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1. Introduction 
 

In the recent decades the sandwich structures has been 

widely used for applications ranging such as aircraft, ships, 

satellites, rail cars, automobiles, wind energy systems, 

marine and building constructions because of their low 

specific weight, high dynamic characteristics, outstanding 

banding rigidity and maximum  fatigue properties (Lal and 

Rani 2014). 

Fiber-reinforced composite materials include fibers of 

high strength and modulus embedded in or bonded to a 

matrix with distinct interfaces between them. In this 

combination, both fibers and matrix maintain their chemical 

and physical properties, while they have not these features 

alone (Mallick 2007). The fiber-reinforced composite 

laminates have many advantages like high stiffness -to-

weight ratio, high strength-to-weight ratio, corrosion 

resistance properties, good fatigue resistance properties etc. 

So, these laminates are widely employed in the design of 

structural components in cars, rail vehicle, robots, power 

plants etc. (Aravinda Kumar et al. 2015). 

Zhang and Sun (1999) studied a sandwich plate 

containing a piezoelectric core. They used the principle of 

stationary potential energy and Raleigh-Ritz formulation for  
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the sandwich plate. They analyzed this problem by Finite 

element method. Benjeddou and Deu (2002) presented a 

two-dimensional (2D) closed-form solution for the free 

vibrations analysis of simply supported piezoelectric 

sandwich plates. In this work, FSDT and through-thickness 

quadratic electric potential were considered for layers. 

Micromechanic models for non-linear behavior of PFRC 

was discussed by Tong and Tan (2001, 2002). They 

exhibited two non-linear micromechanics models, namely, 

“XY PFRC non-linear model” and “YX PFRC non-linear 

model”. Also, they presented two micromechanic models, 

referred to as “XY PEMFRC model” and “YX PEMFRC 

model” to calculate the electro-magneto-thermo-elastic 

properties for piezoelectric-magnetic fiber reinforced 

composite (PEMFRC) materials. Nayak and et al. (2002) 

investigated free vibration analysis of composite sandwich 

plates based on Reddy‟s higher-order theory to determine 

the natural frequencies of isotropic, orthotropic, and layered 

anisotropic composite and sandwich plates. They used glass 

fiber polyester resins for the face sheets and poly-vinyl-

chloride (PVC) for the core of sandwich. Consistent higher-

order free vibration analysis of composite sandwich plates 

was developed by Wang et al. (2008). They obtained eight 

dynamic governing equations and the corresponding 

boundary conditions by the application of Hamilton‟s 

principle. Their results showed that the vibration modes of 

the soft-core sandwich plates with symmetric and anti-

symmetric layups. Iu et al. (2008) studied free vibration of 

functionally graded material (FGM) sandwich rectangular 

plates with simply supported and clamped edges based on 

the three-dimensional linear theory of elasticity. They 

considered two types of FGM sandwich plates, the 

sandwich with homogeneous face sheet and FGM core and 

the sandwich with FGM face sheet and homogeneous core. 
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They obtained the natural frequencies using the Ritz 

method. Their results revealed that the number of thickness 

expansion terms mainly depends on the thickness of the 

plate. Finite element modeling for bending and vibration 

analysis of laminated and sandwich composite plates based 

on higher-order theory was presented by Tu et al. (2010). 

They solved the problem with existing numerical solutions. 

They presented the results for the parametric effects of 

degree of orthotropy, length-to-thickness ratio, plate aspect 

ratio upon the fundamental frequencies.A finite element 

model for analyzing of active sandwich laminated plates 

was presented by Araújo et al. (2010) with a viscoelastic 

core and laminated anisotropic face layers, as well as 

piezoelectric sensor and actuator layers. They used FSDT 

for the displacement field of the adjacent laminated 

anisotropic face layers and exterior piezoelectric layers, and 

a higher order shear deformation theory (HSDT) to 

represent the displacement field of the viscoelastic core. 

