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1. Introduction 
 

In recent years, the scientific community gives a great 

attention to nanostructured elements because of their 

important properties. Establish experiments with nanoscale 

size elements are found to be difficult and expensive. Thus, 

elaborating appropriate theoretical models for 

nanostructures is an important topic for nanoengineering 

applications. In the scientific literature, we can found three 

approaches to model structures at nanoscale, namely: (a) 

atomistic (Ball 2001, Baughman et al. 2002), (b) hybrid 

atomistic-continuum mechanics (Bodily and Sun 2003, Li 

and Chou 2003a, b, Pradhan and Phadikar 2008) and (c) 

continuum mechanics. Both atomistic and hybrid atomistic-

continuum mechanics are often computationally expensive 

and are not simple and practical for studying systems at 

large scale. As against, continuum mechanics method is less 

computationally expensive than the former two approaches. 

In addition, it has been remarked that this approach 

provides almost accurate results compared to those of 

atomistic and hybrid approaches. 

Bending, buckling and vibration of nanoscale structures 

are of great importance in nanotechnology. Understanding 

mechanical behavior of nanoscale structures is the main 

step for many NEMS devices such as oscillators, clocks and 

sensor devices. There are already exploratory works on the 

continuum models for mechanical response of carbon  
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nanotubes (CNTs) (Wang et al. 2006, Wang and Varadan 

2006, Lu et al. 2007, Heireche et al. 2008, Tounsi et al. 

2008, Benzair et al. 2008, Amara et al. 2010, Mustapha and 

Zhong 2010, Song et al. 2010, Roque et al. 2011, Naceri et 

al. 2011, Tounsi et al. 2013a, Benguediab et al. 2014) or 

nanobeam (Reddy 2007, Murmu and Adhikari 2012, 

Eltaher et al. 2012, Emam 2013, Berrabah et al. 2013). 

More reports on the behavior of nanostructures may be also 

found in the open literature (see, e.g., Bouafia et al. 2017, 

Ebrahimi and Salari 2015, Ebrahimi et al. 2015, Zemri et al. 

2015, Larbi Chaht et al. 2015, Belkorissat et al. 2015, Adda 

Bedia et al. 2015, Bounouara et al. 2016, Ahouel et al. 

2016, Ebrahimi and Barati 2016a, b, Ahouel et al. 2016, 

Besseghier et al. 2017). In these above-mentioned works it 

has been suggested that nonlocal elasticity theory developed 

by Eringen (1983, 2002) should be employed in the 

continuum models for accurate prediction of mechanical 

behaviors of nanostructures. Contrary to the local theories 

which assume that the stress at a point is a function of strain 

at that point, the nonlocal elasticity theory assumes that the 

stress at a point is a function of strains at all points in the 

continuum. 

In the present work, attempt is made to study the static 

nonlinear postbuckling behavior of nanoscale beams 

according to the nonlocal zeroth-order shear deformation 

theory (ZSDT). The ZSDT was first developed by Shimpi 

(1999) for isotropic plates and thus it seems to be important 

to extend this theory to nanostructures by using the nonlocal 

elasticity theory of Eringen. The ZSDT accounts for the 

transverse shear deformation effect through the use of shear 

forces instead of rotational displacements as in existing 

shear deformation theories. The ZSDT contains the same 
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unknowns as in the Timoshenko beam theory (TBT), but 

satisfies the traction-free boundary conditions on the top 

and bottom surfaces of the beam without requiring any 

shear correction factor. By employing the principle of 

virtual work together with the Von-Karman theory for large 

deflections, the equilibrium equations are obtained. The 

stress resultants are reformulated to consider the small scale 

effect according to the nonlocal elasticity theory of Eringen. 

A beam with simply supported and clamped-clamped 

boundary conditions is considered in this work and closed-

form solutions for the critical buckling load and the static 

postbuckling response are predicted for the two cases. The 

effects of different parameters like the nonlocal parameter 

and the length-to-height ratio on the critical buckling load 

and the postbuckling response is analyzed. The obtained 

results are compared with the existing solutions to verify 

the accuracy of present theory in predicting the critical 

buckling load and the postbuckling response of nanobeams. 

