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1. Introduction 
 

Recently, nano and micro structural elements such as 

beams, membranes and plates have attracted worldwide 

attention from the researches community for their superior 

properties and extensive applications in nano and micro 

elec tromechanica l  (NEMS and MEMS) devices 

(Gopalakrishnan and Narendar 2013, Nejad et al. 2017b). 

At nano and micro meter scales, size effects often become 

important. Both experimental and molecular dynamics 

simulation results have shown that the small-scale effects in 

the analysis of mechanical properties of nano and micro 

structures cannot be neglected and classical continuum 

theories is not usable. Molecular dynamics simulation is 

convenient method to simulate the mechanical behavior of 

small size structures but it is computationally expensive for 

structures with large number of atoms (Gopalakrishnan and 

Narendar 2013, Keivani et al. 2016). Thus researchers 

stimulated to develop several higher-order continuum 

theories such as nonlocal theory (Eringen 1972a, b, 1983, 

2002), strain gradient theory (Lam et al. 2003) and etc. 

which could predict size effect by considering material 

length scale parameters. In 1960s, the couple-stress theory, 

introduced by Toupin (1962), Mindlin and Tiersten (1962), 

and Koiter (1964). This theory is an appropriate non-

classical theory for analyzing micro and nano scale  
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structures. By this theory the stiffness of these type of 

structures is predicted more than what is done by the 

classical theory. The modified version of the couple-stress 

theory has been proposed by Yang et al. (2002) by 

considering the couple-stress tensor to be symmetric. In this 

theory two higher order material length scale parameters are 

introduced in addition to the two Lame constants. One of 

the good aspects of this theory was that the four additional 

parameters in the micropolar theory and five additional 

parameters in the strain gradient theory were reduced to two 

additional parameters. This property has attracted some 

researchers in recent years to derive formulations for the 

mechanical analyzing of the micro-beams and micro-plates 

and investigate their mechanical behavior based on this 

theory. The formulations and mechanical behavior 

investigations for homogeneous linear micro-beams (Ma et 

al. 2008, Park and Gao 2006), homogenous nonlinear 

micro-beams (Asghari et al. 2010, Şimşek 2014, Xia et al. 

2010), functionally graded linear micro-beams (Asghari et 

al. 2011), functionally graded nonlinear micro-beams (Ke et 

al. 2012), linear micro-plates (He et al. 2015, Jomehzadeh 

et al. 2011, Yin et al. 2010), nonlinear micro-plates 

(Asghari 2012, Lou and He 2015), composite laminated 

beams (Mohammad-Abadi and Daneshmehr 2015), micro 

beam under the effect of an impact force (Kocaturk and 

Akbas 2013) have been presented in recent years based on 

the modified couple-stress theory. Recently, by considering 

true continuum kinematical displacement and rotation, 

Hajesfandiari and Dargush (Hadjesfandiari and Dargush 

2011) demonstrate the couple-tensor is skew-symmetric. 

Thus, they present the consistent couple-stress theory by 
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adopting the skew-symmetric part of the rotation gradients 

as the curvature tensor.  

Functionally graded materials (FGMs) are 

heterogeneous composite materials whose properties 

change smoothly and continuously along desired 

dimension(s). This continuously varying composition 

eliminates interface problems, and thus, the stress 

distributions are smooth (Zenkour 2013). A number of 

papers considering various aspects of FGM have been 

published in recent years (Nejad and Rahimi 2009, 2010, 

Ghannad et al. 2012, Hadi et al. 2013, Şimşek and Reddy 

2013, Xue and Pan 2013, Nejad et al. 2014a, b, Ziegler and 

Kraft 2014, Gan et al. 2015, Jabbari et al. 2015, Kolahchi et 

al. 2015, Nejad and Fatehi 2015, Nejad et al. 2015a, b, 

Akbarov 2016, Hadji et al. 2016, Hosseini et al. 2016, 

Mazarei et al. 2016, Dehghan et al. 2016, Jabbari et al. 

2016, Li and Hu 2016, 2017, Li et al. 2017, Nejad et al. 

2017). Thanks to the advances in technology, FGMs have 

started to find their ways into micro-nano-electro-

mechanical systems (MEMS/NEMS), for example in the 

form of shape memory alloy thin films with a global 

thickness in micro- or nano-scale (Lü et al. 2009b), 

electrically actuated MEMS devices (Zhang and Fu 2012), 

and atomic force microscopes (AFMs) (Kahrobaiyan et al. 