Their model was capable of handling a wide variety of layer 

configurations. They have also implemented the velocity 

feedback control laws. Vel et al. (2012) analyzed the fiber-

reinforced composite plates integrated piezoceramic fiber 

composite actuators. They solved the three-dimensional 

macroscopic equilibrium equations for a laminated 

piezoelectric plate using the Eshelby-Stroh formalism. They 

presented the results for the homogenized material 

properties, macroscale average stresses, macroscale 

deformation and microscale stress distributions. Wang and 

Shen (2012) analyzed nonlinear vibration and bending of 

sandwich plates with carbon nanotube-reinforced composite 

(CNTRC) face sheets resting on an elastic foundation in 

thermal environments. They considered the material 

properties of CNTRC face sheets graded in the thickness 

direction. They solved the governing equation of the plate 

including plate-foundation interaction by a two-step 

perturbation technique. Their findings showed that the 

linear functionally graded (FG) reinforcement of face sheets 

has a quantitative effect on the nonlinear bending behaviors. 

They also found that the temperature rise and foundation 

stiffness have a significant effect on the natural frequencies, 

and nonlinear bending behaviors of the sandwich plate. 

Hadji and Adda Bedia (2012) analyzed the behavior of FG 

beams based on neutral surface position. They presented the 

n-order polynomial term for the displacement field without 

shear correction factor. In this theory, transverse shear stress 

variation varied parabolically across the thickness satisfying 

shear stress free surface conditions. A novel higher order 

shear and normal deformation theory based on neutral 

surface position for bending analysis of advanced 

composite plates was done by Bousahla et al. (2013). The 

number of unknown functions involved in the present 

theory was only five as against six or more in case of other 

shear and normal deformation theories. They used the 

principle of virtual work and the physical neutral surface 

concept to obtain the governing equations. Thermo-

mechanical bending response of FGM thick plates resting 

on Winkler-Pasternak elastic foundations was presented by 

Bouderba et al. (2013). They assumed the material 

properties of the FG plates varied continuously through the 

thickness, according to a simple power law distribution of 

the volume fraction. Analysis of FG sandwich plate with 

piezoelectric skins was done by Loja et al. (2013) using B-

spline finite strip method. They used different shear 

deformation theories to study the static and free vibration 

behavior of FG sandwich plate. They also computed the 

effective properties of FGMs based on Mori-Tanaka 

homogenization scheme. A new higher-order shear and 

normal deformation theory for the bending and free 

vibration analysis of sandwich plates with FG isotropic face 

sheets was investigated by Bessaim et al. (2013). Their 

theory had five numbers of unknown functions as against 

six or more in case of other shear and normal deformation 

theories. They considered simply support boundary 

condition in all edges and the plate subjected to a 

sinusoidally distributed load. They used Hamilton‟s 

principle for obtaining the equations of motion. Houari et 

al. (2013) studied a new higher order shear and normal 

deformation theory to simulate the thermoelastic bending of 

FGM sandwich plates. They used the exact solution for a 

simply-supported FGM sandwich plates. Their results 

showed that the proposed higher order shear and normal 

deformation theory is not only accurate but also provided an 

elegant and easily implementable lends approach for 

simulating thermoelastic bending behavior of FG sandwich 

plates. A refined trigonometric shear deformation theory for 

thermo-elastic bending of FG sandwich plates was 

presented by Tounsi et al. (2013). In this paper, the number 

of unknown functions involved was only four and did not 

require shear correction factor. This theory satisfies shear 

stress free surface conditions because the transverse shear 

stresses vary parabolically across the thickness of plate. The 

effects of transverse shear deformation, thermal load, plate 

aspect ratio and volume fraction distribution were 

investigated in the paper. Bennoun et al. (2014) were 

presented a novel five-variable refined plate theory for 

vibration analysis of FG sandwich plates. Indeed, in their 

theory the number of unknown functions was only five. 

Their results revealed that the proposed theory is accurate 

and efficient in predicting the free-vibration response of FG 

sandwich plates. An efficient and simple refined theory for 

buckling and free vibration of exponentially graded 

sandwich plates under various boundary conditions was 

investigated by Ait Amar Meziane et al. (2014). They used 

the Hamilton‟s principle to obtain the equations of motion. 

