
Structural Engineering and Mechanics, Vol. 62, No. 6 (2017) 703-708 

DOI: https://doi.org/10.12989/sem.2017.62.6.703                                                                 703 

Copyright ©  2017 Techno-Press, Ltd. 
http://www.techno-press.com/journals/sem&subpage=7                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 
1. Introduction 

 

Physical parameters used to describe a structure are 

often uncertain, due to physical and geometrical 

uncertainties, or modeling inaccuracies. They are, for 

example, Young’s modulus, Poisson’s ratio, volumic mass 

or dimension of plates. Different methods may be used to 

solve these problems, in which these uncertain parameters 

are generally identified by random variables, such as Monte 

Carlo simulation (Samis and Davis 2014, Juan and Kimura 

2014), a perturbation method (Wang and Qiu 2015), 

Neumann expansion series (Ramli and Jang 2014, Baricz et 

al. 2012), or a projection on homogeneous chaos (Galal 

2014). But all these methods consider stochastic variables 

for which the density of probability (Ying et al. 2014, 

Hossenini and Shahabian 2014) is known. Unfortunately, 

the probabilistic approach cannot provide reliable results 

unless sufficient experimental data or statistical information 

is available to validate the assumptions about the 

probability densities of the random variables. In some cases, 

we can only obtain some range or lower and upper bounds 

of structural parameters.  

Since the mid-1960s, the called interval analysis was 

introduced. Moore (1979), his co-workers, Alefeld and 

Herzberger (1983), and Rao and Berke (1997) have done 

the pioneering work. Mathematically, linear interval 

equations, nonlinear interval equations and interval 

eigenvalue problems in the method have been resolved 

partly. But because of the complexity of the algorithm, it is  
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difficult to apply these results to practical engineering 

problems. In the pioneering study on non-probabilistic 

approaches, Koyluoglu and Ekishakoff (1998) exploited 

convex models to describe uncertainties. Therefore, the 

growing interest on non-probabilistic methods for non-

deterministic analysis (Lee et al. 2016, Lee and Shin 2015) 

of structures with uncertain parameters is originated from 

criticism on the credibility of probabilistic analysis based on 

limited information. In this context, the application of the 

interval concepts on the non-deterministic analysis of 

structures provided very satisfactory results. 

In addition, Gao (2007), Modares and Mullen (2008), 

Chen and Wang (2000), and other researchers (Rump 2012, 

Lee et al. 2008, Lee et al. 2010) have used interval set 

models in the study of the static response of structures with 

bounded uncertain parameters. In their studies, several 

important results have been obtained, using interval analysis 

and interval factor method. Their contribution was aimed to 

overcome the described drawbacks of probabilistic 

approaches in the solutions of a truss structure with interval 

factor under static known loads. The procedure is based on 

a factorization of the uncertain-but-bounded material 

parameters by using the concept of interval factor method. 

The procedure of interval factor method (IFM) is as 

follows. First, an interval variable such as structural 

parameters or loads is expressed as an interval factor 

multiplied by the mean value of this interval variable. 

Second, structural stiffness matrix is expressed as its 

deterministic value multiplied by the interval factors of the 

structural parameters. Finally, structural static responses are 

expressed as a function of these interval factors, and the 

computational expression for interval structural 

displacement and stress responses can be obtained by means 

of the interval operations. Therefore, the effect of the 

change of structural parameters and loads on the structural 

 
 
 

Non-stochastic interval factor method-based FEA for structural stress 
responses with uncertainty 

 

Dongkyu Lee1a and Soomi Shin
2 

 
1Department of Architectural Engineering, Sejong University, Seoul, 143-747, Korea 

2Research Institute of Industrial Technology, Pusan National University, Busan, 609-735, Korea 
 

(Received September 16, 2015, Revised April 20, 2017, Accepted May 9, 2017) 

 
Abstract.  The goal of this study is to evaluate behavior uncertainties of structures by using interval finite element analysis 

based on interval factor method as a specific non-stochastic tool. The interval finite element method, i.e., interval FEM, is a 

finite element method that uses interval parameters in situations where it is not possible to get reliable probabilistic 

characteristics of the structure. The present method solves the uncertainty problems of a 2D solid structure, in which structural 

characteristics are assumed to be represented as interval parameters. An interval analysis method using interval factors is applied 

to obtain the solution. Numerical applications verify the intuitive effectiveness of the present method to investigate structural 

uncertainties such as displacement and stress without the application of probability theory. 
 