2010). It should be noted that most of the above-mentioned 

analyses are related to FGMs with material properties 

varying in one direction only. However, there are practical 

occasions which require tailored grading of macroscopic 

properties in two or even three directions. As reported by 

Steinberg (1986), the fuselage of an aerospace craft 

undergoes an extremely high temperature field with 

excessive temperature gradient on the surface and through 

the thickness, when the plane sustains flight at a speed of 

Mach 8 and at an altitude of 29 km. In this circumstance, 

the conventional unidirectional FGMs may not be so 

appropriate to resist multi-directional severe variations of 

temperature. Therefore, it is of great significance to develop 

novel FGMs with macroscopic properties varying in two or 

three directions (2D or 3D FGMs) to withstand a more 

general temperature field. The number of studies on beams 

and plates made of two-directional functionally graded 

material (2D-FGM) is still very limited. Lü et al. (2009a) 

proposed the state-space based differential quadrature 

method for the thermo-elastic analysis of bi-directional 

FGM plates. In addition, dynamic behavior of multi-

directional FGM annular plates was investigated by Nie and 

Zhong (2010). Zhao et al. (2012) suggested a symplectic 

framework for the analysis of plane problems of BDFGMs 

in which the elastic modulus varies exponentially both 

along the longitudinal and transverse coordinates. The fully 

coupled thermo-mechanical behavior of BDFGMs beam 

structures, using isogeometric finite element model, was 

studied by Lezgy-Nazargah (2015). Şimşek (2015) 

investigated free and forced vibration of BDFG 

Timoshenko beam under the action of a moving load. The 

material properties of the beam varied exponentially in both 

axial and thickness directions. Wang et al. (2016) studied 

the free vibration of a two-directional functionally graded 

beam which had variable material properties along the beam 

length and thickness. It is assumed that material properties 

vary through the length according to a simple power law 

distribution with an arbitrary power index and have an 

exponential gradation along the beam thickness. Li et al. 

(2016) derived a size-dependent Timoshenko beam model 

which accounts for through-thickness power-law variation 

of a two-constituent functionally graded (FG) material, in 

the framework of the non-local strain gradient theory. 

Fakhrabadi and Yang (2015) presented the nonlinear 

electromechanical behavior of nano-beams under 

electrostatic actuation based on the consistent couple-stress 

theory. Nejad et al. (2016) presented buckling analysis of 

arbitrary two-directional functionally graded Euler-

Bernoulli nano-beams based on non-local elasticity theory. 

In other studies, Nejad and Hadi (2016a) presented bending 

analysis and free vibration analysis (Nejad and Hadi 2016b) 

of arbitrary bi-directional functionally graded Euler-

Bernoulli nano-beams based on non-local elasticity theory.  

In this article, to the best of the researchers’ knowledge, 

for the first time, using consistent couple-stress theory, free 

vibration analysis of BDFGMs Euler-Bernoulli nano-beams 

is presented. The effects of changes of some important 

parameters such as material length scale, FG index on the 

values of frequencies, and Frequency in different modes are 

studied. The results of this study can be a reference for 

designing the elastic types bi-directional FGM Euler-

Bernoulli nano-beams. 

 

 

2. Analysis 
 

Consider a nano-beam of length L, width b, and 

thickness h made of bi-directional functionally graded 

materials (Fig. 1). Cartesian coordinates (x, y, z) are 

considered. 

The investigation on 2D-FGMs has shown that it is more 

capable of reducing thermal and residual stresses than one-

directional FGMs (Nemat-Alla 2003). So, the modulus of 

elasticity E and density ρ are assumed to vary as arbitrary 

functions in both axial and thickness directions, as indicated 

below 

   1 1E f x g z  (1) 

   2 2f x g z   (2) 

where f1(x), f2(x), g1(z), and g2(z) are arbitrary functions. 