Theory could archive accuracy comparable to the existing 

HSDTs that contain more number of unknowns. New quasi-

3D hyperbolic shear deformation theory for the static and 

free vibration analysis of FG plates was presented by Hebali 

et al. (2014). They divided the transverse displacement into 

bending, shear, and thickness stretching parts. Also the 

number of unknowns and governing equations of the 

present theory was reduced. A new hyperbolic shear 

deformation theory applicable to bending and free vibration 

analysis of isotropic, FG, sandwich and laminated 

composite plates was presented by Mahi et al. (2014). Their 

new theory had five degrees of freedom, provided parabolic 

transverse shear strains across the thickness direction and 

hence, it did not need shear correction factor. They used the 

Hamilton‟s principle for the energy functional of the 

system. Their results showed that the present theory can be 
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considered as a good alternative to some 2D theories for 

approximating the tedious and composite. Natarajan and et 

al. (2014) studied the bending and free flexural vibration 

behavior of sandwich plates with carbon nanotube (CNT) 

reinforced face sheets using higher-order structural theory. 

They solved this problem by QUAD-8 shear flexible 

element. The results of this work showed the influence of 

the volume fraction of CNT, core-to-face sheet thickness 

and the plate thickness ratio on sandwich plates . They also 

found that increasing of the volume fraction of CNT 

distribution in the face sheet, in general, decreases the 

deflection of sandwich plates. Belabed et al. (2014) were 

presented an efficient and simple higher order shear and 

normal deformation theory for FG plates. They calculated 

the bending, shear and thickness stretching parts in the 

transverse displacement and decreased the number of 

unknowns to five. Biaxial wrinkling analysis of composite-

faced sandwich plates with soft core using improved high-

order theory was investigated by Khalili et al. (2014). They 

used the nonlinear Von-Karman type relations to obtain 

strains. The equations of motion and boundary conditions 

were derived by principle of minimum potential energy. 

They solved this problem by analytical solution for static 

analysis of simply supported sandwich plates under biaxial 

in-plane compressive loads using Navier‟s solution. Their 

results showed that in constant geometrical parameters, the 

dimensionless wrinkling loads decrease with increase in the 

load ratio. Plagianakos and Papadopoulos (2015) analyzed 

the higher-order 2D/3D layerwise mechanics and finite 

elements for composite and sandwich composite plates with 

piezoelectric layers. They solved the governing equation of 

the plate with Navier solutions and finite element 

approximations. A new simple shear and normal 

deformations theory for FG beams was presented by 

Bourada et al. (2015). In this paper, the thickness stretching 

effect was also included with only 3 unknowns. Yahia et al. 

(2015) were presented Wave propagation in FG plates with 

porosities using various higher-order shear deformation 

plate theories. They used the rule of mixture to describe and 

approximate material properties of the FG plates with 

porosity phases. Bellifa et al. (2016) analyzed the bending 

and free vibration of FG plates using a simple shear 

deformation theory and the concept the neutral surface 

position. They used FSDT and the physical neutral surface 

concept to obtain the governing equations.  

Use of piezoelectric materials as distributed sensors and 

actuators, has been significantly increasing during the past 

decade for active control of vibration of high performing 

lightweight smart structures. Direct and converse 

piezoelectric effects of piezoelectric materials help the 

sandwich structure to be used as distributed sensors and 

actuators. PFRC is one of the new materials in the 

collection of smart materials that used in this research and 

integrated with piezomagnetic layer as an intelligent 

sandwich. Also linearly varying in-plane load are applied on 

this structure to evaluate the vibrational behavior of 

sandwich in different positions that hasn‟t already been 

done. 

This research is distinct from other above papers due to 

vibration study of sandwich plate: 

 With composite core made of polymer matrix and 

piezo fibers. 

 Made of piezomagnetic face sheets. 

 Under linearly varying normal stresses. 

 Considering Pasternak foundation. 

 With different matrix and face sheets materials. 

