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1. Introduction 
 

This paper proposes the procedure for updating fragility 

parameters using Bayesian Inference with the help of 

Markov Chain Monte Carlo (MCMC) simulation of the 

intake tower as well as to get the tight confidence interval 

of median fragility curve. The intake tower is often used to 

reconnoiter the release of water through concrete and 

earthen dam as well as for maintaining hydropower plant. In 

the event of an earthquake, prevention of failure of the dam 

and sudden release of water of the reservoir is the main 

concern for the reservoir engineers. For most of the earthen 

and concrete dam, the intake tower is used for controlling 

the release of water of the reservoir. Consequently, the 

intake tower is an important component for the estimation 

of the system risk of reservoir. A cantilever freestanding 

tower of height 62.70m has been modeled. Due to its higher 

height and complexity, seismic fragility analysis is one of 

the main factor taken into consideration. 

Probabilistic seismic risk models play a pivotal role for 

assessing and managing the risk due to the earthquake. In 

the probabilistic seismic risk model, a fragility curve 

illustrates the probability of failure corresponding the 
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intensity measure like Peak Ground Acceleration (PGA). 

Lognormal model is the commonly used method for 

estimating fragility parameters where PGA value is 

considered as a lognormal distribution. However, this 

method provides a wide band of the confidence interval. 

Many researchers use numerical analysis, professional 

judgment and experimental result data for developing the 

structural fragility model since huge data is required for 

minimizing the wide confidence interval. Kennedy et al. 

(1980) were the first who presents a detailed procedure for 

the estimation of median ground acceleration capacity. 

Shinouzuka et al. (2000) first proposed maximum 

likelihood estimation method to determine the fragility 

parameter. Ellingwood et al. (2002) used Incremental 

Dynamic Analysis (IDA) for probabilistic seismic demand. 

Seismic fragility and risk of seismically isolated extradosed 

bridges with lead rubber bearings were illustrated (Kim et 

al. 2008). Lagaros et al. (2009) used artificial neural 

networks (ANN) into the fragility analysis framework to 

enhance the computational efficiency of seismic fragility. 

The seismic fragility curves were developed for existing 

reinforced concrete buildings based on the post-earthquake 

field survey and the seismic performance using capacity 

design (Mehani et al. 2013). Estimation of fragility 

parameters using these direct statistical approach requires 

available numerical analysis data. A large number of 

dynamic analyses of structure require significant 

computational time. 

The Bayesian Inference technique with MCMC 
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Abstract.  The fundamental goal of this study is to minimize the uncertainty of the median fragility curve and to assess the 
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simplified linear dynamic analysis or nonlinear static analysis. The conventional lognormal model is used for plotting the 

fragility curve using the data from time history simulation and nonlinear static pushover analysis respectively. The Bayesian 

Inference approach is applied for integrating the data from both analyses with the help of MCMC simulation. The method 

achieves meaningful improvement of uncertainty associated with the fragility curve, and provides significant statistical and 

computational efficiency. 
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simulation is used in this investigation to reduce the total 

number of time history analysis by adding prior information 

of fragility curve with simulation data from time history 

analyses. The main purpose of this study is to reduce the 

confidence interval of the median fragility curve. The 

Bayesian Inference method is a powerful tool for updating 

prior information with a newly available data. A number of 

researchers used Bayesian Network for estimating fragility 

parameters. Singhal et al. (1998) used Bayesian framework 

for updating fragility parameters of Reinforced Concrete 

(RC) frames. Koursourelakis (2010) suggested a Bayesian 

framework considering four different ground motion 

intensity measure to calculate fragility parameters and 

applied it in geotechnical field. Pei and Lindt (2009) applied 

the Bayesian approach to update and develop the 

probabilistic capacity and demand model using 

experimental data of wood frame structure. Gokkaya et al. 

(2015) illustrated a Bayesian approach for seismic collapse 

risk assessment on a four-story reinforced concrete moment 

frame building.  

