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1. Introduction 
 

Functionally Graded Materials (FGMs) are obtained by 

changing gradually the volume fractions of constituents 

from one surface to the other. This variation in the structure 

brings significant advantages compared to laminated 

composites and isotropic structures. FGMs are used as 

interfacial zone to improve the bonding strength of layered 

composites and to reduce the residual and thermal stresses 

in bonded dissimilar materials in machine and engine 

components (Pindera 1997, Erdoğan 1995). Moreover, the 

material properties of the structure can be adjusted 

according to demand. Therefore, FGMs have been the 

subject of intense research and attracted considerable 

attention in recent years. In addition, the mechanical and 

mathematical modeling of FGMs are a very important 

research area. 

The discs, such as structural parts of fly-wheels, high-

speed gears and turbine rotors have a wide range of 

applications in engineering (Bayat et al. 2008). With 

increasing demand to achieve high strength to weight ratios, 

optimizing the geometrical and physical properties of the 

disc configuration becomes more significant. For example, 

an optimal design is required to assess a suitable radial 

thickness profile of a gas turbine disc in turbo jet engines. A 

thickness variation in the gas turbine discs provides a 

significant weight reduction while keeping all other 

performance characteristics the same.  
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You et al. (2007) investigated the effect of varying 

material properties, different temperature changes and 

radius ratios on stresses and deformations in FG rotating 

circular discs. Zenkour (2005) proposed a new material 

properties and density profile in exponential form 

containing four geometric parameters for rotating annular 

discs. In that study, he obtained an exact elasticity solution 

for FG discs with plane stress assumption and exponential 

material properties variation. Çallıoğlu (2011) and Çallıoğlu 

et al. (2011) analyzed the stresses and deformation in a FG 

disc under mechanical and thermal loads. It is found from 

the results that the grading indexes play an important role in 

determining the mechanical responses of FG disc and in 

optimal design of these structures. Nie and Batra (2010) 

analyzed axisymmetric deformations of a rotating disc 

varying thickness, mass density, thermal expansion 

coefficient and shear modulus. Kordkheili and Naghdabadi 

(2007) presented a semi-analytical thermoelasticity solution 

for hollow and solid rotating axisymmetric discs made of 

FGMs. They also presented the analytical solutions of 

stress, strain and displacement components along the radius 

and compared with those of a finite element analysis in the 

literature. Finally, they noted that the property gradation 

correlates with thermomechanical responses of FG rotating 

discs.  

Mohammadi and Dryden (2008) examined the role of 

nonhomogeneous stiffness on the thermoelastic stress field 

in FG curved beam and ring. They found that the flexural 

stress in the ring is high in comparison with the beam. 

Mohammadi (2015) studied the effects of varying elastic 

modulus, Poisson’s ratio and thermal expansion coefficient 

on the thermoplastic field in the graded axisymmetric and 

one-dimensional problems. He reported that the effect of 

varying Poisson’s ratio on the thermal stresses was 
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considerable for the solid ring whereas it was negligible for 

the curved beam. Chiba (2009) derived analytically the 

second-order statistics in an axisymmetrically heated FG 

annular disc with spatially random heat transfer coefficients 

on the upper and lower surfaces using integral transform 

method and a perturbation method. Finally, the method has 

been verified and its applicability has been examined 

through comparisons with the results obtained by a direct 

Monte Carlo simulation. Damircheli and Azadi (2011) 

analyzed thermal and mechanical stresses in a FG rotating 

disc with variable thickness by using finite element method 

(FEM). To model the disc by FEM, one-dimensional two-

degree elements with three nodes are used. The effect of 

varying thicknesses and dependency of material properties 

on temperature distribution were also investigated. Khanna 

et al. (2015) studied steady-state creep in a rotating Al-SiCp 

disc having different thickness profiles. They concluded 

that the radial and tangential stresses increased by 

increasing SiCp gradient. Liew et al. (2003) presented an 

analysis of the thermomechanical behavior of hollow 

circular cylinders made of FGM. They provided a new 

solution method for thermal stresses in homogeneous 

cylinders as a special case. Kar and Kanoria (2007) 