In the consistent couple-stress theory, the equations of 

equilibrium of the linear isotropic materials are formulated 

as (Hadjesfandiari and Dargush 2011) 

 

 

 
Fig. 1 Geometry of the bi-directional functionally graded 

Euler-Bernoulli nano-beam 
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0ji , j if    (3) 

0ji , j ijk jkm     (4) 

where σji and mji represent the force-(classical) and couple-

stress tensors, respectively. In addition, fi and εijk denote the 

body force per unit volume and permutation or Levi-Civita 

symbol, respectively. As mentioned before, Hadjesfandiari 

and Dargush (2011) proved that in the couple-stress theory, 

the body force and body couple are not distinguishable from 

each other and the body couple transform to the equivalent 

body force (Hadjesfandiari and Dargush 2011). Moreover, 

in the couple-stress theory, unlike the classical elasticity, the 

stress tensor is generally non-symmetric. Thus, it can be 

decomposed to the symmetric and skew-symmetric 

components as following 

   ji ji ji
     (5) 

where σ(ji) is the symmetric part and σ[ji] is the skew-

symmetric part of the force-stress tensor. In order to define 

the elements of Eqs. (3)-(5) required in the couple-stress 

theory, the kinematic parameters should be utilized. The 

displacement gradient can be decomposed into two distinct 

parts 

ij ij iju e    (6) 

where 

   
1

2
ij i , j j ,ii , j

e u u u    (7) 

   
1

2
ij i , j j ,ii , j

u u u     (8) 

In the above relations, eij and ωij are strain and rotations 

tensors, respectively. Similar to the couple-stress tensor, the 

rotation tensor is skew-symmetrical and a vector can be 

defined dual to it as 

1

2
i ijk kj    (9) 

The gradient of rotation tensor can be decomposed into 

two sub-tensors as 

i , j ij ij     (10) 

where 

   
1

2
ij i , j j ,ii , j

       (11) 

   
1

2
ij i , j j ,ii , j

       (12) 

The diagonal arrays of the former known as the torsion 

tensor show the pure torsion of the element about the 

coordinate axis and the off-diagonal terms are deviations 

from sphericity. It does not contribute as a fundamental 

measure of deformation and will not be included in the 

strain energy. On the other hand, in the couple-stress theory, 

the curvature tensor (κij) plays a crucial role in the strain 

energy. The corresponding dual vector of the skew-

symmetric curvature tensor can be formulated as 

1

2
i ijk kj    (13) 

It is now the time of formulating the force and couple-

stresses corresponding to the above kinematic parameters. 

The symmetrical part of the force-stress tensor in Eq. (5) is 

same as the force-stress tensor in classical elasticity and can 

be obtained from Eq. (14) 

  2kk ij ijji
e e      (14) 

where λ and μ are the Lame’s constants. The couple-stress 

tensor is skew-symmetrical (mij=-mji) and a vector mi can be 

introduced dual to the tensor 

1

2
i ijk kjm m  (15) 

For the isotropic linear materials, Hadjesfandiari and 

Dargush (2011) proved that the couple-stress can be 

computed from Eq. (16) 

8i im    (16) 

The above relation shows that the couple-stress theory 

for the isotropic linear materials has only one extra size-

dependent parameter. The ratio η=μl
2
 is the constant makes 

difference between the classical and consistent couple-stress 

theories. The size-dependen parameter, l, varies from one 

material to another or from one scale to another scale. For 

the zero value of this parameter, the latter reduces to the 

former. 

In addition, Hadjesfandiari and Dargush (2011) showed 

that the skew-symmetric component of the stress tensor can 

be obtained from Eq. (17) 

   ji i , j
m    (17) 

According to the consistent couple-stress developed by 

Hadjesfandiari and Dargush (2011), the strain energy 

density of an isotropic linear elastic material with volume Ω 

experiencing an infinitesimal displacement is defined as 

  1

2
ij ji ijji

U e m dv


    (18) 

Components of displacement vector (u1, u2, and u3) for 

Nano-beams based on Euler-Bernoulli beam theories can be 

expressed as 

 

 

1

2

3

0               

     

u z dw dx

u

u w x,t

 



 

 (19) 

Substitution of Eq. (19) into the Eq. (12), the skew-

symmetric curvature tensor is expressed as 

163



 

Mohammad Zamani Nejad, Amin Hadi and Ali Farajpour 

 

2

2

0 1 0
1

1 0 0
2

0 0 0

w

x


 
  

 
 
  

 (20) 

From Eq. (16), the couple-stress tensor is defined as follows 

2
2

2

0 1 0

4 1 0 0

0 0 0

w
m l

x


 
  