In the case of the intake tower, the seismic response was 

evaluated of an independent intake tower in the spillway 

tunnel (Zhang et al. 2008), and a nonlinear seismic response 

capacity spectrum method was developed intake towers of 

dams (Cocco et al. 2010). The U.S. Army Corps of 

Engineers (USACE) had multi year’s research efforts and 

progress on the survival of intake tower. 

Most of these studies have a common theme, like 

incorporated analysis and test results of structure for 

estimating the seismic fragility. In this study, Bayesian 

Inference method is used with different MCMC simulation 

for decreasing the uncertainty of the median fragility curve 

of the intake tower. Total 30 time history analyses and a 

nonlinear static pushover analysis of the intake tower are 

conducted. Then conventional lognormal approach is 

applied for constructing fragility curve from the both 

numerical analysis data. Finally, the fragility curve is 

updated using those small number of numerical analysis 

data with the help of Bayesian Inference and MCMC 

simulation. The aim of combining the different numerical 

analysis data is to improve computational and statistical 

efficiency as well as improving the confidence interval of 

median fragility curve. 

 

 

2. Structural fragility 
 

Structural fragility is a generalized part of structural 

reliability, which estimates the vulnerability of a structure 

conditioned upon some other given parameter. Alike, the 

seismic structural fragility is defined as the probability, that 

the seismic demand placed on the structure (𝐷) is greater 

than the capacity of structure (𝐶). Mathematically, it is often 

expressed as 

G(𝐶, 𝐷)  =  𝐶 –  𝐷 (1) 

where damage gate G(𝐶, 𝐷) is a function of at least two 

variable representing various experimental, material, 

modeling and loading uncertainties for the structure. The 

probability statement controlled by a chosen intensity 

measure (𝐼𝑀)  which represents the level of seismic 

loading. Mathematical representation of this conditional 

probability is given as 

Seismic fragility = 𝑃[𝐶 − 𝐷 ≤ 0|𝐼𝑀] (2) 

The capacity 𝐶 also called strength of a structure can 

be defined as the maximum seismic load that the structure 

can resist without occurring any damage. It relies on 

materials properties and other strength parameters like 

compression strength, yield stress, design code etc. The 

demand 𝐷  typically is evaluated from modelling and 

analysis variables like finite element models, ground motion 

histories, damping, soil-structure interaction etc. Capacity is 

considered to be deterministic. The fragility of the structure 

is assumed to follow some probability distribution function, 

to be identified specifically to each damage state (𝑖) and 

ground motion intensity (𝑗) 

𝑃[𝐶 − 𝐷 ≤ 0|𝐼𝑀] = 𝐹𝑖𝑗(𝐶𝑖) (3) 

where 𝐹𝑖𝑗(𝐶𝑖) denotes the fragility function for ground 

motion 𝐼𝑀, defined as the probability that the structure 

exceeds damage state of 𝐼𝑀. PGA is used in this study as a 

IM. Singhal and Kiremidjian (1996) verified such 

assumption at a 5% confidence level by the Kolmogorov-

Smirnov test and assumed a lognormal distribution function 

to express the fragility curve as well, identified by ordinary 

fitting. It is very common for seismic risk assessment to use 

the two parameters ( 𝑥𝑚  and 𝛽 ) of the lognormal 

distribution. A lognormal cumulative distribution function is 

often used to define a fragility function 

𝑃(𝐶|𝐼𝑀) = 𝐹𝑖𝑗(𝐶𝑖) = 𝜙 (
ln 𝐼𝑀 − ln 𝑥𝑚

𝛽
) (4) 

where 𝜙(. )  denotes the standard normal cumulative 

distribution function(CDF), 𝑥𝑚 is the median value of the 

distribution function, and 𝛽  denotes the logarithmic 

standard deviation or dispersion of ln 𝐼𝑀. 

There are different ways to estimate fragility 

parameters. The Incremental Dynamic Analysis (IDA) is a 

method of determining fragility parameters that are utilized 

to estimate the seismic performance of structural systems. 