investigated the distribution of stresses due to step input of 

temperature on the boundaries of a homogeneous 

transversely isotropic circular disc by applying Laplace 

transform technique in the context of generalized theories of 

thermo-elasticity. They computed numerically the stresses 

of the disc. Garg et al. (2015) investigated the steady state 

creep behaviors of a FG rotating disc under varying thermal 

gradient. Their results indicated that with increase in the 

temperature, the radial stress increases over the entire disc 

but the tangential and effective stresses increase near the 

inner radius and decrease toward the outer radius. Wang et 

al. (2013) investigated semi-analytically the effects of 

thickness variations on the annular discs with fully 

constrained at the outer boundary under thermal loading. 

They assumed that the disc material properties depend on 

the temperature, but the Poisson’s ratio is independent. 

They found for the disc with small holes that the index 

values have strong effects on the normalized temperature 

difference. 

Alexandrova and Vila Real (2007) analyzed plastic 

analytical stresses of a rotating annular disc with its 

contours being free from the radial pressure and with 

specifically variable thickness in terms of the Mises-yield 

criterion and its associated flow rule. They found that the 

existence of the thickness gradient influences the size of 

plastic zone, limit angular velocities and stress distributions 

significantly. Çallıoğlu et al. (2015) analyzed the elasto-

plastic stresses of rotating FG discs. They showed that the 

analytical results were compatible with numerical results.  

As can be understood from the above literature survey, 

most of the studies mentioned above are dealt with the 

elastic stress analysis of FG discs which subjected to 

mechanical and/or thermal loads. They have been done in 

order to see the effects of FGMs on the isotropic discs. 

Nevertheless, the studies on the elasto-plastic stress analysis 

of FG discs are found few in the open literature. A small 

part of the above studies are related to elasto-plastic stress 

analysis of homogeneous isotropic, composite or FG discs. 

In this analytical study, the elasto-plastic thermal stresses 

are analyzed in a FG hyperbolic disc. The material 

properties, such as elastic modulus, thermal expansion 

coefficient and yield strength of FG disc, vary radially 

according to a power law function, and gradient parameter 

is taken in the range of -1.0 to 1.0. The geometric parameter 

for the thickness profile is also chosen between -0.9 and 0.0 

(Alexandrova and Vila Real, 2007). In the elasto-plastic 

solution, the yielding behavior of the disc material is 

supposed as a non-work hardening case using von Mises’ 

yield condition. 

 

 

2. Elastic solution 
 

Assuming that the stresses do not vary along the 

thickness of the disc, the governing differential equation of 

equilibrium, which is used for a thin disc of constant 

thickness, can also be extended to disc of variable thickness 

(Timoshenko and Goodier 1970) 

 ( ) ( ) 0r

d
h r r h r

dr
  

 
(1) 

where r and θ are radial and tangential stresses, h is 

thickness of the disc and it is assumed to vary along the 

radial direction, r is the radial distance (arb), a and b are 

inner and outer radii of the disc, respectively, as illustrated 

in Fig. 1. 

Due to the symmetry, the strain-displacement relations 

are given by 

,r

du u

dr r
  

 

(2) 

where u is the displacement component in the radial 

direction. The strain compatibility equation is 

 r

d
r

dr
 

 

(3) 

The strain-stress relations, which includes thermal 

effects, can be given by 

 

 

 
Fig. 1 Schematic of annular FG disc of variable thickness 

subjected to uniform temperature 
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   
1

( )
r r or T

E r
      

 

(4a) 

   
1

( )
r or T

E r
       

 

(4b) 

where E(r), (r) and T0 are radially varying elastic 

modulus, thermal expansion coefficient and applied 

uniform temperature, respectively. Poisson’s ratio,  is 

assumed as a constant because variation of Poisson’s ratio 

has much less practical significance than those in the others. 

Eq. (1) is satisfied by the stress function F defined as  

1
,

( ) ( )
r

F dF

h r r h r dr
    (5) 

Substituting Eqs. (4) and (5) into compatibility Eq. (3) 

gives 
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(6) 

where upper apostrophes indicate derivative according to r.  