 Solved by 2D DQM. 

Free vibration of composite sandwich plate made of two 

smart piezomagnetic face sheets is a new topic which 

cannot be found in literature. Magneto-mechanical coupling 

in piezomagnetic materials feels a connection between 

stress and magnetic field that can be used in stability of 

systems. In this research, variable in-plane load are applied 

on smart sandwich plate where load factor changes the 

effectiveness of linearly variable in-plane forces from pure 

comparison to pure bending. Also, core of sandwich is 

made of PFRC and the effects of material properties of 

fibers, matrix and face sheets are studied on vibration 

frequency of sandwich plate. Besides, Pasternak foundation 

is developed by evaluating of normal and shear modulus. 

The results of this study investigate the effect of important 

parameters on vibration frequency of sandwich plate that 

can be useful in many industries.  

 

 

2. Constitutive of the sandwich structure 
 

A schematic diagram of a sandwich plate is illustrated in 

Fig. 1 in which geometrical parameters of length a, width b 

and thickness 2hs+hc are also indicated. 

As shown in Fig. 1 the sandwich plate is composed of 

three layers: 

1. Central composite core reinforced by piezoelectric 

fibers,  

2. Two face sheets made of piezomagnetic material. 

The strain-displacement relations are separately written 

for each layer, then forces and moments are obtained. 

Finally the total energy including the energy of PFRC core 

and piezomagnetic face sheet is obtained. The equations of 

motion are derived using Hamilton‟s principle considering 

variable in-plane forces. 
 

 

 

Fig. 1 A schematic diagram of a sandwich PFRC plate 
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2.1 Composite core 
 

In this research, the central core is a composite 

reinforced with piezoelectric fibers. Generally, the 

mechanical constitutive relations of composite material are 

expressed in Eq. (1) 
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(1b) 

Where c is core and ζij, εij and Qij are the normal and 

shear stresses, strains and stiffness constants, respectively. 

Also, Dm, En, eαβ and mnò  are the electric displacement, 

electric field the piezoelectric constants and the dielectric 

constants, respectively.  

Thermal behavior of materials is a broader subject, more 

directly related to their general thermal properties than to 

thermal effects of specific interest. Thermal effects can be 

calculated according to Refs. (Tounsi et al. 2013, Zidi et al. 

2014, Bouderba et al. 2013, Hamidi et al. 2015). In this way 

thermal stresses are added to Eq. (1a) as [λxx λyy λzz λxy λxz 

λyz]
T
ΔT where λij and ΔT are thermal expansion and thermal 

increment. Also [κx κy κz]
T
ΔT were added to Eq. (1b) in 

which κm is pyroelectric coefficient. 

In order to obtain the properties of composite core, a 

representative volume element (RVE) is considered and 

„„XY-PEFRC‟‟ or „„YX-PEFRC‟‟ known as (Loja et al. 

2013, Bessaim et al. 2013) is employed. Since piezoelectric 

polymer matrix and piezoelectric reinforcements are 

assumed to be the smart components, so micromechanical 

method is used to determine the effective electro-elastic 

constants for PFRC materials. The constitutive equations 

for the electro-thermo-mechanical behavior of selected RVE 

according to the XY-PEFRC micromechanical method are 

expressed as (Wang et al. 2008)
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where “p” and “m” indexes refer to piezofiber and matrix 

and ρ is the volume fraction of fibers. The electric field that 

is defined as a function of electric potential 
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where φ is the electric potential. 

 
2.2 Piezomagnetic face sheets 

 

In this section, piezomagnetic face sheets are analyzed. 

Piezomagnetic materials are ctive materials and possess the 

effect, i.e., the induced strain is proportional to the applied 

magnetic field (Jalili 2009). The stress-strain field for face 

sheets layer is given as 
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Where f is face sheets and Bm and Hn are the magnetic 

flux and magnetic field, respectively, qαβ and μmn are the 

piezomagnetic coefficients and the magnetic permeability, 

respectively. Cij is defined according to the elastic stiffness 

matrix of isotropic materials (Ghorbanpour Arani and 

Khoddami Maraghi 2015) 
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 (5) 

where E and   are the Young modulus and Poisson‟s ratio. 