The IDA involves scaling each ground motion in a suite 

until it causes a collapse of the structure (Vamvatsikos and 

Cornell 2002). In an IDA, the intensity measure of the 

ground motion is incremented and put into the structural 

model up to the point at which instability occur for lateral 

displacement. Fragility function parameters can be 

estimated from analysis data by taking logarithms of each 

ground motion’s IM value associated with the onset of 

collapse, and computing their mean and standard deviation 

(Ibarra and Krawinkler 2005).  

Let, 𝑀 be the number of specimens tested to failure, 𝑖 
is the index of specimen (𝑖 = 1,2, … . 𝑀) and 𝐼𝑀 are the 

value associated with the beginning of collapse for the 𝑖th 

ground motion. From the basic definition of 𝑥𝑚  and 𝛽 

(Ang and Tang 2006) 

𝑥𝑚 = exp (
1

𝑀
∑ ln 𝐼𝑀𝑖

𝑀

𝑖=1

) (5) 
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𝛽 = √
1

𝑀 − 1
∑ (ln

𝐼𝑀𝑖

𝑥𝑚

)
2𝑀

𝑖=1

 (6) 

The fragility function is fitted using this approach with 

Bayesian Inference and Markov Chain Monte Carlo 

(MCMC) simulation. 

 

 

3. Bayesian inference 
 

The structural fragility model 𝑃(𝐶|𝐼𝑀) depends on a 

vector of random variables 𝜃i where (𝑖 = 1,2, … . 𝑘) with 

prior relative likelihood 𝑝𝑖 = 𝑃(𝛩 = 𝜃𝑖) . Also we can 

express our current knowledge as a joint density function 

𝑓𝛩
′(𝜃1,𝜃2 … . ) , which is often referred to as prior 

information and generally available from experimental 

information, professional knowledge of the expert, past 

studies etc. (Ng et al. 2015). Suppose, some additional 

information like a vector of 𝑀  observation Y =
(y1, y2 … ym) of structural fragility have been collected. 

The prior information 𝑓𝛩
′(𝜃1,𝜃2 … . ) , may be modified 

formally through the Bayes theorem using observed data to 

posterior information 𝑓𝛩
′′(𝜃1,𝜃2 … . |𝑌) as (Tadinada 2012) 

𝑓𝛩
′′(𝜃1,𝜃2 … . |Y)  =

𝑃(𝜃1 , 𝜃2 … . |Y)𝑓𝛩
′(𝜃1,𝜃2 … . )

𝑃(Y)
 (7) 

𝑃(𝑌) = 𝐸(𝜃𝑖|Y) =  ∫ 𝑃(𝜃1 , 𝜃2 … . |Y)𝑓𝛩
′(𝜃1 , 𝜃2 … . )𝑑𝜃𝑖  (8) 

where 𝑃(𝜃𝑖 |Y) is referred to as the likelihood function of 

the random parameter. After updating the prior information, 

MCMC simulation is used to sampling the data, and the 

fragility parameters are calculated using the Eqs. (5) and 

(6).  

 

 

4. Markov Chain Monte Carlo (MCMC) 
 

The posterior statistics 𝑓𝛩
′′(𝜃𝑖 |Y)  are computed by 

numerically generating a large number of posterior samples 

employing a special class of computational algorithms 

called Markov Chain Monte Carlo (MCMC) simulation 

(Congdon 2006). Let us assume that the density function 

𝑓(𝜃1,𝜃2 … . ) of a random variable enables us to easily 

generate random values (Ioannis Ntzoufras 2009). 

Mathematically 

I = ∫
𝑔(𝜃)

𝑓(𝜃)
𝑓(𝜃)𝑑𝜃 = ∫ 𝑔∗(𝜃) 𝑓(𝜃)𝑑𝜃  (9) 

Therefore the integral I  can be precisely calculated by 

generating 𝜃1,𝜃2 … . , 𝜃𝑇  from the target distribution with 

probability density function and we can calculate the 

sample mean from the following equation  

Î =
1

T
∑ [

𝑔(𝜃(𝑡))

𝑓(𝜃(𝑡))
]

𝑇

𝑡=1

 (10) 

The main advantage of this approach is its simplicity. 