Now suppose that 

1
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n
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b
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(7a) 

2
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(7b) 

3

( )

n
r

h r h
b

 
  

   

(7c) 

where n1, n2 and n3 are gradient indexes. Substituting Eq. 

(7) into Eq. (6), the differential equation reduces to  

   

1 2 3

1 2 3

2

1 3 1 3

12
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n n no
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 
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
 (8) 

As gradation indexes are almost equal to zero, Eq. (8) 

reduces to equation of the homogenous, isotropic disc 

(Timoshenko and Goodier 1970) 

2

2 or F r F F E h n rT    
 

(9) 

As Eq. (8) is solved, the stress function F can be written 

as 

1 3 1 3

1 2 3 12 2
1 2

n n m n n m

n n n
F C r C r Ar

   

  
  

 
(10) 

where C1 and C2 are the integration constants and the 

positive root of the equation, m, is 

1/2
2

1 3 1 3( ) 4( 1)m n n n n         
(11) 

and the term A is 
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2
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(12) 

The stress components can be obtained from the stress 

function as 
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(14) 

The integration constants C1 and C2 can be obtained 

from the boundary conditions. Since the disc is assumed to 

be connected to the shaft by means of splines, where small 

axial movement is permitted, σr is equal to zero at the inner 

and outer surfaces of the disc (Timoshenko and Goodier 

1970) 

0r at r a and r b     (15) 

By using these conditions, C1 and C2 are determined as 
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3. Plastic solution 

 

In the solution, von Mises hypothesis is used as a yield 

criterion due to the same yield strengths (σ0) in tension and 

compression for ductile materials. The equivalent stress can 

be written as 

2 2

r r       
 

(17) 

The material is assumed to be non-work hardening. In 

this case, the yield strength is written as 

4

0 0( )

n

Y

r
r

b
  

 
   

   

(18) 

where σY and n4 are the yield strength and its gradient index, 

respectively.  

As the tangential stress is isolated from Eq. (1), the 

following equation can be obtained 
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 3 1 r
r

d
n r

dr



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(19) 

Substituting   into Eq. (17), yield criterion produces 

the following equation, 

2

2 2 2 2

3 3 3(1 2 ) ( 1) 0r r
r r Y

d d
r r n n n

dr dr

 
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   
         
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(20) 

and thus dσr is obtained from above second degree 

equation. 

2 2

3(1 2 ) 3 4

2

r r Y

r

n
d dr

r

  


    


 

(21) 

By the increase in the temperature, the yielding starts at 

the inner surface because the stress components exceed the 

yield strength at the inner surface (Owen and Hinton 1986). 

If the temperature is continuing to increase, the yielding, 

which starts at the inner surface, expands more along the 

radial direction. When the temperature further increases, the 

second yielding region takes place from outer surface to 

radius d. As seen in Fig. 1, the radii c and d represent the 

boundary of the elastic and plastic regions. 

The tangential and radial stresses are obtained from Eq. 

(19) and the following equation using the numerical 

integration, in the plastic region 

   
1r r ri i

d  

 

 
(22) 

As the plastic region reaches to radius c, the following 

boundary conditions can be written as 

r p at r c    (23) 

and 

0r at r b    (24) 

where p is the radial stress at radius c.  

For the elastic region after radius c, the radial and 

tangential stresses in Eqs. (13) and (14) are used, however 

the integration constants C1 and C2 given below are used 

instead of C1 and C2 in Eq. (16) 
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  

 
  

(25b) 

In the second yielding region, the equations obtained for 

first yielding region are also valid. 