Similar to electric field, it can be defined the magnetic field 

as function of magnetic potential (ψ), as below 

.nH    (6) 

 
 
3. Equations of motion 

 

The FSDT extends the kinematics of the classical plate 

theory (CPT) by including a gross transverse shear 

deformation in its kinematic assumptions. The transverse 

shear strain is assumed to be constant in FSDT with respect 

to the thickness coordinate(Wang et al. 2000). 
Shear correction factors (kf=5/6) are introduced to 

correct the discrepancy between the actual transverse shear 

force distributions and those computed using the kinematic 

relations of the FSDT. The shear correction factors depend 

on the geometric parameters, loading and boundary 

conditions of the plate. According to the FSDT for the plate, 

the displacement field is taken as (Wang et al. 2000) 
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(7) 

where U, V, W are the displacements of an arbitrary point of 

the plate along the x, y and z axis, respectively; u0 and v0 are 

mid-plane displacements of x, y axis, and z is a distance 

between the point and the mid-plane and

21( , , ), ( , , )x y t x y t   are rotations about y and x axis and t is 

time. 

The linear strain field for FSDT obtained by using 

Hooke‟s law, can be given as 
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(8) 

3.1 Energy method in sandwich plate 
 

The energy method is used to obtain the governing 

equation. The total potential energy (П) of sandwich plate is 

the sum of strain energy (U), kinetic energy (K) and the 

external work (WE). Strain energy of the rectangular 

sandwich plate is calculated as (Reddy 2000) 
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(9) 

Substituting Eqs. (1)-(4)-(8) into Eq. (9), the strain 

energy of the sandwich plate can be obtained. 

Also, the kinetic energy of sandwich plate can be stated as 
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(10) 

in which, ρf, ρc and hf, hc are the density and thickness of 

core and face sheets. 

 
3.2 Elastic medium 
 

Pasternak foundation model is capable to consider the 

transverse shear and normal loads (Ghorbanpour Arani et 

al. 2012). In this paper the bottom surface of sandwich plate 

is continuously supported by an elastic foundation as (Kutlu 

and Hakkı Omurtag 2012) 
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in which, Kw, Kg are Winkler and shear foundation 

parameters. Therefore, the external work due to orthotropic 

elastic foundation is calculated as 

0 0

1
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EW FW dxdy    (12) 

 
3.3 Linearly varying in-plane load 
 

Rectangular plates are usually subjected to in-plane 

forces, therefore the in-plane stresses effects must be 

considered in their analysis. Linearly varying in-plane load 

Nx is applied in x direction as shown in Fig. 2 and it is 

assumed at the following form (Farajpour et al. 2012) 
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Fig. 2 Linearly varying in-plane load 
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where χ is introduced as load factor. The potential energy 

due to the in-plane force per unit length in the x direction 

can be written as (An and Su 2014) 
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3.4 Hamilton’s principle 
 

Hamilton‟s principle is used herein to derive the 

equations of motion. The principle can be stated in an 

analytical form as 
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where δU, δK, δWE and δUN are the variation of strain 

energy, variation of kinetic energy, variation of external 

work and in-plane force. Substituting Eqs. (9)-(14)-(12) into 

Eq. (15) for FSDT and afterward using dimensionless 

parameters which introduced in Eq. (16) 
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The equations of motion are obtained by setting the 

coefficient δU, δV, δW, δθ1, δθ2, δφ, δψ equal to zero as 

follows 
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4. Solution method 
 

To apply the DQ method, at first Eq. (24) is used to 

separate the time and spatial variables 
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where 11sa C    is the dimensionless frequency (Ω 

is the dimensional frequency). In DQM, the differential 

equations change into the first algebraic equations. In this 

regard, the partial derivatives of a function (F) are 

approximated by a specific variable, at discontinuous points 

by a set of weighting series. It‟s supposed that F be a 

function representing U, V, W, θ1 and θ2, ψ, φ with respect 

to variables ξ and η ( 0 1  , 0 1  ) when Nξ×Nη be 

the grid points along these variables with following 

derivative (Shu 2000) 
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where 
)(n

ikA  and 
)(m

jlB  are the weighting coefficients using 

Chebyshev polynomials for the positions of the grid points 

whose recursive formulae can be found in (Shu 2000). 