For a suitable large generated sample (e.g., T = 10,000), 

this approach is very accurate (Gamerman and Lopes 2006). 

The Monte Carlo simulation cannot be applied in all cases 

because of we want the sample from posterior distribution 

𝑃(𝜃|Y) but in case of independent sampling from 𝑃(𝜃|Y) 

may be difficult. Simulation techniques based on Markov 

Chain overcome such problems because of their generality 

and flexibility.  

There are several standard methods available for 

designing Markov Chains with required stationary 

distribution 𝑃(𝜃|Y). The Gibbs Sampling (Casella and 

George 1992) is a special case of the Metropolis-Hastings 

algorithm which generates a Markov chain by sampling 

from full conditional distribution.  

Let us assume a vector 𝜃 consist of k sub-components, 

𝜃 = (𝜃1, 𝜃2, … . , 𝜃𝑘). 

1) Choose starting values 𝜃1
(0)

, 𝜃2
(0)

, … … … 𝜃𝑘
(0)

 

2) Sample 𝜃1
(1)

 from 𝑃(𝜃1|𝜃2
(0)

, 𝜃3
(0)

… … … 𝜃𝑘
(0)

, Y) 

Sample 𝜃2
(1)

 from 𝑃(𝜃2|𝜃1
(1)

, 𝜃3
(0)

… … … 𝜃𝑘
(0)

, Y) 

Sample 𝜃𝑘
(1)

 from 𝑃(𝜃𝑘|𝜃1
(1)

, 𝜃2
(1)

… … … 𝜃𝑘−1
(1)

, Y) 

Eventually, we obtain a sample from 𝑃(𝜃| Y) by 

repeating the step 2 many times. The Markov Chain Monte 

Carlo simulation method enables quantitative researchers to 

use highly complicated model and estimate the 

corresponding posterior distribution with accuracy. 

 

 

5. Structural analysis of intake tower 
 

In this research, the seismic risk assessment of the high 

rise intake tower is analyzed. The tower is in underwater 

and independent. 

 

5.1 Tower geometry 
 

A cantilever freestanding tower of height 62.70 m 

shown in Fig. 1(a). The cross sections of the tower which 

are rectangular vary from (13.50 m×13.50 m) at the base to 

(12.0 m×11.0 m) at the top as shown in Fig. 1(c). In 

addition, the thickness of the sections differs from 1.70 m at 

the base to 0.50 m at the top of the tower. The tower has a 

2.0 m deep concrete slab at the bottom and 0.70 m deep 

concrete slab at the top of the tower. 

 

5.2 Material properties 
 

An OpenSees lumped mass model is chosen for the 

numerical analysis of the intake water tower where 13 

lumped masses are considered for specified the load as 

shown in Fig. 1(b). The masses are lumped at the node of 

half of the opposite two elements. The Young’s Modulus of 

elasticity is considered as 3.0×1010 GPa and the unit 

weight of concrete is equivalent to 2402.7 kg/m
3
. 

 

5.3 Hydrodynamic masses 
 
Inside and outside hydrodynamic masses are calculated 

using the refined method which is carried out by converting 

49



 

Jahangir Alam, Dookie Kim and Byounghan Choi 

 

 
Fig. 2 Added hydrodynamic mass calculation: circular 

area equivalent to average tower dimensions 

 

 

each uniform rectangular section to an equivalent circular 

section. The normalized hydrodynamic added mass 

𝑚∞
0 /𝜌𝑤𝐴 0 due to outside water is calculated from the width 

to depth ratio of the average cross-section. Finally, we can 

calculate the absolute added mass 𝑚∞
0  by multiplying 

𝜌𝑤𝐴 0 with the normalized added mass, where 𝜌𝑤 is the 

water mass density and 𝐴0 (𝜋𝑟𝑜
2) is the outside area of the 

average section (see Fig. 2). 

