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1. Introduction 
 

Normally, the structure is built on a flexible layer of 

soil. Therefore, modeling of soil-foundation system should 

be done the same as structures. On the other hand, the 

structure with a fixed base and the same structure with 

flexible support have fundamental differences. Therefore, 

the main part of vibrational energy could be amortized by 

wave emission and the action of hysteresis rules. In the 

numerical studies it is shown, appropriating the effects of 

the flexibility of the soil under the foundation of the model, 

have a significant impact on the seismic response of 

structure and this issue will be affected by the soil type and 

the period of the structure (Chambers 1998, Sarkani et al. 

1999, Tabatabaiefar et al. 2015). 

During earthquake, behavior of the soil under a building 

foundation plays an important role in the structural 

response. In most cases, the soil under structure is not 

modeled and its significant impacts are ignored. Because 

the soil is unlimited, its modeling is more complex than 

modeling the structure. Many researchers have extensively 

studied this effect (Nguyen et al. 2016). Some researchers 

have modeled the elastic half-space under the structure as a 

concentrated mass and spring and in this model, the spring 

and the dampers were considered, independent of the load 

frequency content (Ribeiro and de Paivab 2015). Chore et  
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al. have expressed a method that was based on finite 

element by using physical modeling of space frame- pile 

foundation and soil system (Chore et al. 2014). In 2000, the 

effect of the interaction on the nonlinear behavior of the 

structure was evaluated by determining the existing 

parameters of the system of one degree of freedom. These 

parameters were presented in ATC 3-06 regulations for 

common structures in Mexico, considering areas soil 

conditions concluded by period modification of the soil-

structure interaction (Rodrigues and Montes 2000). Studies 

in the field of boundary elements in finite elements method 

is considered by many researchers. Yerli et al. (1998) have 

offered mixed finite elements and infinite elements method 

that are used in this research for evaluating the accuracy of 

the proposed soil model. Wolf (1994) used a viscous 

damper (called Cone model) take into account the radiation 

damping.  

Arefi has gathered and sorted the dynamic response in a 

single-degree-of-freedom (SDOF) system and real buildings 

to calibrate the theoretical equations existing for dynamic 

characteristics of soil-structure systems (Arefi 2008). 

The low status of the experimental data for SSI 

problems perhaps is due to the sparseness of recorded 

dynamic responses of known foundation on flexible soils 

with different soil characteristics and its high cost (Mihailo 

et al. 2001). A Support Vector Machine (SVM) is a smart 

learning algorithm that makes is used extensively by 

available experimental/numerical data to classify itself. 

Recently, studies show that the ability to predict dynamic 

response of a soil-pile-structure (SPS) system based on the 

neural networks and the support vector machines is possible 
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(Abbasi et al. 2015). The SVM method is a supervised 

learning algorithm that can use given data to solve certain 

problems by attempting to convert them into linearly 

separable problems (Cortes and Vapnik 1995). The SVM 

model gives input data called training data set that are 

linked to binary outputs in order to classify new observation 

to one of the two classes by creating a separating 

hyperplane with maximum margin between the two classes 

in the feature space (Vapnik 1998). The optimal separating 

hyperplane can be determined without any computations in 

the higher dimensional feature space by using kernel 

function in the input space.  

The SVM algorithm usually can be divided into support 

vector classification and support vector regression. Support 

Vector Regression (SVR) is a powerful method that is able 

to approximate a real valued function in terms of a small 

subset (called support vectors) of the training examples 

(Shen et al. 2014).  

The purpose of this paper is to explore the technique 

used to predict the dynamic response using numerical and 

technical analysis data set. By using this data set, an in-

depth investigation using a SVR model is performed in 

order to create a model for predicting the seismic response 

of existing buildings with and without considering the SSI 

effects. The result of present work shows that numerical 

data set can be used as input to a machine learning 

algorithm such as SVR to create a prediction model that 

predicts if any similar buildings subjected to future 

earthquakes. 

In the first step, the data results of SDOF systems are 

organized to evaluate the effect of SSI by varying important 

parameters. These parameters are: period of structure, level 

of flexibility of the soil, relative lateral strength of the 

structure, and soil mechanical properties. Then the effects 

of the parameters, especially the flexibility of the soil, and 

modeling issues are investigated on (SDOF) system 

response, which then followed by a approach predicting the 

SSI effects on their influence on similar systems using a 

SVR model with different kernel functions. For the second 

step, the data results of existing RC frame structure (built 

before 1970) are investigated to evaluate the effect of SSI 

by using the proposed SVR model. 