 

 

2. Theoretical formulations 
 
2.1 Kinematics 
 

The displacement field of the ZSDT is adopted based on 

the assumption that the transverse shear stress vary 

parabolically within the depth of the beam in such a way 

that it vanishes on the top and bottom surfaces. 

Consequently, there is no need to use shear correction 

factor. Based on this assumption, the following 

displacement field can be obtained (Hadji et al. 2015) 
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where u0 and w0 are the displacements of a point on the 

mid-plane of the beam in the x and z directions, 

respectively; h is the beam thickness; Qx is the transverse 

shear force; and λx is unknown constant determined based 

on the definition of the transverse shear force as 
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The Von-Karman-type of geometric non-linearity is 

taken into consideration in the strain-displacement relations 

which are as follows 
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where 0

x  and kx are, respectively, the nonlinear 

longitudinal strain and curvature defined as 
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2.2 Constitutive relations 
 

Nonlocal elasticity theory was first proposed by Eringen 

(1983), and he assumed that the stress at a reference point is 

a functional of the strain field at every point of the 

continuum. The differential form of the nonlocal 

constitutive relation proposed by Eringen (1983) for the 

normal stress σx and shear stress τxz are given by 
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where E and G are the elastic modulus and shear modulus 

of the nanobeam, respectively; μ=(e0a)
2
 is the nonlocal 

parameter, e0 is a constant appropriate to each material and 

a is an internal characteristic length. When the nonlocal 

parameter is taken as μ=0, the constitutive relation of the 

local theory is obtained. 

 

2.3 Equilibrium equations 
 

The principle of virtual displacements is employed 

herein to derive the equilibrium equations. The principle 

can be stated in analytical form as 
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where δU is the virtual variation of the strain energy; δV is 

the virtual variation of the work done by the external 

applied loads. The variation of the strain energy of the beam 

can be stated as 
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where Nx, Mx, Px and Rx are the stress resultants defined as 
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(8) 

The variation of the work done by the external applied 

loads can be written as 
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where N0 is an external compressive load applied at the 

beam’s ends. 

Substituting the expressions for δU and δV from Eqs. (7) 

and (9) into Eq. (6) and integrating by parts, and collecting 

the coefficients of δw0, and δQx, the following equilibrium 

equations of the proposed beam theory are obtained  
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By substituting Eq. (3) into Eq. (5) and the subsequent 

results into Eq. (8), the stress resultants are obtained as 
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In light of Eqs. (4a) and (10a), Eq. (11a) can be 

expressed in local form as follows 
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Solving Eq. (10b) for d
2
Mx/dx, substituting the outcome 

into Eq. (11b), and noting that dNx/dx=0, we obtain the 

nonlocal moment stress resultant as 
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To develop the equilibrium equations in terms of the 

displacement components, we can used both Eq. (14) and 

Eq. (10b), and noting that dNx/dx=0, we obtain the moment 

equilibrium equation as 
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By integrating Eq. (13) once with respect to x and by 

setting u(0)=u(L)=0 (i.e., the beam ends do not move), we 

obtain 
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Substituting Eq. (16) into Eq. (15), we obtain 
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(17) 

To express the third equilibrium equation in terms of the 

displacements, we solve Eq. (10c) for Px and obtain 

x
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Differentiating Eq. (18) once with respect to x and 

substituting the outcome into Eq. (11c), one obtains 
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Solve the above equation for Px, differentiate the 

outcome once with respect to x, and substitute into Eq. (18), 

we obtain 
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Finally, the above equation, in light of Eq. (11d), can be 

expressed as follows 
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Finally, we outline that Eqs. (17) and (21) govern the 

nonlocal nonlinear response of beams subjected to an 

external compressive load. 

 

 

3. Analytical solutions 
 

The closed-form solution of Eqs. (17) and (21) for the 

critical buckling load and the static postbuckling response 

of the beam with simply-supported and clamped–clamped 

end conditions can be constructed.  