 

5.4 Displacement-based analysis 
 

According to USACE guidance documents (U.S. Army 

Corps of Engineers, 2003), a displacement based analysis 

may be used to identify the failure of the intake tower. If the 

d i sp lacement  d emand  𝛿𝐷  su rp ass  the  u l t ima te 

displacement capacity 𝛿𝑈  for  Maximum Design 

Earthquake (MDE) is considered as the failure mode. The 

maximum top deflection of the tower named as the 

displacement demand estimated using time history analysis 

with linear spring properties, beam- column elements  

 

 

properties and added hydrodynamic mass due to 

circumambient or contained water. The ultimate 

displacement capacity at the top of the tower is allied to the 

height of the tower, the width of the plastic hinge and the 

fracture strain capacity which is calculated by the following 

equation 

𝛿𝑢 =
𝜙𝐸𝑙2

3
+ 𝜃𝑝𝑙2 (11) 

𝜙𝐸 =
𝑀

𝐸𝐼𝑔

 (12) 

where 𝛿𝑢 is the ultimate displacement capacity, 𝜙𝐸 is the 

elastic curvature at cracking (at the base of the tower), 𝜃𝑝 is 

the plastic rotation at failure, 𝑀 is the moment at the base 

of the tower and 𝑙 is the height of the tower above the 

crack. The ultimate deflection capacities at the top of the 

tower are calculated as 10.1 cm and 12.8 cm about the 

strong axis and weak axis and weak axis, respectively. 

 

 

6. Results and discussion 
 

Prior information usually estimates from existing studies 

of similar structure, professional experience or any 

simplified analysis method. Median (𝑥𝑚 ) and dispersion or 

standard deviation ( 𝛽 ) of lognormal distribution were 

considered as the main fragility parameters. 

The nonlinear static analysis is generally conducted to 

check the nonlinear structural analysis model. Vamvatsikos 

and Cornell (2005 and 2006) provided a fast and accurate 

method named SPO2IDA to estimate the seismic demand 

and capacity. The method makes the connection between 

the Static Pushover (SPO) and the Incremental Dynamic 

Analysis (IDA) and infers nonlinear dynamic response 

using pushover analysis result. In this paper, the method  

 
 

 
(a) Elevation (b) lumped-mass model (c) Typical section and dimension of intake tower 

Fig. 1 Details of intake tower model 
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mention above is followed for estimating initial collapse 

response  of  s t ruc ture  since  the  method i s  no t 

computationally demanding and is generally performed 

before the dynamic analysis. The 16, 50 and 84% fractal 

IDA curves are obtained based on the base shear data from 

static pushover analysis by using the software SPO2IDA as 

shown in Fig. 3(a). The IDA curves imply the 68% 

confidence bound with mean and ± one standard deviation  

 

 

 

 

curves. These IDA curves lead to lognormal fragility 

function having median collapse capacity 0.96 g and 

dispersion of 0.39. Fig. 3(b) illustrates the 95% confidence 

bound of median fragility curve using the fragility 

parameters mention above. The 50th percentile fragility 

curve, 2.5th percentile fragility curve, and 97.5th percentile 

fragility curve illustrate the median fragility curve, lower 

bound of fragility curve at 2nd standard deviation and upper  

  
(a) 16, 50 and 84% fractal IDA curves (b) 95% confidence bound of fragility curves 

Fig. 3 lognormal fragility curves with 95% confidence interval from pushover analysis using SPO2IDA software by 

Vamvatsikos and Cornell (2005) 

 
 

(a) Density Curve (b) 95% confidence interval of fragility curve 

Fig. 4 Density curve and lognormal fragility curve from 30 time history analyses 

Table 1 Updated Fragility parameters for 100, 1000 and 10000 MCMC simulation using Bayesian Inference 

Fragility 

Parameters 

Percentile of 

confidence band 

Updated Parameters 

MCMC simulation 

100 1000 10000 

𝒙𝒎 

2.5 0.81 0.88 0.93 

50 1.05 1.06 1.07 

97.5 1.29 1.24 1.21 

𝜷 

2.5 0.19 0.22 0.25 

50 0.39 0.36 0.35 

97.5 0.59 0.50 0.45 
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bound of fragility curve at 2nd standard deviation 

respectively.  