 

 

2. The soil-structure models for considering SSI 
effects 

 

The analysis methods of soil-structure interaction are 

divided into three categories of direct method, under 

structure method and mixed method. In the direct method, 

the soil-structure system response is obtained with analysis 

of the soil-structure system simultaneously in one step. The 

finite element method is an example of this method. In 

situations where is not possible to model the soil under the 

structure as finite element, the under structure method is 

used. In this method the effect of soil on the structure is 

defined by a series of spring and damper which its 

characteristics is introduced as a function of frequency of 

vibration. The most important advantage of this method is 

un-modeling of soil layers which greatly reduce the volume 

of operations, but this method has limitations which reduces 

its performance. The main assumption of this method, is 

establishing the principle of superposition which ensures 

linear behavior of the soil. In this method the soil-structure 

collection is divided into two parts of soil plus structure that 

each one are individually solved and in the final step of the 

analysis, based on superposition principle, the results of the 

analysis are combined together. This method especially, 

when the system has a complicated geometry, is less used. 

In the mixed method the model is divided into two sub-

structures, one of them is called near field, which contains 

the structure and a certain area of soil surrounding, another 

one is called far field, which contains the rest space of the 

semi-infinite soil. In this method the stress and 

displacement values are first calculated in the position of 

surface contact in the far field, and then they are applied as 

force in finite element analysis of the near field. The 

problem of this method is the inefficiency in finding a 

solution for the problem of scattering of waves in the near 

and far field (Jaya and Prasad 2002). 

 

 

3. Support vector machine method 
 

A Support Vector Machine (SVM) method is a 

supervised learning algorithm that can use given data to 

solve certain problems by attempting to convert them into 

linearly separable problems. The SVM gives input data 

called training data set that are linked to binary outputs in 

order to classify new observation to one of the two classes 

by creating a separating hyperplane with maximum margin 

between the two classes in the feature space (Vapnik 1998). 

The optimal separating hyperplane can be determined 

without any computations in the higher dimensional feature 

space by using kernel function in the input space. The 

principle of a SVM is to produce a model based on the 

training data which predicts the target values of the test data 

given only the test data attributes. 

The support vector machine (SVM) can be divided into 

support vector classification and support vector regression. 

The Support Vector Regression (SVR) is a powerful method 

that is able to approximate a real valued function in terms of 

a small subset (called support vectors) of the training 

examples using many different kernels, (Mallinson and 

Gammerman 2003). 

Given a training set of instance-label pairs 

  miyxyxyx ii ,....,1,),),...(,(),,( 2211   where

n
i Rx  , Ryi   are the training data patterns, ix  the 

value of the input and iy the value of the output. The goal 

of SVR algorithm is to find a function f such that, for 

),( yx  drawn according to the same distribution as the 

training set, yxf )( . The y  values are often referred 

to as the „labels‟ for each x . The function describes a non-

linear regression surface that interpolates the data. 

The regression function for the SVR model estimation is 

given by 
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The non-linear SVR solution, using an  -insensitive 

loss function is given by 
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with constraints 
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Solving Eq. (4) with constraints Eq. (5) determines the 

Lagrange multipliers, *,  besides, in high feature 

dimension space, the dot products can be replaced by the 

kernel function as  

)()(),( jiji xxxxK   (6) 

where the parameters bw, are the gradient and the 

intercept respectively. Parameters are sought that minimize 

some measure of error on the training set between its 

prediction ŷ  and the true label y  of an example x , 

subject to a penalty for overly complex models. In the case 

of regression estimation the label y  is a real value. 

Sometimes it is useful to define the loss function by fixing 

some tolerance limit (or “insensitivity zone” 0 ) so that 

 

 

errors of less than   will not be punished. As shown in 

Fig. 1, the following absolute loss function will be used 
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Once a linear function )(xf  is chosen it show that the 

best parameters ),( bw  can be formulated as the solution 

to a standard constrained optimization problem as follow 
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where *, ii   are slack variables determining the degree 

to which data points will be penalized if the error is larger 

than precision parameter  (see Fig. 1). 

Here training vectors ix  are mapped into a higher 

dimensional space by the function  . SVR model finds a 

linear separating hyperplane with the maximal margin in 

this higher dimensional space. C>0 is the penalty parameter 

of the error term. Furthermore, )()(),( j
T

iji xxxxK  is 

called the kernel function. These kernels map the input 

vectors into a very high dimensional space, possibly of 

infinite dimension, where a linear hyperplane is more likely. 