 
  

 (21) 

From the displacement field, the strain components can 

be calculated by substituting Eq. (19) into Eq. (7) 

2

2

1 0 0

0 0 0

0 0 0

w
e z

x

 
  

 
 
  

 (22) 

For a slender beam with a large aspect ratio, the Poisson 

effect is secondary and can be disregarded to simplify the 

formulation of the beam theory. Hence, the stress 

component is presented as 

2

2

1 0 0

0 0 0

0 0 0

w
Ez

x


 
  

 
 
  

 (23) 

Substituting Eq. (1) and Eqs. (20)-(23) into Eq. (18), the 

variation of strain energy is simplified to 

 
2

2
2 0 1 2

0 0 0

t t L
w

Udt I SI l f
x


 

  


    

(24) 
3 4

1 13 4
2

w w
f f wdxdt

x x

 

  
  

 

where 

 0

1 2
2

1

A

I
g z dA

I z

   
   

  
  (25) 

2

1
S





 (26) 

The variation of the kinetic energy can be written in the 

following form 

3

2 2 2

0 0 0

t t L
w

Kdt f m
x t


 

 
 

    

(27) 
4 2

2 2 02 2 2

w w
f m m wdxdt

x t t

 

  
   

 

where 

 0

2 2
2

1

A

m
g z dA

m z

   
   

  
  (28) 

The governing equations of the BDFGM Euler-Bernoulli 

nano beam can be obtained, using the concept of Hamilton 

principle, that is 

 
2

1

0

t

t

U K dt    (29) 

Substituting Eqs. (24) and (26) into Eq. (29), the Navier 

equation is expressed as 

 
2 3 4

2
2 0 1 1 12 3 4

2
w w w

I SI l f f f
x x x

   
     
   

 

(30) 
3 4 2

2 2 2 2 02 2 2 2

w w w
f m f m m

x t x t t

  
  

    
 

For free vibration analysis, it is assumed that w  varies 

harmonically with respect to the time variable t , as follows 

    i tw x,t W x e   (31) 

Substituting Eq. (31) into Eq. (30) and by assuming 

   1 2

x
Lf x f x e



  , the following equation is obtained 

 
2 2 3 4

2
2 0 2 3 4

2
d W d W d W

I SI l
L Ldx dx dx

     
      

     

 

(32) 

2
2

2 2 02

dw d W
m m m W

L dx dx




  
     

  
 

 

 

3. Generalized differential quadrature method 
 

In the case of the general boundary conditions, the 

analytical solution of Eq. (32) is difficult to obtain, so a 

GDQ approach is adopted for this equations The GDQ 

approach may be an easy and useful tool for the purpose of 

analyzing more complex problems. In addition, GDQM is 

an efficient numerical method for the solution of differential 

equations. It is assumed that the grid points are located on 

the zeros of the Chebyshev polynomials (Shu and Chew 

1998) and to discretize the solution domain, one can assume 

a set of N grid points in the x-direction as 

i

i 1
1 π           1 1

2 N 1

L
X cos , i , ,N

   
      

  
 (33) 

In this method, the derivatives of a function f(x), at a point 

xi , are expressed as 

       
1

          1 1
N

n n

x i ij j

j

f x C f x , n , ,N


     (34) 

where N is the number of the grid points over the x 

direction.  n

ijC  is the respective weighting coefficients 

through the x direction obtained through the following 

equations. 

If n=1, i.e., for the first order derivative, then 
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   

   
1

   1
i

ij

i j j

M X
C , i, j , ,N젨젨j i

X X M X
  


 j≠i (35) 

where 

   
1

xN

i i j
j

j i

M X X X




   
(36) 

To obtain the weighting coefficients for the second-order 

or higher-order derivatives, the matrix multiplication 

procedure is implemented 

     
 1

1 1
 1  

n

ijn n

ij ii ij

i j

C
C n C C , i, j , ,N 쟩 i

X X




 
     
 
   

j≠i (37) 



 









xN

ij
j

n
ij

n
ii

Nn

Ni
CC

1

)()(

1,...,2,1

       ,...,1
      ,  (38) 

Substituting Eq. (34) into the first governing equation 

(Eq. (32)), the following equation is obtained 

         4

2

32

1

0

1

2
N N

ij j ij j

j j

C W x C W
L

xI SI l


 