 

 

4. Results and discussion 
 
In the analytical study, the elasto-plastic thermal stresses 

are analyzed in an annular disc made of Functionally 

Graded Materials (FGMs). The inner and outer radii of the 

disc are a=100 mm and b=500 mm, and thickness of the 

outer surface is h=10 mm, as shown in Fig. 1. The FG disc 

material is assumed to be composed of various contents of 

two different metal powder particles by using powder 

metallurgy. The material properties (elastic modulus, 

thermal expansion coefficient and yield strength) and 

thickness of FG disc vary along the radial direction by a 

power law function. In order to apply the mathematical 

modelling, the material of the disc is selected as steel at the 

outer surface and its elastic modulus is E=207000 MPa, 

thermal expansion coefficient is =12.5×10
-6

 1/°C and 

yielding stress is 0=235 MPa. The gradient parameters n1, 

n2, n4 are assumed to n, -n and n/4 for elastic modulus, 

thermal expansion coefficient and yield strength, 

respectively. In the elasto-plastic solution, the yielding 

behavior of the disc material is supposed as non-work 

hardening case using von Mises’ yield condition.  

The gradient parameter n for material properties is 

chosen from -1.0 to 1.0. For thickness profile, the geometric 

parameter n3 is also used as 0.0, -0.5 and -0.9 (Alexandrova 

and Vila Real 2007). Elastic and elasto-plastic stresses are 

obtained by using analytical solutions for uniform 

temperatures. The temperatures are chosen between 

T=100°C and T=400°C. 

 
4.1 The effect of thickness 
 

Fig. 2 shows distributions of the elastic and elasto-

plastic stresses of the discs for the various power law 

indexes (n=0.5 and n3=0.0, -0.5 and -0.9) at 350°C. The 

thickness profile in Eq. (7c) is commonly used in many 

industrial parts, particularly the value of n3=-0.5 is used in 

the gas turbine rotors (Reddy and Srinath 1974). In this 

figure, it is given the effect of the thickness gradient (n3) on 

the stresses of a FG disc with n=0.5. The dashed and 

continuous lines represent values obtained from elastic and 

plastic solutions, respectively. It is seen from Fig. 2(a) that 

all discs with n=0.5 at T=350°C are entered the first plastic 

region at the inner surface, and even the plastic region of 

the disc with n3=0 expands more from inner surface towards 

to the outer surface of disc. Nevertheless, although the 

plastic region of the disc with n3=-0.9 expands less at the 

inner surface, it is newly entered the second plastic region 

at the outer surface.  

 

 

 

(a) tangential stresses 

Fig. 2 The effect of the thickness profile on the elastic 

and elasto-plastic tangential and radial stresses for 

n=0.50 and T=350°C 
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(b) radial stresses 

Fig. 2 Continued 

 

 

The yielding stress of the disc with all n3-values is the 

same and it is 235 MPa at the inner surface. Then, the 

elasto-plastic tangential stresses decrease until elasto-plastic 

boundary (radius c). After radius c, the stresses increase 

gradually. It indicates that the discs whose thickness varies 

hyperbolically are more efficient than the disc with constant 

thickness in terms of resistance to temperature. This 

conclusion is also supported by the lower tangential stress 

distribution in Fig. 2(a). But, it should be paid attention to 

start of the second plastic region. As can be seen from Fig. 

2(b), the maximum elastic stress values of the radial stresses 

are obtained for the disc of constant thickness (n3=0.0), 

however, they decrease gradually with varying n3-values. 

But, the values of the elasto-plastic radial stresses are 

almost the same. 

 

4.2 The effect of temperature  
 

Fig. 3 shows distributions of the elastic and elasto-

plastic stresses of the discs under different temperatures 

(T=100°C, T=200°C, T=300°C and T=400°C) for n=0.5 and 

n3=-0.5. In this figure, it is given the effect of the  

 

 

 

(a) tangential stresses 

 
(b) radial stresses 

Fig. 3 The effect of the temperature on the elastic and 

elasto-plastic tangential and radial stresses for n=0.50 

and n3=-0.50 

temperatures on the stresses of a FG disc with n=0.5 and 

n3=-0.5. It is seen from Fig. 3(a) that as the disc exposed to 

100°C has not entered the plastic region at the inner surface, 

yet; the plastic region of others expands gradually from 

inner surface towards outer surface. As different from the 

others, the elasto-plastic region of the disc under 400°C 

expands from both inner and outer surfaces towards the 

middle region. 