There are many types of kernel functions such as linear, 

polynomial, sigmoid and Radial basis function (RBF) 

kernels. The mathematical formulation for four known 

kernel functions is shown here (Girma 2009) 

Linear: j

T

iji xxxxK ),( . 

Polynomial: 
d

j

T

iji rxxxxK )(),(   .       

Sigmoid: )tanh(),( rxxxxK j

T

iji   . 

Radial basis function (RBF):  

0),exp(),(
2

  jiji xxxxK . 

Exponential radial basis function:  

  
Fig. 1 SVR model estimation (Mallinson and Gammerman 2003) 
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Table 1 Range of input variables 

No. Variables Values 

1 Soil Shear Wave Velocity (m/s) 150-180 

2 Poisson Ratio ν 0.3-0.33 

3 Mass Density (kg/m3) 1700-1900 

4 Fy (kg/cm2) 0.1W-0.5W 

5 RDUCT 60-80% 

6 DUCT 2-5 

7 G 0.1Gmax- Gmax 

8 Period of structure (sec) 0.5-1.5 

Fy: the initial yield strength, W: total weight of superstructure 

RDUCT: the residual strength as a fraction of the initial yield 

strength 

DUCT: ductility (or cycle number) 

G: the initial soil stiffness 

 

 

0),exp(),(   jiji xxxxK . 

Here r, and d  are kernel function parameters. 

The RBF kernel is a most successful kernel in many 

application problems.  

 
 
4. Development of SVR model based on SSI effects 

 
4.1 Data construction 
 
Numerical data sets considering SSI effects having 

dynamic characteristics were selected from different studies 

for the training and testing of the SVR model (Arefi 2008). 

In this case, a number of data sets (approximately 850 data 

points) considered in this work are provided from different 

range of input variables, as summarized in Table 1. They 

were each used separately and then combined together with 

the aim of possibly achieving the highest accuracy in 

prediction. The data sets are divided into two subsets: 

training and testing. The training data are used to train the 

model to recognize the patterns between input and output 

data. The final model is tested with the testing data set, to 

ensure that predictions are real and not artifacts of the 

training process. It should be noted that, the testing data are 

used to evaluate the effectiveness of the developed model in 

generalizing the underlying relationships and achieving 

good performance when new data are introduced. Before 

training, the data sets were normalized within the range of 

0.0-1.0 in accordance with the following equation. This 

preprocessing step increases the efficiency of the SVR 

training. 

 
4.2 Normalizing 
 

Because data can be calculated differently and results in 

different representation to the data, certain data will have 

high numbers compared to the rest while others may be 

small. In data mining or machine learning, it is best practice 

to have the data pre-processed or normalized before the 

models are built and make use of the data. 

The function „normalize‟ normalizes the data in the 

vector to become between 0 and 1 and scales the rest of the 

values appropriately. The normalized vector is computed as 

the following 

minmax

min)(
)(

XX

XnX
nN




  (9) 

where )(nN =normalized value of each parameter; )(nX

=actual value of each parameter; and minX  and maxX

=minimum and maximum values of each parameter. For 

SVR training, eight input variables were selected as shown 

in Table 1. The seismic response with and without SSI 

effects was the single output. 

 
4.3 Model development 
 

The data are divided into two subsets: training and 

testing. Because there is no precise method for partitioning 

the data sets, the SVR model was trained with randomly 

selected 25% of the total data sets, while 75% was used for 

testing. In the training process, the R-squared value (R
2
) 

were used as the main criteria to evaluate the performance 

of the SVR model.  

The R
2
 is a measure of correlation between the predicted 

and the measured values and therefore, determines accuracy 

of the fitting model (higher R
2
 equates to higher accuracy), 

which are calculated as follows 
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where
t
iy and 

p
iy are target and predicted modulus values, 

respectively, and 
t
iy  and 

p
iy  are mean of the target and 

predicted modulus values corresponding to n patterns. 

 

4.4 Regression data processing kernel 
 

In the proposed model, three different SVM kernels 

were investigated. The goal was to find the best kernel to 

classify the data and have a good separation hyperplane 

between the data sets. Not in all cases the data can be 

separated, SVM in this case tends to soften the margin in 

order to separate as much as possible of the data. The 

kernels used are Linear, RBF, and ExponentialRBF. Finding 

the best parameters for the RBF classifier to soften the 

margin was done using grid search method. The RBF has a 

better success rate compared to the rest of the kernels when 

considering both with and without SSI effects accuracy. 

