=0.25  

 h/b 0.25 0.5 1.0 0.25 0.5 1.0 0.25 0.5 1.0 

a1/a           

0  0.62 0.72 1.00 0.34 0.43 0.69 0.21 0.32 0.56 

0.25  0.59 0.68 0.96 0.32 0.41 0.67 0.20 0.30 0.55 

0.50  0.48 0.56 0.82 0.26 0.35 0.58 0.16 0.26 0.49 

0.75  0.28 0.34 0.52 0.16 0.22 0.37 0.10 0.17 0.32 
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The five lowest normalized natural frequencies are 

evaluated by varying the parameters stated earlier, and the 

results are given in Table 2 to Table 5. 

It can be observed that an increase in opening ratio 

lowers the fundamental frequency of the shell over a1/a0.5 

and then raised. It may be deduced that for the opening 

ratios a1/a0.5, the change of stiffness is more effective 

than change of mass on frequencies. As the opening ratio is 

increasing the variation in frequency is decreasing and it 

may be said that the removed inertia and removed stiffness 

due to the presence of opening are almost self-cancelling in 

the vicinity of 0.5<a1/a<0.75. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Furthermore, it is evident from Fig. 5-Fig. 13 that the 

opening ratios considered are significantly affect the mode 

shapes. For all type of shells, lowest frequencies obtained 

for the case h/b=1, a/b=0.25. 

The variation of frequency with material angle is less 

sensitive than the other parameters. Generally it has a 

tendency to decrease in shells with openings (a1/a>0). For 

shells without openings or having small opening ratios 

(a1/a0.25) and aspect ratios for a/b0.5, higher (i.e., fifth) 

mode frequencies increase with material angle. 

For shells with openings, frequencies increase over 

aspect ratio 0.25<a/b<0.5, and then decrease. The lowest  

Table 2 Non-dimensional natural frequencies ϖ for elliptic paraboloid shell (a1/a=0) 

   a/b=1   a/b=0.5   a/b=0.25  

 h/b 0.25 0.5 1.0 0.25 0.5 1.0 0.25 0.5 1.0 

 Mode          

0o 

1 0.334 0.436 0.346 0.429 0.486 0.300 0.430 0.325 0.194 

2 0.334 0.436 0.346 0.461 0.491 0.301 0.462 0.332 0.199 

3 0.339 0.443 0.348 0.487 0.511 0.301 0.613 0.389 0.206 

4 0.339 0.443 0.348 0.512 0.515 0.303 0.651 0.409 0.214 

5 0.342 0.444 0.364 0.530 0.520 0.355 0.667 0.414 0.251 

45o 

1 0.318 0.451 0.361 0.379 0.415 0.300 0.378 0.294 0.185 

2 0.318 0.451 0.361 0.397 0.431 0.302 0.469 0.297 0.189 

3 0.323 0.451 0.362 0.462 0.479 0.306 0.629 0.393 0.210 

4 0.323 0.451 0.362 0.511 0.502 0.307 0.636 0.395 0.215 

5 0.335 0.458 0.375 0.549 0.511 0.336 0.729 0.421 0.237 

90o 

1 0.334 0.479 0.393 0.363 0.407 0.309 0.387 0.297 0.186 

2 0.334 0.479 0.393 0.404 0.429 0.310 0.515 0.297 0.187 

3 0.334 0.513 0.394 0.486 0.471 0.316 0.638 0.404 0.210 

4 0.339 0.513 0.394 0.526 0.529 0.317 0.668 0.415 0.214 

5 0.339 0.515 0.400 0.545 0.530 0.337 0.831 0.438 0.235 

 

Table 3 Non-dimensional natural frequencies ϖ for elliptic paraboloid shell (a1/a=0.25) 