Keywords:  interval parameters; interval factor method; interval finite element analysis; structural behavior; uncertainty; 

non-stochastic 

 



 

Dongkyu Lee and Soomi Shin 

displacement and stress responses can be easily identified. 

This method allows for uncertainty in material parameters, 

geometric dimension and applied forces. In addition, the 

lower and upper bounds of structural displacement and 

stress responses can be obtained by using the computational 

expression given in this study. Once deterministic structural 

static responses are obtained by the traditional finite 

element analysis, computational work may be economical. 

In this study, the interval finite element analysis with 

interval parameters is investigated using interval factor 

method (IFM) proposed by Gao (2007) and Modares and 

Mullen (2014). Uncertainty problem of a plane stress 

structure with a given mesh is achieved to use the present 

method, in which structural physical parameters, geometry 

and applied forces are considered as interval variables. The 

structure responses are analyzed through two cases. Case 1 

deals with consideration of interval changes in Young’s 

modulus and static loads. Case 2 deals with another aspect 

of input parameter, i.e., geometry using 2 models: 

isotropically and anisotropically changes. The first one is 

based on an assumption that all dimensions of structure are 

scaled with the same ratio in geometrical change, while the 

second one considers scaling in one axis only. It has been 

shown that obtaining the bound on static responses of 

structures applied to the present method does not require a 

complicated procedure. The sensitivity of structure under 

changing of parameter can also be presented. 

The outline of this study is as follows. In Section 2, the 

theory of interval arithmetic is described. Finite element 

method formulations using interval matrix derived from the 

interval arithmetic are shown in Section 3. By using the 

interval finite element method numerical applications for 

structural parameters such as Young’s modulus, applied 

force, and geometry of plate structures are studied in 

Section 4 followed by the conclusions in Section 5. 

 

 

2. Mathematic backgrounds of interval arithmetic 
 

Assume that I(R), I(R
n
) and I(R

nn
) denote the sets of all 

closed real interval numbers, n dimension real interval 

vectors and n×n real interval matrices, respectively. R is the 

set of all real numbers. 𝑋𝐼 = [𝑥, 𝑥] is a number of I(R) and 

can be usually written in the following form 

𝑋𝐼 = [𝑋𝐶 − ∆𝑋, 𝑋𝐶 + ∆𝑋] (1) 

𝑋𝐶 =
�̅� + 𝑥

2
 (2) 

∆𝑋 =
�̅� − 𝑥

2
 (3) 

where X
C 

and ΔX denote the mean value (or midpoint value) 

of X
I
 and the uncertainty (or the maximum width) in X

I
, 

respectively. In this study, an interval ∆𝑋𝐼 = [−∆𝑋,+∆𝑋]  
is called an uncertain interval. An arbitrary interval 

𝑋𝐼 = [𝑥, 𝑥] can also be written as the sum of its mean value 

and uncertain interval. Therefore Eq. (1) can be rewritten as 

𝑋𝐼 = [𝑋𝐶 + ∆𝑋𝐼] (4) 

Eq. (4) can also be expressed as 

𝑋𝐼 = 𝑋𝐶 [( −
∆𝑋

𝑋𝐶
) , ( +

∆𝑋

𝑋𝐶
)] 

= [( −
�̅� − 𝑥

2𝑋𝐶
) , ( +

�̅� − 𝑥

2𝑋𝐶
)] 𝑋𝐶 

(5) 