  


   

(39) 
       

2

2 22
2

1 1

N N

ij j ij j

j j

C W
L

x C W xm



 

  
         

   

     2

1

0

1
N

ij j j

j

Cm m WW xx
L





 
     

  

Then arranging the displacement variable and 

corresponding coefficient, the governing equations in the 

following form could be obtained 

 
0 0bb bd b b

db dd d db dd d

A A X X

A A X B B X


       
       

       
 (40) 

where subscripts b  and d  denote boundary and domain 

sample points, respectively. In addition, coefficients A  

and B  are matrices and their dimensions depend on the 

number of domain and boundary sample points. After 

eliminating boundary nodes Xb including (W) in Eq. (40) by 

using the boundary conditions, the dimension of the 

coefficient matrices reduces. Finally, Eq. (40) can be 

rewritten to give an eigenvalue problem as 

]][][[]][[ dd XIXK   (41) 

Solving the obtained eigenvalue problem gives the natural 

frequency ( ) of the BDFG Euler-Bernoulli nano-beam 

based on consistent couple-stress theory. 

 

 

3. Results and discussion 
 

In this section, the free vibration of BDFG Euler-

Bernoulli nano-beams based on consistent couple-stress 

theory is investigated by numerical results.  

In order to verify the validity and reliability of the 

present work, when β and l are neglected, a comparison of 

the dimensionless frequency in mode 1 of beams with 

various boundary conditions (S-S: simply supported-simply 

supported, C-C: clamped-clamped and C-S: clamped-

simply supported) at two ends is made with Nejad and Hadi 

(2016b) and Eltaher et al. (2013), as shown in Table 1. 

Here, the beam’s geometric and material properties are 

given as follows: Young’s modulus is 30 MPa, density is 1 

Kg/m
3
, width of the beam is 1 nm and the length of the 

beam is 10 nm. It can be seen that there is an excellent 

agreement between the results obtained in this paper and 

those reported in Nejad and Hadi (2016b) and Eltaher et al. 

(2013). Dimensionless frequency and frequency ratio are 

defined as follows 

2 0

2

m
L

I
   (42) 

L

NL




 ratioFrequency Fr  (43) 

In the above relation, ωL is the frequency when the size 

scale parameter is taken to be zero. Also it should be noted 

that when the frequency ratio approaches 1, size effects are 

negligible. The material properties considered in the current 

study are tabulated in Table 2. 

It is proposed that the modulus of elasticity and density 

of the nano-beam material vary in the x and z directions, as 

follows 
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Figs. 2 and 3 illustrate the variation of the dimensionless 

modulus of elasticity through the length and thickness of 

the beam for various values of n1=n2=n and β. The value of 

n equal to zero, represents a fully ceramic beam, whereas 

infinite n indicates a fully metallic beam. The variation of 

the combination of ceramic and metal is linear for n=1. 

According to Fig. 3, in the same position (0<x/L<1), it is 

observed that for higher values of β, the stiffness increases. 
 

 

Table 1 Comparison of non-dimensional frequency in mode 

1 for a clamped-clamped nano-beam with (Eltaher et al. 

2013; Nejad and Hadi 2016b) 

L h  1  (Present 

work) 

1 (Nejad and Hadi 

2016b) 

1  (Eltaher et al. 

2013) 

10 22.2594 22.2594 22.4926 

20 22.3446 22.3446 22.4022 

100 22.3721 22.3721 22.3744 
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Table 2 Material properties used in the numerical study 

Materials Properties 

 E (GPa) ρ (kg/m3)
 

υ 

C 69 2700 0.3 

M 339 3800 0.3 

 

 
Fig. 2 Distribution of dimensionless modulus of 

elasticity versus z/h at x=0 

 

 
Fig. 3 Distribution of dimensionless modulus of 

elasticity versus x/L at z=-h/2 

 

 

Fig. 4 illustrates the convergence of the GDQM in 

obtaining the non-dimensional frequency. It is observed that 

considering more than 9 sample points does not affect the 

accuracy of the results significantly. In this figure, the non-

dimensional frequency error is defined as 

1 100N N

N

e
 


 

   (46) 

where e is a small value number and in this analysis, it is 

taken to be 210 . 