   a/b=1   a/b=0.5   a/b=0.25  

 h/b 0.25 0.5 1.0 0.25 0.5 1.0 0.25 0.5 1.0 

 Mode          

0o 

1 0.203 0.255 0.222 0.314 0.309 0.212 0.339 0.239 0.156 

2 0.203 0.255 0.222 0.347 0.349 0.233 0.433 0.316 0.183 

3 0.283 0.339 0.308 0.460 0.458 0.296 0.435 0.326 0.193 

4 0.283 0.339 0.308 0.474 0.483 0.298 0.578 0.377 0.205 

5 0.335 0.436 0.346 0.479 0.501 0.305 0.586 0.407 0.227 

45o 

1 0.182 0.236 0.215 0.270 0.271 0.196 0.313 0.208 0.138 

2 0.182 0.236 0.215 0.322 0.328 0.224 0.375 0.289 0.171 

3 0.251 0.292 0.269 0.383 0.396 0.286 0.412 0.299 0.183 

4 0.251 0.292 0.269 0.428 0.430 0.294 0.547 0.364 0.205 

5 0.319 0.423 0.361 0.436 0.474 0.311 0.569 0.392 0.224 

90o 

1 0.172 0.232 0.225 0.258 0.261 0.200 0.318 0.202 0.132 

2 0.172 0.232 0.225 0.309 0.328 0.238 0.373 0.289 0.177 

3 0.233 0.267 0.246 0.365 0.379 0.290 0.417 0.302 0.182 

4 0.233 0.267 0.246 0.411 0.407 0.302 0.553 0.357 0.204 

5 0.318 0.435 0.392 0.418 0.457 0.314 0.591 0.397 0.216 
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fundamental frequencies obtained for opening ratio 

a1/a=0.5 for all aspect ratios. 

For a/b=1, frequencies increase over 0.25h/b<0.5, and 

then decrease. Similar behavior can be observed for aspect 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ratio a/b=0.5 for the elliptic paraboloid shells without 

opening. 

The mode shapes of the elliptic paraboloid shells 

considered are given in Fig. 5 to Fig. 13. For the sake of 

Table 4 Non-dimensional natural frequencies ϖ for elliptic paraboloid shell (a1/a=0.25) 

   a/b=1   a/b=0.5   a/b=0.25  

 h/b 0.25 0.5 1.0 0.25 0.5 1.0 0.25 0.5 1.0 

 Mode          

0o 

1 0.176 0.206 0.175 0.271 0.251 0.17 0.262 0.202 0.128 

2 0.176 0.206 0.175 0.275 0.254 0.171 0.27 0.208 0.14 

3 0.198 0.214 0.176 0.308 0.283 0.209 0.306 0.213 0.146 

4 0.198 0.214 0.176 0.326 0.288 0.217 0.365 0.267 0.168 

5 0.262 0.281 0.25 0.366 0.376 0.271 0.443 0.327 0.226 

45o 

1 0.165 0.184 0.156 0.246 0.232 0.159 0.22 0.181 0.121 

2 0.165 0.184 0.156 0.254 0.238 0.16 0.226 0.182 0.123 

3 0.175 0.204 0.172 0.262 0.249 0.185 0.285 0.195 0.127 

4 0.175 0.204 0.172 0.289 0.256 0.189 0.322 0.238 0.157 

5 0.232 0.239 0.212 0.322 0.327 0.248 0.401 0.283 0.203 

90o 

1 0.153 0.169 0.145 0.233 0.225 0.159 0.205 0.171 0.114 

2 0.153 0.169 0.145 0.246 0.231 0.161 0.209 0.173 0.119 

3 0.153 0.201 0.18 0.247 0.232 0.17 0.278 0.19 0.12 

4 0.153 0.201 0.18 0.272 0.236 0.172 0.304 0.224 0.15 

5 0.204 0.213 0.186 0.305 0.315 0.252 0.392 0.269 0.185 

 

Table 5 Non-dimensional natural frequencies ϖ for elliptic paraboloid shell (a1/a=0.75) 