 

4.5 Sensitivity of model to SVR parameters 
 
In this study, considering the good performance under 

general smoothness assumptions, the three different 

functions are used as the kernel function of the SVR model. 

By comparing the results obtained using the RBF with those 
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(a) The results of various   in which C=10 and ε=0.005 

 
(b) The results of various C in which 6  and ε=0.005 

 
(c) The results of various ε in which C=10 and 6  

Fig. 2 Sensitivity of the R
2
 to SVR model control 

parameters (C,   and  ) 

 

 

results obtained by the other kernel functions, it is 

concluded that the RBF function give better results for data 

prediction. Also, the linear kernel gives inferior results and 

takes a longer time in the training of SVR. One of the 

important steps in SVR model development was the setting 

up of the appropriate Kernel function, parameters C and   

for training the SVR. The  , parameters C and   were 

chosen by a trial and error approach. The choice of 6 ; 

C=10 and 005.0  in this study is because these values 

produced the best possible results according to the 

validation set. 

Sensitivity analysis of SVR control parameters (C,   

and  ) on the R-squared value (R
2
) of the SVR based 

predictive SSI effects models is investigated. Fig. 2 gives 

the R
2
 of SVRs at various  , C and   parameters.  

 
 
5. Results and discussion 

 

To verify the satisfactory performance of the training 

process, the SVR model is used to predict the seismic 

response of building systems from the training data set 

using the eight input variables. The results obtained with 

SVR model are compared with those of the dynamic 

analysis of the same problem as well as the available 

numerical data.  

At the first step, the dynamic analyses results of SSI 

effects on the response of both SDOF and MDOF systems 

in the presence of other influential factors are selected from 

different studies (Galli 2005, Arefi 2008). Different 

nonlinear hysteretic rules were considered for SDOF 

structure to represent the behaviour of some typical MDOF 

structures. Moreover, two levels of flexibility in the soil 

were assumed that can be considered the two extreme cases 

of stiffness in soil, where soil can be in its initial stage and 

degraded stage. All the structural analyses have been 

resulted using the inelastic dynamic analysis program 

Ruaumoko (Carr 2008). 

At the second step, using similar data as of the numerical 

analysis, the parameters of the most suitable model are 

proved to be 6 ; C=10 and 005.0 . The results of 

the analysis with the SVR for the same data used for test of 

the numerical data are shown in following plotted figures. 

The maximum and minimum differences between the SVR 

model (with different kernel function) and test results are 

11% and 0.2% corresponding to both SDOF and MDOF 

cases. 

 
5.1 Results of SDOF analyses 
 

In this section, the effects of the parameters and 

modeling issues considering the flexibility of the soil are 

investigated on single-degree-of-freedom (SDOF) system 

response, which then followed by a approach predicting the 

SSI effects on their influence on similar systems using the 

proposed SVR model. Therefore, a particular SDOF system 

has been assumed as a benchmark and other factors vary 

appropriately in order to observe the sensitivity of SSI 

effects to those parameters. 

The benchmark SDOF system has been assumed with 

following characteristics: 

- The intensity of the ground motion: BSE-1 (Basic 

Safety Earthquake) level earthquake, (FEMA 1997). 

- Yield force (In the case with nonlinearity in the 

superstructure): Fy = 0.2 W. 

where W is the weight of the superstructure. 

- The pinching Pampanin hysteresis rule is employed 

(Fig. 3). 

- No reduction in strength and P-Δ effects. 

Three elements i.e., Poisson‟s ratio, stiffness and 

damping, are required to model the soil and foundation 

appropriately, among which a single multi-spring model is 

used as shown in Fig. 4. 

The mechanical characteristics of the SDOF foundation 

support are represented by the effective shear modulus G, 

the mass density (ρ=1700 kg/m
3
) and Poisson‟s ratio 

(v=0.33). At low strain, the maximum shear modulus Gmax 

is related to the shear wave velocity (Cs=150 m/s). 
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A set of ten recorded historical strong ground motion 

records has been selected to be used in time history analyses 

(Christopoulos et al. 2002). The BSE-1 response spectrum 

is targeted for a seismic zone 4 and soil type C or D to scale 

the ground motion records. 

Fig. 5 shows comparing the relative displacements of 

SDOF mass to the moving base or in another word, they are 

obtained from numerical analysis and proposed SVR model 

with different kernel functions. It can be observed that the 

results predicted using the SVR model with the RBF kernel 

is in relatively good agreement with the numerical analysis 

results. 