Applying DQM and using (25) into governing (17-23), the 

standard form of equations of motion ( 0)MX KX   are 

obtained. Considering simply supported boundary 

conditions as follow 

0,
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(26) 

An eigen value problem is derived in which 

/K M   is introduced as the dimensionless frequency. 

It is worth mentioning that M is the mass matrix and K is 

the stiffness. 

 

 

5. Numerical results and discussion 
 

In this work, FSDT was used to derive the equations of 

motion of sandwich plate with composite core and 

piezomagnetic face sheets under variable in-plane load. The 

results of this study include the effect of load factor, aspect 

ratio, thickness ratio, boundary condition, elastic medium 

and material properties. The PFRC core is made of PZT-4  
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Table 1 Mechanical properties of matrix (Tan and Tong 

2000) 

 ( )
11 22 33

C C C GPa   ( )
12 13 23

C C C GPa   ( )
44 55 66

C C C GPa   ( )
3

Kg

m
  

Matrix 3.74 1.12 1.31 1170 

 

Table 2 Electro-mechanical properties of 2 4CoFe O , 3BaTiO , 

4PZT   (Yang 2005, Ramirez 2006) 

 2 4CoFe O  
3BaTiO   4PZT   

11 22

( )

c cC C

GPa


 286 166 

11 22

( )

c cQ Q

GPa


 13.9 

13 23

( )

c cC C

GPa


 170.5 78 

13 23

( )

c cQ Q

GPa


 7.40 

44 55

( )

c cC C

GPa


 45.3 43 

44 55

( )

c cQ Q

GPa


 2.56 

12 ( )cC GPa  173 77 12 ( )cQ GPa  7.78 

33 ( )cC GPa  269.5 162 33 ( )cQ GPa  11.5 

66 ( )cC GPa  56.5 44.5 66 ( )cQ GPa  3.06 

31( )Nq
Am

 580.3 -4.4 231( )Ce
m

 -5.2 

32 ( )Nq
Am

 580.3 -4.4 232 ( )Ce
m

 
0 

33 ( )Nq
Am

 699.7 18.6 233 ( )Ce
m

 
15.1 

24 ( )Nq
Am

 550 11.6 224 ( )Ce
m

 
0 

15 ( )Nq
Am

 550 11.6 215 ( )Ce
m

 
12.7 

11 (*10-8C/Vm) 0.080 11.2 11  0.0646 

22  0.080 11.2 22  0 

33  0.093 12.6 33  0.562 

6 2

2
10

11 2
( )Ns

C


  -590 5   

22  -590 5   

33  157 10   

3( )Kg

m
  5300 5800 3( )Kg

m
  7500 

 

 

fibers and material properties of matrix have been listed in 

Table 1. Also, Table 1 and Table 2 reports the properties of 

2 4CoFe O  and 
3BaTiO  as face sheets. 

At first, to ensure the correct results, linear frequency
2 2. , (1 )a h D D EI       for an isotropic square 

plate are compared in Table 3 for two modes. A good 

agreement among the results of present work and other 

published papers (Loja 2013, Bardell 1989, Wang et al. 

2004) shows that the correct solution has been used. 

It is worth to mention that although the dynamic 

problem can be coupled with the stability problem, this 

coupling it is not the goal of the present work. 