   a/b=1   a/b=0.5   a/b=0.25  

 h/b 0.25 0.5 1.0 0.25 0.5 1.0 0.25 0.5 1.0 

 Mode          

0o 

1 0.239 0.265 0.216 0.329 0.298 0.209 0.263 0.224 0.155 

2 0.239 0.265 0.216 0.33 0.3 0.21 0.263 0.226 0.155 

3 0.256 0.27 0.222 0.34 0.302 0.211 0.32 0.24 0.158 

4 0.256 0.27 0.222 0.34 0.304 0.212 0.32 0.243 0.159 

5 0.257 0.298 0.26 0.409 0.398 0.308 0.405 0.318 0.233 

45o 

1 0.229 0.254 0.206 0.272 0.273 0.195 0.209 0.188 0.139 

2 0.229 0.254 0.206 0.272 0.274 0.195 0.209 0.189 0.141 

3 0.239 0.264 0.212 0.298 0.277 0.196 0.279 0.215 0.145 

4 0.239 0.264 0.212 0.298 0.278 0.197 0.279 0.216 0.148 

5 0.24 0.271 0.228 0.348 0.345 0.268 0.359 0.273 0.202 

90o 

1 0.206 0.228 0.19 0.247 0.252 0.181 0.191 0.172 0.129 

2 0.206 0.228 0.19 0.248 0.252 0.182 0.191 0.172 0.131 

3 0.212 0.236 0.2 0.275 0.256 0.183 0.258 0.2 0.135 

4 0.212 0.236 0.2 0.275 0.257 0.184 0.258 0.2 0.138 

5 0.219 0.245 0.209 0.322 0.318 0.249 0.335 0.253 0.186 

    
a1/a=0 a1/a=0.25 a1/a=0.50 a1/a=0.75 

Fig. 5 First mode shapes of elliptic paraboloid shell (a/b=1, h/b=1,  
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a1/a=0 a1/a=0.25 a1/a=0.50 a1/a=0.75 

Fig. 6 First mode shapes of elliptic paraboloid shell (a/b=1, h/b=0.5, 

    
a1/a=0 a1/a=0.25 a1/a=0.50 a1/a=0.75 

Fig. 7 First mode shapes of elliptic paraboloid shell (a/b=1, h/b=0.25,  

    

a1/a=0 a1/a=0.25 a1/a=0.50 a1/a=0.75 

Fig. 8 First mode shapes of elliptic paraboloid shell (a/b=0.5, h/b=1,  

    

a1/a=0 a1/a=0.25 a1/a=0.50 a1/a=0.75 

Fig. 9 First mode shapes of elliptic paraboloid shell (a/b=0.5, h/b=0.5,  

    
a1/a=0 a1/a=0.25 a1/a=0.50 a1/a=0.75 

Fig. 10 First mode shapes of elliptic paraboloid shell (a/b=0.5, h/b=0.25,  

    
a1/a=0 a1/a=0.25 a1/a=0.50 a1/a=0.75 

Fig. 11 First mode shapes of elliptic paraboloid shell (a/b=0.25, h/b=1,  
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brevity mode shapes are shown in Figs. 5-13 for the first 

modes and material angle =0
o
 only. 

 
 
5. Conclusions 

 

An assumed stress hybrid finite element is used for the 

free vibration analysis of elliptic paraboloid shells with and 

without openings. A parametric study is carried out to 

investigate the influence of aspect ratio, height ratio, 

opening ratio and material angle on the dynamic behavior 

of elliptic paraboloid shells. Based on the above parametric 

study, the following concluding remarks are made: 

Natural frequencies are more sensitive to aspect ratio, 

height ratio and opening ratio than material angle. 

For all type of shells, with or without openings, lowest 

frequencies obtained for the case h/b=1, a/b=0.25.  

As the opening ratio is increasing the variation in 

frequency is decreasing. 

Opening ratios considered are significantly affect the 

mode shapes. 

It is concluded that aspect ratio, height ratio and opening 

ratio of the cutout affect the free vibration behavior 

orthotropic elliptic paraboloid shells. For the design of 

elliptic paraboloid shells, the variation of frequencies with 

the aspect ratio a/b, height ratio h/b and opening ratio is 

presented in tables that can be directly used in design 

practice. 
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Notations 
 

E1, E2 
: moduli of elasticity along x and y axes of 

element respectively 

G12, G13, G23 
: shear moduli of elasticity in x-y, x-z and y-

z planes of element 
x, y, z : element local axis 
X, Y, Z : system global axis 

12, 21 : Poisson ratio 

[D] : differential operator matrix 
[E] : elasticity matrix 

[G] 
: nodal forces corresponding to assumed 

stress field 
[N[ : shape functions 
[P] : interpolation matrix for stress 

   ,q q  : displacement and velocity components 

{u} : displacements 
{β} : stress parameters 
{ζ} : internal forces 
Qx, Qy : internal shear forces per unit length 
Nx, Ny, Nxy : membrane forces per unit length 
Mx, My, Mxy : internal moments per unit length 
ρ : mass per unit volume 

 : natural circular frequency 

ϖ : non-dimensional frequency 

ϕ 
: material angle in an element with 

reference to x-axis 
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