 

 

 

 
 
5.1.1 Influence of foundation flexibility  
The standard deviation of the spectral displacement for 

ten different earthquakes exhibits the level of scattering and 

emphasizes the care to be taken on the selection of ground 

motion ensemble. As was investigated in the previous 

reference, two levels of stiffness in the foundation soil are 

considered. First, with the fixed-base (without SSI) and 

second when the initial soil stiffness G=Gmax. Variation of 

standard deviation for different periods is compared with 

those of the results obtained using SVR model and shown in 

Fig. 6. Comparison of the results of the SVR model with 

RBF kernel with other models indicated that RBF function 

has better results than the other kernel functions. 

 

 

Fig. 3 Pampanin pinching and stiffness 

degrading hysteresis loop (Carr 2008)  
Fig. 4 Multi-spring model for the SDOF foundation support 

  
Fig. 5 Comparing numerical results (relative disp.) with the SVR results of SDOF system 

  
Fig 6 Comparing numerical results (standard deviation) with the SVR results of SDOF system 
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Fig. 8 Lumped plasticity beam-column element (Arefi 

2008) 

 

 

The average accuracy was 89% for the three different 

kernels. The performance for RBF kernel is the best with 

95% accuracy with the other kernels. The RBF has a better 

success rate compared to the rest of the kernels when 

considering the sample accuracy. 

 
5.1.2 Influence of strength reduction in superstructure 
Different nonlinear displacement response spectra of 

SDOF in presence of soft soil and strength reduction in the 

structure are shown in Fig. 7.  

It should be noted that cyclic response and nonlinear 

action can change the maximum relative displacement of 

SDOF system within the usual frequency range (Aydemir 

and Aydemir 2016). As illustrated in Table 1, the ductility 

(or cycle number) was provided from different range of 

input variable. As shown in Fig. 7, both RFB and 

ExponentialRBF kernel functions are found to have better 

prediction accuracy than the Linear kernel function. 

 

5.2 Results of RC frame using time history analysis 
 

As was explained in the previous section, the accuracy 

of proposed SVR model to predict the effects of SSI on a 

2D six-storey existing building with different infill panel 

configurations is evaluated in the following. The original 

models considered by Galli (Galli 2005) were investigated 

to understand the global behaviour of the structure with 

different infill distributions along the height of the structure. 

These models exhibit different responses and have different 

fundamental periods; therefore SDOF models representing 

this range of structures can be sought from the results 

presented in the previous section. 

 

 

Fig. 9 Ramberg-Osgood Hysteresis, (Arefi 2008) 

 
 
5.2.1 Modelling of the superstructure using FEM 
For comparing with the SVR results, the finite element 

model (FEM) of the RC frame is also constructed only for 

testing cases in the inelastic dynamic analysis program 

Ruaumoko (Carr 2008). As shown in Fig. 8, the lumped 

plasticity beam-column element is chosen because it is a 

good compromise between simplicity and accuracy. In the 

previous reference, all inelastic deformation of the frame 

member was concentrated at specifically identified parts of 

the member which are expected to undergo plastic 

deformations (Palanci et al. 2016). The other parts of the 

member were modelled as elastic elements. Furthermore, a 

modified hysteresis loop is adopted to describe the 

hysteretic behaviour of the plastic hinges. This model can 

describe the post-cracking shear deformation (Pampanin et 

al. 2006). 

Wolf cone‟s model and equivalent lumped elements is 

employed for soil to capture the behaviour of the overall 

response of the RC frame in presence of flexible base. As 

shown in Fig. 9, a nonlinear Ramberg-Osgood model for 

spring force is implemented to capture the nonlinearity of 

the soil. As mentioned above, the ten known records have 

been employed as input motion to perform time history 

analysis and the average of the results has been calculated. 

All of these results of the finite element model (FEM) along  

  
Fig. 7 Displacement spectra of with and without strength reduction of SDOF system obtained using numerical analysis 

and different SVR kernel outputs 
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with the testing results of the SVR model are presented in 

Figs. 10-15 for comparison. While the FEM has been 

successful in following the trend of variation of the RC 

frame responses, overestimation or underestimation is 

observed at each floor. 