Here, Gao (2007) introduces 𝑋𝐹
𝐼 = [𝑥𝐹 , 𝑥𝐹] that is a 

number of I(R) and let 

𝑋𝐼 = 𝑋𝐹
𝐼 ∙ 𝑋𝐶  (6) 

because X
C
 is the mean value of X

I
 and the uncertainty of X

I
 

is denoted by 𝑋𝐹
𝐼 . Thus, 𝑋𝐹

𝐼  is called the interval factor of 

X
I
 in this study and it can be easily obtained that 

𝑥𝐹 =  −
�̅� − 𝑥

2𝑋𝐶
 (7) 

𝑥𝐹 =  +
�̅� − 𝑥

2𝑋𝐶
 (8) 

∆𝑋𝐹 =
𝑥𝐹̅̅ ̅ − 𝑥𝐹

2
 =

 𝑋

𝑋𝐶
 (9) 

Similar expressions exist for n×n interval matrix. 

 

 

3. Formulations of interval finite element analysis for 
plate structure 

 
3.1 Interval matrix analysis 
 

In the context of finite element analysis, the governing 

equation for displacements is 

[K] {U} = {f} = {f1, · · ·, fi , · · ·, fn}
T
 (10) 

where [K] is the stiffness matrix, {U} is the vector of 

displacements, and {f} = {f1, · · ·, =fi , · · ·, fn}
T
 is the 

vector of applied forces. Eq. (11) of global stiffness matrix 

can be rewritten as Eq. (12) as the combination of element 

stiffness matrix 

[ ] = ∑[    ]
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 (12) 

where [K
e
]sym, E, and ν are e

th
 element’s stiffness matrix, 

Young’s modulus, and Poisson’s ratio, respectively. 

For interval analysis, it is necessary to construct 

deterministic parts of stiffness matrix. Stiffness matrix is 

derived from mean value of Young’s modulus and plate’s 

geometry (Belblidia et al. 2015). In this study, we consider 

two cases of interval analysis. 
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Case 1: Effect of Young’s modulus E and applied 
forces {f} 

The structure is designed to be manufactured by the 

same material. E is assigned as constant. This implies a 

linear relationship between magnitude of stiffness matrix K 

and interval change ratio of Young’s modulus ΔEF. 

According to interval force, all applied forces varies 

simultaneously with the same interval change ratio ΔfF. 

Therefore lower and upper bound of the force vector can 

be calculated as the multiplication between {f
C
} and scalar, 

i.e., interval change ratio ΔfF. 

By using {U}∗ = [ ]− ∗{f} , E e I = EFE
 e C , and 

[ e] = EF[ 
e]∗ , an interval formulation of Young’s 

modulus and displacement is as follows 

{U} = {U}∗/  ± EF  (13) 

Similarly for {f}∗ = {f}∗/  ± fF , the interval 

formulation of force and displacement is written as 

{U} = {U}∗  ± fF  (14) 

 
Case 2: Effect of uncertainty geometry of 2D 

structure by changing Jacobian matrix 
This part deals with the uncertainty in geometry of a 

given 2D structure, considering, in particular, isotropically 

and anisotropically changes in in-plane dimensions. In the 

first model, geometry of the determined structure is 

changed in all dimensions with the same scaling ratio. The 

second model deals with geometry scaling on one axis only, 

particularly, of horizontal direction. 

Assume that the structure is constructed in a determined 

shape, then Jacobian matrix is constructed in this form: 

𝐽 = [

𝜕𝑥

𝜕𝜉
0

0
𝜕𝑦

𝜕𝜂

]  indicates that in global coordinates 

{
𝑑𝑥
𝑑𝑦

} = [

𝜕𝑥

𝜕𝜉
𝑑𝜉

𝜕𝑦

𝜕𝜂
𝑑𝜂

] where 
𝜕𝑥

𝜕𝜉
 and 

𝜕𝑦

𝜕𝜂
 are constants. 

By multiplying 
𝜕𝑥

𝜕𝜉
 and 

𝜕𝑦

𝜕𝜂
 with interval change ratio, 

the uncertainty in simple geometry change 𝐽𝑙𝑜𝑤 𝑟  and 

𝐽𝑢𝑝𝑝 𝑟 can be obtained as shown in Eqs. (15) and (16) in 

Section 4.2. 