The elastic tangential stress of the disc exposed to 

100°C doesn’t reach the yielding stress at the inner surface, 

whereas the elasto-plastic tangential stresses of the other 

discs are the same at the inner surface and equal to yielding 

stress. While the elastic tangential stress of the disc under 

100°C is increasing gradually, the elasto-plastic tangential 

stresses of the other discs decrease firstly until elasto-plastic 

boundary (radius c) then the stresses increase gradually. 

It is seen from Fig. 3(b) that the radial stresses increase 

gradually with increasing temperature and the maximum 

radial stress is obtained for the disc exposed to 400°C. 

 

4.3 The effect of material 
 

In Fig. 4, the variations of elastic modulus, thermal 

expansion coefficient and yield stress along the radius are 

shown. Elastic modulus decreases at the inner surface for 

n=-0.5 and -1.0 and it increases for n=0.5 and 1.0 according 

to material properties at the outer surface. Unlike, thermal 

expansion coefficient increases at the inner surface for n=-

0.5 and -1.0, and it decreases for n=0.5 and 1.0. The 

characteristic of yield stress curve is similar to the one of 

the elastic modulus, as can be seen in Fig. 4(c). 

Fig. 5 shows distributions of the elastic and elasto-

plastic stresses of the discs with different power law 

indexes (n=-1.0, -0.5, 0.5 and 1) for n3=-0.5 and T=175°C. 

If Fig. 5 is examined step by step: The stresses that are 

occurred in the disc with n=-0.5 are completely elastic 

stresses. When the plastic region occurs just shortly before 

at the inner surface of the disc with n=0.5, it does not occur 

at the outer surface. The plastic region of the disc with n=-

1.0 occurs at the inner surface and it expands some, it does 

not also occur at the outer surface. The plastic regions in the 

disc with n=1.0 occur at the both inner and outer surfaces, 

and they more expand into the inner region of the disc.  

As examined in Fig. 4(c), the yield stresses at the inner 

surface of the discs with different n-values can be sorted 

from small to large as n=1, 0.5, -0.5 and -1. However, it is 

seen in Fig. 5(a) that the disc with n=1 yields first and then 

one with n=-1 yields unexpectedly at the inner surface. The 

first yield of the disc with n=1 is normal. Because, it has 

minimum yield stress. The reason why the disc with n=-1 

yields secondly is that it has minimum thermal expansion 

coefficient. 

It indicates that discs, which have more rigid region at 

the outer surface, are more useful in terms of resistance to 

temperature. This conclusion is also supported by Fig. 5(a). 

Because, it’s seen that the maximum tangential stresses 

occurred on the disc with n=-1. But, it should be paid 

attention to start of the second plastic region. Because, the 

plastic regions of the discs with positive n-values expand 

more than those of the discs with negative n-values. It is  
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(a) tangential stresses 

 
(b) radial stresses 

Fig. 5 The effect of the material properties on the 

elastic and elasto-plastic tangential and radial stresses 

for n3=-0.50 and T=175°C 

 

 

seen that the entire radial stresses increase with increasing 

absolute n-values. 

 

 

5. Conclusions 
 

The following conclusions are derived from the elasto-

plastic thermal stress analysis of a FG disc with variable 

thickness profile: 

• Plastic yielding in the disc happens firstly at the inner 

surface where the greatest value of  is. 

• Yielding region moves to the outer surface of the disc 

with gradually increase in the temperature. After then, as 

the temperature further increase the second plastic 

yielding can take place at the outer surfaces. 

• The stresses in a disc of variable thickness are lower 

than those in constant thickness at the same temperature. 

• The discs whose thickness varies hyperbolically are 

more useful than the disc with constant thickness in 

terms of resistance to temperature.  

• The size of the elasto-plastic boundary (radius c) 

decreases when n3-value decreases. 

 

 

     
(a) elastic modulus                            (b) thermal expansion coefficient 

 
(c) yield stress 

Fig. 4 The variations of elastic modulus, thermal expansion coefficient and yield stress along the radius 
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