To make a direct comparison possible, the same data as 

the FEM is used for the SVR model. As mentioned 

previously, 75% of the recorded data is used for training 

and 25% for testing. The parameters of the governing 

function come out as 6 ; C=10 and 005.0 . Figs. 10-

15 illustrate the results of analysis with the SVR. Further, 

the figures show a very good accuracy for proposed SVR 

model with RBF kernel compared with the numerical 

analysis results (FEM).  

As shown in Fig. 10, the maximum and minimum  

 

 

 

 

differences between the FEM and the SVR model results 

are 2.12% and 0.52% corresponding to the cases without 

SSI and G=0.1Gmax, respectively. The overall average 

difference with respect to the results is 1.32%. In the 

following figure, a comparison of the results of the 

maximum response as above are presented in terms of 

envelope of maximum floor total displacement of each floor 

(see Fig. 11). 

It has been suggested by previous references, time 

history analysis results on the partially infilled frame with 

one partition presented in Fig. 12 suggest a significant 

reduction in the elastic stiffness of the structure when SSI is 

considered. It is found that the results in absence of flexible 

foundation can be different by approximately 10% as  

  
Fig. 10 Bare frame: comparing FEM results with predicted values using SVR model 

  
Fig. 11 Bare frame: comparing FEM results with the SVR predicted values 

  
Fig. 12 Partially infilled frame: comparing FEM results with predicted values using SVR model 
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compared to the SVR model with the different kernels. The 

little difference is clear in the roof floor displacements. 

Similarly, comparisons of the maximum response of the 

frame results (partially infilled with one partition) are 

presented in terms of envelope of maximum floor total 

displacement of each floor (see Fig. 13). It has been found 

in predicted values that the support vector regression with 

RBF kernel function can achieve good performance for the 

partially infilled frames.  

Fig. 14 illustrates the comparison between the numerical 

analysis (FEM) values and the SVR predicted values of the 

uniformly infilled frame with two partitions. Numerical 

analysis results shown in Fig. 14 emphasize the important 

contribution of the foundation rocking in total displacement 

of each floor in uniformly infilled structures. It is evident 

that the structure reaches to the plateau at a lower top drift  

 

 

 

 

demand compared to bare frame while the maximum base 

shear is higher for the infilled case. It has been found that 

the support vector regression with RBF kernel function can 

make the mathematical model for the uniformly infilled 

frames too.  

The objectives of this example are to investigate the 

overall seismic response of existing buildings modelled on 

flexible foundation, and hence to evaluate the SSI effects on 

the structural response albeit through the use of relatively 

simple soil model. 

As is noted in Fig. 13, the elastic stiffness of the frame 

with two panels is much higher than the frame with single 

panel.  

It seems that, it has led to different behaviours in 

presence of SSI in terms of floor displacements. Flexibility 

of the soil foundation (G=0.1Gmax) has resulted to major 

improvement of maximum floor relative displacements for 

  
Fig. 13 Partially infilled frame: comparing FEM results with the SVR predicted values 

  
Fig. 14 Uniformly infilled frame: comparing FEM results with predicted values using SVR model 

  
Fig. 15 Uniformly infilled frame: comparing FEM results with the SVR predicted values 
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double-panel frame. 

Correspondingly, comparisons of the maximum 

response of the uniformly infilled frame with two partitions 

are shown in terms of envelope of maximum floor total 

displacement of each floor (see Fig. 15). It has been 

concluded that the SVR model with RBF kernel function 

can achieve reasonable estimation for the uniformly infilled 

frames. The performance for RBF kernel has the highest 

accuracy (with more than 90%) in compared to the other 

kinds of kernels. 

 

 

6. Conclusions 
 

The support vector regression (SVR) model is used to 

predict the seismic response of the building systems with 

and without considering soil-structure interaction (SSI) 

effects from the training data set using the eight input 

variables. The γ, parameters C and ε of the SVR model are 

chosen by a trial and error approach. It is demonstrated that 

the proposed SVR model captured the input-output 

relationships exactly. Further, the sensitively analysis on R-

squared values (R
2
) is indicated that the performance of the 

proposed SVR model is satisfactory. The comparing plots 

of numerical analysis results of both SDOF and MDOF 

systems with the SVR predicted values are presented. The 

average database accuracy was 89% for the three different 

kernels. The performance for RBF kernel function is the 

best with 95% accuracy. It is concluded that the SVR model 

with RBF kernel function can achieve reasonable estimation 

for the different kinds of frames. Hence, the proposed 

method is highly suitable for the soil-structure systems that 

have complicated geometry where they have no prior 

knowledge about their hyperparameters. 
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