 

3.1 Analytical solutions for simply supported 
boundary conditions 
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The boundary conditions for the simply-supported beam 

are 
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where a and b are unknowns to be determined. It should be 

noted that a is the maximum static deflection at the midspan 

of the beam. Substituting Eqs. (22) into Eqs. (17) and (21) 

and solving for a and b. Three solutions for the static 

postbuckling amplitude a are obtained. The first is the 

trivial solution, a=0, that corresponds to the unstable 

equilibrium position of the prebuckling state. The other two 

solutions are given by 

   















ss

s

HLAA

D

A

D

L

L

A

LN
a

11

22

11

2

11

2

11

11

22

22

11

2

0 )(2










 (23) 

These two solutions correspond to the stable equilibrium 

positions in the postbuckling state. 

On the other hand, the critical buckling load, Ncr, can be 

obtained by solving the linear counterpart of Eq. (17). The 

result is 
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The nondimensional critical buckling load, crN , is 

defined as follows 
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3.2 Analytical solutions for clamped - clamped beam 
 

For clamped-clamped beams, the following 

displacement field is assumed 
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Substituting Eqs. (26) into Eqs. (17) and (21), one 

obtains the static postbuckling amplitude as 
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The nondimensional critical buckling load, crN , is 

defined as follows 
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4. Results and discussion 
 

In this section, various numerical results are established 

and discussed to check the accuracy of present theory in 

predicting the buckling and the post-buckling responses of 

nanoscale beams. The side of nanoscale beam L is assumed 

to be 10 nm, the modulus of elasticity E and the Poisson’s 

ratio v, are supposed to be 30 MPa and 0.3, respectively. 

The obtained results using the present nonlocal ZSDT for 

different values of the small scale parameter and length-to-

depth ratio L/h are compared with those reported by Emam 

(2013) based on Euler-Bernoulli beam theory (EBT), the 

Timoshenko beam theory (TBT) and Reddy beam theory 

(RBT). It can be seen that the results of present theory are 

in excellent agreement with those of RBT used by Emam 

(2013) for all values of small scale parameter and length-to-

depth ratio even for clamped-clamped beams. 
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Fig. 1 Variation of the percent reduction of the critical 

buckling load with the nonlocal parameter 
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Fig. 2 Variation of the maximum buckling with the 

applied axial load for simply supported beams with μ=1 
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Fig. 1 plotted the percent reduction of the critical 

buckling load versus the small scale parameter (μ) for both 

simply supported and clamped-clamped nanoscale beams. It 

is seen that the critical buckling load is very affected by the 

small scale parameter and the results of the simply 

supported beam are less than that of the clamped-clamped 

beam.  

Fig. 2 gives mechanical postbuckling load-deflection 

curves for different values of the thickness parameter (L/h) 

according to the present formulation. It can be seen that the 

effect of the thickness parameter (L/h) on the arising 

amplitude of buckling is insignificant in the case of simply 

supported beam. However, in the case of the clamped-

clamped beam, this effect is highly significant as is shown 

in Fig. 3.  

Figs. 4 and 5 illustrate the mechanical postbuckling 

load-deflection curves for different values of the small scale 

parameter (μ) for the simply supported and the clamped-

clamped beams, respectively. It can be seen from these 

figures that the small scale parameter not only reduces the 

critical buckling load, but it also magnifies the arising 

amplitude of buckling. Thus, it can be concluded that the 

nonlocal parameter softens the beam and understanding this 

behavior is crucial in investigating and designing nanoscale 

beams as sensors. For clamped-clamped beams, the  
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Fig. 3 Variation of the maximum buckling with the 

applied axial load for clamped-clamped beams with μ=1 

 

0,0 0,1 0,2 0,3 0,4 0,5
0

2

4

6

8

10

12

14

16

18

20

 

 =0

 =2

 =4

 =5

N
o
n

d
im

e
n

s
io

n
a
l 
a
x
ia

l 
lo

a
d

Nondimensional deflection
 

Fig. 4 Variation of the maximum buckling with the 

applied axial load with for simply supported beams 

with L/h=10 

contribution of the small scale parameter on the 

postbuckling behavior is more significant as is shown in 

Fig. 5.  
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Fig. 5 Variation of the maximum buckling with the 

applied axial load with for clamped-clamped beams 

with L/h=10 

 