 

 

4. Numerical applications and discussion 
 
4.1 Case 1: Effect of Young’s modulus E and applied 

forces {f} 
 
A discretized 2D solid structure with plane stress state  

 

 

with material properties of steel (Lee and Shin 2014, Lee 

and Shin 2015, Lee 2016) is modeled with 231 nodes and 

200 elements. To present voids, density of elements at top 

right side of plate is equal to 0. Solid regions (black) have 

density values of 1. 

The structural parameter is interval variable of Young’s 

modulus E
C
=2.1×10

8
 KPa. The in-plane dimension can be 

seen in Fig. 1. Concentrated forces along the negative 

direction of Y-axis are applied on every node at the bottom 

side except at the fixed-end of the structure. The magnitude 

of the load is an interval variable, and its mean value is 

P=1×10
5
 kN. 

For standardization, the structure is initially modeled 

using bi-linear four node elements in natural coordinates. To 

obtain displacement vector, these elements later will be 

transformed into unit square elements (1×1 m
2
) using the 

following Jacobian matrix J =  [
 /2 0
0  /2

]. 

In order to investigate the effect of the change or 

uncertainty of interval Young’s modulus and applied forces 

on the structural static stress, the values of interval change 

ratio ΔEF=ΔE/E
C
 and ΔfF=Δf/f

C
 of Young’s modulus and 

applied forces are taken as different groups.  

 

 

 

 
Fig. 1 2D structural solid, load and boundary 

conditions in global coordinates (X-Y) with a given 

mesh of finite elements 

 

Table 1 Stress components of element 189 by interval change ratio of E and force 

Element 189 σxx
lower σxx

C σxx
upper σyy

lower σyy
C σyy

upper σxy
lower σxy

C σxy
upper 

∆EF = 0.06,∆fF = 0.0 -9631 -10138 -10654 -97315 -102440 -107560 325250 342370 359490 

∆EF = 0.0, ∆fF = 0.06 -9631 -10138 -10654 -97315 -102440 -107560 325250 342370 359490 

∆EF = ∆fF = 0.06 -9150 -10138 -11177 -92450 -102440 -112940 308990 342370 377460 
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Fig. 2 Uncertainties of displacement with respect to 

interval change ratio 

 

 
Fig. 3 Uncertainties of Von Mises stress with respect to 

interval change ratio 

 

 
Fig. 4 Lower value of Von Mises stress distribution 

(ΔEF=ΔfF=0.1) 

 
 
The computational results of the lower bound, upper 

bound, and mean value of vertical displacement (462th 

components of U matrix) of the bottom right side corner 

node are shown in Fig. 2. The lower bound, upper bound, 

and mean value of Von Mises stress of the top left side 

corner element are shown in Fig. 3. The mean values 

correspond to interval factor equal to 0. The mean value of  

 
Fig. 5 Von Mises stress distribution corresponds to E

C
 

and f
C
 (ΔEF=ΔfF=0.0) 

 

 
Fig. 6 Upper bound value of Von Mises stress 

distribution (ΔEF=ΔfF=0.1) 

 
 

Von Mises stress distributed over the plate and the value 

corresponding to ΔEF=ΔfF=0.1 are shown in Figs. 4, 5, and 

6. A summary of stress x-x and y-y of element 189 (nelx=19, 

nely=9) with ΔEF=ΔfF=0.05 are shown in Table 1. 

As can be seen in Figs. 2 and 3, uncertainties also 

increase, as interval change ratio increases. Additionally, it 

can be found that the tendency of nonlinear curves of the 

uncertainties may occur depending on interval change ratio. 

 
4.2 Case 2: Effect of uncertainty geometry of 2D 

structure by changing Jacobian matrix 
 

This example uses the same structure as in example 1 

with the same boundary conditions of E=2.1×10
8
 KPa and 

P=1×10
5
 kN. A similar mesh is used in modeling the whole 

system.  