Fig. 5 shows the ratio of frequency in the case of 

considering couple-stress effect to the classic case in terms 

of dimensionless thickness, h/l. It can be seen, with 

increasing the dimensionless thickness, the frequency ratio 

tend to 1 which shows that with increasing the thickness 

against size scale parameter, couple-stress effect decreases. 

For the dimensionless thickness equal to 1, relative 

frequency ratio is equal to 4.5717 which shows the 

difference between classic and couple-stress theory in small 

sizes.  

 
Fig. 4 Convergence of dimensionless frequency in 

mode 1 clamped-clamped BDFG (β=2, n=2, b=h=1 

nm, L=100 nm, and l=5 nm) 

 

 
Fig. 5 Frequency ratio of clamped-clamped BDFG 

nano beam versus to dimensionless thickness 

(L=100 nm, b=h, n=2, β=2, and l=1 nm) 

 

 
Fig. 6 Frequency of clamped-clamped BDFG nano beam 

by considering the effects of couple-stress theory and the 

classic theory versus to dimensionless thickness (L=100 

nm, b=h, n=2, β=2, and l=1 nm) 

 

 

The natural frequency is depicted in Fig. 6 by 

considering the effects of couple-stress and the classic 

theory in terms of dimensionless thickness. The more the 

dimensionless thickness, the more the natural frequency 

would be in both theories. Also this figure shows that in a 

constant dimensionless thickness, the natural frequency is 

greater in the case of considering couple-stress effects than 

the classic one. This shows the effects of size. With 

increasing the dimensionless thickness in both cases, both 

cases tend to reach each other. 
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Fig. 7 Frequency in mode 1 of clamped-clamped 

BDFG nano beam versus to length in various values 

of l (b=h=1 nm, n=2, β=2, and l=5 nm) 

 

 
Fig. 8 Frequency of clamped-clamped BDFG nano-

beam versus n1=n2=n in different modes (b=h=5 

nm, L=75 nm, β=2, and l=5 nm) 

 

 
Fig. 9 Dimensionless frequency of clamped-clamped 

FG nano-beam versus β in different modes (b=h=5 

nm, L=75 nm, β=2, and l=5 nm) 

 

 

Fig. 7 shows the change in frequency in terms of the 

nano beam length in various values of l. This figure shows 

that the increase in nano beam length results in frequency 

reduction. Also, with increasing the nano-beam length, all 

cases tend to reach each other. In other words, with 

increasing the nano beam length, the effects of size 

disappear. 

Given that n1=n2=n, natural frequency for the first five 

modes against n is shown in Fig. 8. It is apparent from the 

curve that there is an increase in the value of natural 

frequency as n increases.  

Fig. 9 illustrates the dimensionless natural frequency 

against β for the first five modes. This figure shows that as 

β increases, the dimensionless natural frequency increases 

too. In other words, this figure shows that for higher values 

of β, stiffness increases. 

 

 
5. Conclusions 
 

The present paper has discussed the applicability of a 

non-classical continuum theories by consistent couple-stress 

theory to obtain the size dependent on vibration behavior of 

Euler-Bernoulli nano beams made of bi-directional 

functionally graded materials. The BDFG Euler-Bernoulli 

nano-beam is assumed to be graded through thickness and 

length directions, following the arbitrary material 

distribution. The governing equations and the boundary 

conditions are derived, using the Hamilton principle. 

Afterwards, GDQM is applied to solve the governing 

equations to obtain the natural frequencies of FG nano-

beam. Results of this paper show small scale effects 

significantly contribute to the mechanical behavior of 

BDFG nano-beam, a significant fact which cannot be 

neglected. Further, frequency ratio decreases with the 

increase in the size scale parameter value. The results 

presented in this work may provide useful guidelines for 

designing and developing BDFG nano-beams based on 

nano devices that make use of the vibration properties of 

BDFG nano-beam. To show the effect of inhomogeneity on 

the vibration properties of FG nano-beam, different values 

were considered for material inhomogeneity parameters n 

and β. The presented results show that the material 

inhomogeneity has a significant influence on the 

mechanical behaviors of the BDFG Euler-Bernoulli nano-

beams. Finally, the comparison between the results obtained 

from the classical and consistent couple-stress theory 

reveals that application of the latter leads to a model of the 

nano-beam with higher stiffness and larger natural 

frequency. 
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