Table 1 Nondimensional first critical buckling load for 

simply supported nanoscale beams 

L/h μ EBT TBT RBT Present 

100 

0 9.8696 9.8671 9.8671 9.8671 

1 8.9830 8.9807 8.9807 8.9807 

2 8.2426 8.2405 8.2405 8.2405 

3 7.6149 7.6130 7.6130 7.6130 

4 7.0761 7.0743 7.0743 7.0743 

5 6.6085 6.6068 6.6068 6.6068 

20 

0 9.8696 9.8067 9.8067 9.8067 

1 8.9830 8.9258 8.9258 8.9258 

2 8.2426 8.1900 8.1900 8.1900 

3 7.6149 7.5664 7.5664 7.5664 

4 7.0761 7.0310 7.0310 7.0310 

5 6.6085 6.5663 6.5663 6.5663 

10 

0 9.8696 9.6227 9.6228 9.6228 

1 8.9830 8.7583 8.7583 8.7583 

2 8.2426 8.0364 8.0364 8.0364 

3 7.6149 7.4244 7.4245 7.4245 

4 7.0761 6.8990 6.8991 6.8991 

5 6.6085 6.4431 6.4432 6.4432 

 

Table 2 Nondimensional first critical buckling load for 

clamped-clamped nanoscale beams 

L/h μ EBT TBT RBT Present 

100 

0 39.4784 39.4379 39.4379 39.4379 

1 28.3043 28.2753 28.2753 28.2753 

2 22.0603 22.0377 22.0377 22.0377 

3 18.0733 18.0548 18.0548 18.0548 

4 15.3068 15.2911 15.2911 15.2911 

5 13.2749 13.2613 13.2613 13.2613 
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Table 2 Continued 

L/h μ EBT TBT RBT Present 

20 

0 39.4784 38.4907 38.4910 38.4910 

1 28.3043 27.5962 27.5964 27.5964 

2 22.0603 21.5084 21.5085 21.5085 

3 18.0733 17.6211 17.6212 17.6212 

4 15.3068 14.9239 14.9240 14.9240 

5 13.2749 12.9428 12.9429 12.9429 

10 

0 39.4784 35.8034 35.8075 35.8075 

1 28.3043 25.6695 25.6724 25.6724 

2 22.0603 20.0067 20.0090 20.0090 

3 18.0733 16.3909 16.3927 16.3927 

4 15.3068 13.8819 13.8835 13.8835 

5 13.2749 12.0391 12.0405 12.0405 

 

 

5. Conclusions 
 

This work presents analytical solutions for the nonlinear 

postbuckling of nanoscale beams subjected to axial 

compression within the context of the zeroth-order shear 

deformation theory and the nonlocal differential constitutive 

relations of Eringen. The present formulation is able of 

capturing both shear deformation and nonlocal effects of 

nanoscale beams, and does not require shear correction 

factors. Closed-form solutions for the critical buckling load 

and the nonlinear static amplitude in the postbuckling state 

for simply supported and clamped clamped beams are 

given. It is observed that buckling and post buckling 

response of nanoscale beams is very susceptible to the 

nonlocal parameter. An improvement of present 

formulation will be considered in the future work dealing 

with composite and functionally graded materials (Tounsi et 

al. 2013b, Bouderba et al. 2013, Ait Amar Meziane et al. 

2014, Zidi et al. 2014, Ait Atmane et al. 2015, Ait Yahia et 

al. 2015, Mahi et al. 2015, Taibi et al. 2015, Attia et al. 

2015, Tounsi et al. 2016, Bousahla et al. 2016, Bouderba et 

al. 2016, Bellifa et al. 2016, Beldjelili et al. 2016, Boukhari 

et al. 2016, Houari et al. 2016, Fahsi et al. 2017, Chikh et 

al. 2017, Meksi et al. 2017, and to account for the thickness 

stretching effect by using quasi-3D shear deformation 

models (Bessaim et al. 2013, Bousahla et al. 2014, 

Swaminathan and Naveenkumar 2014, Sayyad and Ghugal 

2014; Belabed et al. 2014, Fekrar et al. 2014, Hebali et al. 

2014, Hamidi et al. 2015, Meradjah et al. 2015, Bourada et 

al. 2015, Bennoun et al. 2016, Draiche et al. 2016). 
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