The IDA provides a complete picture of the nonlinear 

response of the structure. 30 number of dynamic analysis is 

performed on the intake tower model and 13 number of 

collapses are experienced on the basis top tower design 

displacement. Exercising the IDA method mentioned in 

Eqs. (5) and (6), the lognormal fragility parameters are 

found having median collapse parameter 1.02 g and 

dispersion 0.42 which is depending on the failure number. 

Fig. 4 mentions the fragility curve with 95% confidence 

bound and density function respectively. 

The figures from both analyses result noticed the wide 

confidence interval which indicates large uncertainty of the 

median fragility curve. A large number of data is required 

for reducing the uncertainty using these conventional 

fragility model which increases the computational time and 

cost. The Bayesian Inference method can integrate different 

kinds of seismic risk data and can update fragility 

parameters also. Updating the fragility parameters from 

prior to posterior is accomplished by different MCMC 

simulation as we need posterior distribution. In this study, 

Bayesian Inference is employed for integrating data from 

static pushover analysis and time history analysis with the 

help of the special type of algorithm called MCMC. Table 1 

demonstrates the updated parameters corresponding 100, 

1000 and 10000 MCMC simulation for 2.5, 50 and 97.5% 

of confidence band which shows the gradual decreasing of 

dispersion, eventually the decreasing of the confidence  

 

 

 

interval. Fig. 5 explains the density function of updated 

distribution which reveals that dispersion of the data is 

gradually decreasing, and Fig. 6 illustrates the 95% 

confidence band of fragility curve for different MCMC 

simulation which expresses the reduction of uncertainty of 

median fragility curve. 

One of the important objectives of this work is to 

improve the confidence associated with the median fragility 

curves. As we can see, the Bayesian inference methodology 

can be quite instrumental in the significant reduction of the 

95% confidence band region upon incorporating the data 

from the time-history analysis and the nonlinear static 

pushover analysis.  

 

 

7. Conclusions 
 

This research proposes the Bayesian Inference for 

evaluating seismic fragility of the intake water tower with 

the help of a special class of computational algorithms 

called Markov Chain Monte Carlo. The method provides a 

worthy way to embody the different types of seismic risk 

data and to update the fragility parameters when new 

information become available. The intake tower is 

significantly used as for controlling the release of water of 

reservoir and for maintaining the hydropower plant. The 

seismic risk assessment of the intake tower is one of the 

crucial factors for assessing the risk of reservoir or 

hydropower plant system. One of the important objective of 

   
(a) Density curve for 100 MCMC 

simulation 

(b) Density curve for 1,000 MCMC 

simulation 

(c) Density curve for 1,000 MCMC 

simulation 

Fig. 5 Updated density curves using Bayesian Inference and MCMC simulation 

   
(a) Fragility curves for 100 MCMC 

simulation 

(b) Fragility curves for 1000 MCMC 

simulation 

(c) Fragility curves for 10000 MCMC 

simulation 

Fig. 6 95% confidence interval of updated fragility curves using Bayesian Inference and MCMC simulation 
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this study is to decrease the uncertainty associated with the 

median fragility curve of the intake tower. The uncertainty 

associated with the median damage estimates for both static 

pushover analysis as well as time history analysis is shown 

using the confidence bound associated with it. The 

confidence bounds generated with the fragility estimates 

appear quite wide indicating the large uncertainty 

associated with these fragility estimates. The huge number 

of additional information is necessary for getting the higher 

level of confidence which leads to computationally 

prohibitive. The Bayesian Inference method is used to 

integrate the fragility parameters from static pushover 

analysis and a small number of time history analyses. 

Updating fragility estimation using Bayesian Inference and 

MCMC simulation is observed to be a notable reduction in 

computational demand for the probabilistic failure risk 

assessment of the intake tower and significantly improved 

statistical efficiency. The uncertainty of the median fragility 

is decreased from prior information to posterior as well as 

the number MCCM simulation increased. The Bayesian 

Inference methodology using MCMC simulation can be an 

auxiliary tool for significant reduction of the 95 percent 

confidence band region upon incorporating the small 

number numerical analysis data. 
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