The results of this research are presented in six sections: 

• Effect of volume fraction of fibers 

• Effect of thickness and aspect ratios (geometric  

Table 1 Comparison of linear frequency for an isotropic square 

plate ( 1, 1/ 300, 0.3)      

 ω1

 
ω2

 

Bardell (1989) 19.7392 49.3480 

Wang et al. (2004) 19.7392 49.3453 

Wang and Shen (2012) 19.7362 49.3431 

Present work 19.4250 49.3392 

 

 

Fig. 3 Variation of dimensionless frequency versus 

volume fraction of fibers in composite core 

 

 

parameters) 

• Effect of boundary conditions 

• Different load factor  

• Effect of elastic medium  

• Effect of material properties 

Fig. 3 shows the effect of volume fraction of fibers on 

dimensionless frequency of sandwich plate for different 

value of core thickness ratios. It can be seen from the figure 

that dimensionless frequency (ω) increases with increasing 

the volume fraction of fibers (ρ), because fibers reinforce 

the strength of composite, significantly. 

A plate is a structural element which is thin and flat. 

When the plate‟s transverse dimension, or thickness, is 

small in comparison with the length and width dimensions, 

the plate is thin. A mathematical expression of this idea is 

h/a<<1;  

Plates are classified based on the thickness ratio as 

follows(Steele and Balch 2009): 

• very thin: h/a<0.01, 

• moderately thin: 0.01<h/a<0.05, 

• thick: 0.05<h/a<0.3, 

• very thick: h/a>0.3. 

Classical theory of plates is applicable to very thin and 

moderately thin plates, while HSDT for thick plates are 

useful. FSDT with five unknown displacements has been 

used for thin and thick plates frequently. For the very thick 

plates, however, it becomes more difficult and less useful to 

view the structural element as a plate, a description based 

on the three-dimensional theory of elasticity is required. 

Fig. 3 also shows that increasing αc leads to increase the 

dimensionless frequency for all ranges of thin and thick 

plates. 

Effect of different boundary conditions on frequency 

response of sandwich plate has been displayed in Fig. 4. 
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Fig. 4 Variation of dimensionless frequency versus 

core thickness ratio αc for various cases of the 

boundary conditions 

 

 

Fig. 5 Effect of elastic medium on vibration frequency 

of sandwich plate 

 

 

Five boundary conditions of CCCC, CCCS, CCSS, CSSS 

and SSSS have been compared in this figure where the value 

of dimensionless frequency for CCCC is larger than the 

others. Result reveals that CCCC boundary condition 

provides maximum stability for system and minimum 

stability relates to SSSS boundary condition as follows: 
CCCC CCCS CCSS CSSS SSSS     

Physically, CCCC boundary condition increases the 

stiffness of sandwich and finally dimensionless frequency. 

Fig. 5 shows the variation of dimensionless frequency 

versus volume fractions of composite core in different 

elastic mediums. The lowest curve reports the values of 

dimensionless frequency without elastic medium where   

has the minimum value to the other cases. 2th curve is 

belong to the Winkler foundation with spring constant
bwK . 

Pasternak foundation includes two normal and shear 

modules and it is more effective than Winkler type. The 

role of elastic medium in stability of system is observed in 

Fig. 5 where Pasternak modules create the larger values for 

natural frequency of sandwich plate. Physically the 

structural performance is a function of environmental 

conditions. 

Dimensionless frequency of sandwich plate versus core 

thickness ratio has been displayed in Fig. 6 for four primary 

 

Fig. 6 Variation of dimensionless frequency versus 

core thickness ratio αc in four primary modes 

 

 

Fig. 7 Effect of load factor on vibration frequency of 

sandwich plate 

 

 

modes. It is clear from the figure that the first and second 

modes have the same values until 0.035c 
 and, also 

third and fourth modes have overlap in 0.01 0.04c  . 

Therefore, it is important to structure what is vibrating 

mode because the structural performance is different in 

different modes. 

In order to clarify the effects of different load factors on 

the vibration frequency of sandwich plate, Fig. 7 has been 

drown. In this figure, PVDF  has been selected as matrix of 

composite. The mechanical properties of PVDF are reported 

in Ref. (Ghorbanpour Arani et al. 2015). It is found that the 

dimensionless frequency increases with increasing of load 

factor in 0 2  . It is clear from the figure that the 

dimensionless frequency is more than the other cases in 

pure bending case  2  . 