In order to investigate the effect of the change or 

uncertainty of geometry on the structural static stress, the 

interval change ratio ΔJF is used. ΔJF is multiplied to both 

J11 and J22 components of Jacobian matrix in case of 

isotropic geometry change 𝐽 =   ±  𝐽𝐹 ∗ [
 /2 0
0  /2

]. 

Under the condition of isotropic geometry change, Fig. 

7 shows the equivalent stress in according to mean value of 

parameter considered. Then, the computational results of 

lower and upper bound Von Mises stress distributed over 

the plate and the value corresponding to ΔJF=0.9 are shown 

in Figs. 8 and 9. 

In case of anisotropic change, i.e., the structure change 

in horizontal dimension ΔJF is only multiplied to J11. Lower 
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and upper bound formulations of J are as follows, 

respectively 

𝐽𝑙𝑜𝑤 𝑟 =   −  𝐽𝐹 ∗ [
 /2 0

0  /[  −  𝐽𝐹 ∗ 2]
] (15) 

 𝐽𝑢𝑝𝑝 𝑟 =   +  𝐽𝐹 ∗ [
 /2 0

0  /[  +  𝐽𝐹 ∗ 2]
] (16) 

In anisotropic case, the value of J11>1 indicates that 

elements in global coordinates are not squares. Rectangles 

with dimension (1±ΔJF) m×1 m, indicate that the structure 

is horizontally scaled up or down. The computational 

results of lower and upper bound Von Mises stress 

distributed over the plate and the value corresponding to 

ΔJF=0.5 and 0.9 are shown in Figs. 10, 11, 12, and 13, 

respectively. As can be seen in Figs. 7 to 13, uncertainties of 

anisotropic case are larger than those of isotropic case. 

 

 

 
Fig. 7 Von Mises stress distribution corresponds to 

ΔJF=0.0 (mean value) 

 

 
Fig. 8 Lower bound of Von Mises stress distribution 

corresponds to ΔJF=0.9 (isotropic case) 

 

 
Fig. 9 Upper bound of Von Mises stress distribution 

corresponds to ΔJF=0.9 (isotropic case) 
 

 
Fig. 10 Lower bound of Von Mises stress distribution 

corresponds to ΔJF=0.5 (anisotropic case with 

horizontally shortened structure) 

 

 
Fig. 11 Upper bound of Von Mises stress distribution 

corresponds to ΔJF=0.5 (anisotropic case with 

horizontally shortened structure) 

 

 
Fig. 12 Lower bound of Von Mises stress distribution 

corresponds to ΔJF=0.9 (anisotropic case with 

horizontally lengthened structure) 

 

 
Fig. 13 Upper bound of Von Mises stress distribution 

corresponds to ΔJF=0.9 (anisotropic case with 

horizontally lengthened structure) 
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According to the results of the numerical examples, it 

may be observed that: 

(1) The uncertainty of Young’s modulus and applied 

forces produce the same effect on displacement and yield 

stress of a 2D structure. 

(2) A linear change in values of Young’s modulus and 

applied forces also results in a linear change in 

displacement and yield stress of structure. And along with 

an increase in interval change ratios, the uncertainty of 

structural stresses also increases. 

(3) The uncertainty of geometry with isotropic change 

affects the magnitude of structural stress only while 

anisotropic change affects both the magnitude of structural 

response and the distribution of Von Mises stress over the 

in-plane surface. Note that when the maximum change of 

stress with bounded parameters can be calculated, the 

probability of each stress may be determined to be small 

usually. 

 

 

5. Conclusions 
 

In this study, the effect of uncertainty in the material 

parameters, structural dimensions and applied forces on the 

uncertainty of the structural static stresses of a plane stress 

structure is presented to use a technique called the interval 

factor method. The lower bound, upper bound, mean value 

and interval change ratio of displacement and yield stress 

response of a 2D structural solid with interval parameters 

can be obtained expediently. This method will also be 

applied to the interval static response analysis of further 

types of interval structures. 
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