According to Fig. 8, dimensionless frequency of 

sandwich plate changes by changing of face sheets and 

volume fraction of fibers. COFe2O4 and BaTi304 are 

selected as face sheets, PVDF as matrix and PZT-4 as 

reinforcing fibers of composite core to study the effect of 

material properties. CoFe2O4 and BaTi304 are piezomagnetic 

materials and review of elastic properties in Table 2 

approves the result of Fig. 8. 

Given the variety of piezoelectric and piezomagnetic 

materials, their vibration behavior depends on the material 

properties and the kind of materials can alter the frequency 

domain. 
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(a) 

 
(b) 

Fig. 8 Variation of dimensionless frequency (a) versus 

δ=hc/hf in different materials. (b) versus δ and ρ in 

different materials 

 

 

Fig. 9 Variation of dimensionless frequency versus 

aspect ratio γ=a/b and δ 

 

 

Fig. 9 illustrates the variation of dimensionless 

frequency of sandwich plate with core of PVDF+PZT-4 and 

face sheets of BaTi304 versus aspect ratio γ=a/b and δ. It‟s 

clear from the figure that increasing the aspect ratio γ=1 to 3 

leads to growth of dimensionless frequency while 

increasing δ has reverse effect. Comparison between elastic 

properties of composite core and face sheets reveals that  

 

Fig. 10 Variation of dimensionless frequency versus 

load factor and volume fraction of fibers 

 

 

effective electroelastic constants for PFRC is lower than 

BaTi304. So, with increasing core to face thickness (δ), the 

dimensionless frequency decreases. 

Fig. 10 shows the simultaneous effect of load factor and 

volume fraction of fibers on dimensionless frequency of 

sandwich plate with core of PVDF+PZT-4 and face sheets 

of BaTi304. As increase of volume fraction of fibers leads to 

increase of dimensionless frequency, increasing of load 

factor has the same effect. 

 

 

6. Conclusions 
 

Free vibration of sandwich plate with PFRC core and 

piezomagnetic face sheets is a novel topic that has been 

studied in this research. Composite core was reinforced by 

piezoelectric fibers and micromechanical approach was 

applied to estimate the effective electroelastic constants of 

PFRC materials. Face sheets in top and bottom of 

composite core is made of piezomagnetic materials. 

Pasternak foundation was developed to evaluate the effect 

of normal and shear modulus on the stability of sandwich 

structure. Also, sandwich plate undergoes the variable in-

plane forces. Set of equations were solved by two-

dimensional DQM and the following results were 

concluded:  

• Pasternak foundation plays an important role on the 

stability of sandwich plate where normal (kbw) and shear 

(Kbg) modulus significantly increase the dimensionless 

frequency of sandwich plate. 
• Increasing load factor from χ=0 to 2, increases the 

dimensionless frequency of sandwich plate. Because 

pure compression load (χ=0) changes to pure bending 

case (χ=2). 

• The selected materials for fibers, matrix and face 

sheets change the dimensionless frequency of sandwich 

plate. 
• Dimensionless frequency (ω) increases with increasing 

the volume fraction of fibers (ρ) because, fibers 

reinforce the strength of composite significantly. 

• Aspect ratio and thickness ratio increase the 

dimensionless frequency while core-to-face sheet ratio 

decreases ω due to change in effective electroelastic 
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constants of PFRC materials and face sheets properties. 

The result of this study can be useful to design and 

manufacturing of aircraft, ships, satellites, rail cars, 

automobiles and other industries. 
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Abbreviation 
 

PFRC piezoelectric fiber reinforced composite core 

FSDT first order shear deformation theory 

DQM differential quadrature method 

2D two-dimensional 

PEMFRC 
piezoelectric-magnetic fiber reinforced 

composite 

PVC poly-vinyl-chloride 

FGM functionally graded material 

FG functionally graded 

HSDT higher order shear deformation theory 

CNTRC carbon nanotube-reinforced composite 

CNT carbon nanotube 

RVE representative volume element 

CPT classical plate theory 
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