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1. Introduction 

 

In recent years, the application of nanocomposite 

materials in structures has been the topic of numerous 

studies. Since nanocomposites have an important role in 

engineering structures, that's why most of the researchers 

were interested in nanoscience investigation in the past 

decades (Saito et al. 1998, Iijima 1991, Qian et al. 2004, Li 

and Wang 2008, Ayatollahi et al. 2015). CNTs have 

fascinating electro-thermo-mechanical properties and 

theyare used asbooster of the matrix phase in a composite. 

Such materials have extensive application in 

electromechanical and electrical devices such as actuators, 

sensors, and convertors. 

It is vital for design engineers to appraise the vibration 

Specifications of industrial structures thoroughly and 

accurately. Whereas nanoshell models have extensive 

applications in nanoelectromechanical systems, actuators, 

biomedical sensors, and the transfer of electricity in 

electronic nanodevices. So a large number of investigations 

are carried out to cylindrical shells such as free vibration 

(Paliwal et al. 1996) and forced vibration (Rogacheva 

1988). The majority of the studies are based on classical 

continuous theories like classical theory, first order shear 

deformation theory (FSDT), high order shear deformation 

theory (TSDT) and high order shear deformation theory 

(HSDT), which the following refers to them. Shen and 

Xiang (2012) accomplished the nonlinear vibration of 

                                          

Corresponding author 

E-mail: shh@iust.ac.ir 

 

 

nanotube reinforced composite cylindrical shells in thermal 

environments. The motion equations are based on a higher-

order shear deformation theory. The results show that the 

natural frequencies are reduced but the nonlinear to linear 

frequency ratios are increased by increasing the 

temperature. The same authors (Shen and Xiang 2014) 

analyzed the nonlinear vibration of nanotube reinforced 

composite cylindrical panels resting on elastic foundations 

in thermal environments. The equations of motion are 

solved by a two-step perturbation technique to determine 

the nonlinear frequencies of the CNTRC panels. Numerical 

results demonstrate that the natural frequencies of the 

CNTRC panels are reduced but the nonlinear to linear 

frequency ratios of the CNTRC panels are increased as the 

temperature rises. In contrast, natural frequencies are 

increased but the nonlinear to linear frequency ratios are 

decreased by increasing the foundation stiffness. 

Changcheng and Yinghui (2013) examined the Nonlinear 

dynamic analysis of Sigmoid functionally graded circular 

cylindrical shells on elastic foundations using the third 

order shear deformation theory in thermal environments. 

The Galerkin method and fourth-order Runge-Kutta method 

are used to calculate natural frequencies, nonlinear 

frequency-amplitude relation and dynamic response of the 

shells. Yas et al. (2013) presented the three-dimensional 

free vibration analysis of functionally graded 

nanocomposite cylindrical panels reinforced by carbon 

nanotube. The motion equations are solved by generalized 

differential quadrature (GDQ) method. Alibeigloo (2014) 

reported the Free vibration analysis of functionally graded 

carbon nanotube reinforced composite cylindrical panel 

embedded in piezoelectric layers by using theory of 

elasticity. The boundary conditions are assumed to be 

 
 
 

Strain gradient theory for vibration analysis of embedded CNT-reinforced 
micro Mindlin cylindrical shells considering agglomeration effects 

 

H. Tohidi1, S.H. Hosseini-Hashemi
1,2, A. Maghsoudpour1 and S. Etemadi1 

 
1
Department of Mechanical and Aerospace Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran  

2
School of mechanical Engineering Iran university of Science and Technology, Narmak, 16842-13114 Tehran, Iran 

 
(Received December 27, 2016, Revised March 23, 2017, Accepted March 30, 2017) 

 
Abstract.  Based on the strain gradient theory (SGT), vibration analysis of an embedded micro cylindrical shell reinforced with 

agglomerated carbon nanotubes (CNTs) is investigated. The elastic medium is simulated by the orthotropic Pasternak 

foundation. The structure is subjected to magnetic field in the axial direction. For obtaining the equivalent material properties of 

structure and considering agglomeration effects, the Mori-Tanaka model is applied. The motion equations are derived on the 

basis of Mindlin cylindrical shell theory, energy method and Hamilton‟s principal. Differential quadrature method (DQM) is 

proposed to evaluate the frequency of system for different boundary conditions. The effects of different parameters such as 

CNTs volume percent, agglomeration of CNTs, elastic medium, magnetic field, boundary conditions, length to radius ratio and 

small scale parameter are shown on the frequency of the structure. The results indicate that the effect of CNTs agglomeration 

plays an important role in the frequency of system so that considering agglomeration leads to lower frequency. Furthermore, the 

frequency of structure increases with enhancing the small scale parameter. 
 

Keywords:  vibration; strain gradient theory; CNT agglomeration; micro cylindrical shell; DQM 

 



 

H. Tohidi, S.H. Hosseini-Hashemi, A. Maghsoudpour and S. Etemadi 

 

simply supported. By using Fourierseries expansion along 

the longitudinal and latitudinal directions and state space 

technique across the thickness direction, state space 

differential equations are solved analytically. Zhang et al. 

(2015a) studied the Vibration analysis of functionally 

graded carbon nanotube reinforced composite thick plates 

with elastically restrained edges. Mirzae and Kiani (2016) 

proposed the Free Vibration of Functionally graded carbon 

nanotube reinforced composite cylindrical panels. 

Numerical results reveal that, frequencies of the panel are 

dependent to both, volume fraction of carbon nanotubes and 

their distribution pattern across the thickness. Civalek 

(2016) studied the free vibration of carbon nanotubes 

reinforced (CNTR) and functionally graded shells and 

plates based on FSDT via discrete singular convolution 

method. To obtain the eigenvalue problem of the system, 

the method of discrete singular convolution is employed. 

Five types of distributions of CNTR material are also 

considered. Song et al. (2016) analyzed the Vibration 

analysis of CNT-reinforced functionally graded composite 

cylindrical shells in thermal environments. Vibration 

responses of the cylindrical shell are computed by using the 

FSDT and TSDT. The results show that the strengthening of 

the stiffness near the surfaces of CNT reinforced 

functionally graded cylindrical shell is more effective in 

reducing the vibration amplitude of the structure. Gharib et 

al. (2016) proposed the vibration analysis of the embedded 

piezoelectric polymeric nanocomposite panels in the elastic 

substrate. The micro-panel is considered as the thin wall 

shell and Donnell‟s non-linear theory is used for the strain- 

displacement relations. Stiffness of the panel is reduced by 

increasing length to radius ratio and reducing density and 

lower frequencies are obtained. 

Experimental studies have shown that the material 

elastic constants have intense dependency on structural 

dimensions at the micro/nano-scale. As the structure 

dimensions are scaled down, with regarding to size 

reduction which is known size effect, the stiffness and 

resistance of material will increase. Whereas the study of 

nanoshells is concerned with nano dimensions, the classical 

theory can't anticipate structural behavior precisely. 

Because the classical theory of continuum mechanic cannot 

consider the small-scale size effects hence with considering 

thesize effect, higher order continuum theories are applied. 

The mentioned theories consist the nonlocal elasticity 

theory, the modified couple stress theory (MCST), the 

modified SGT and the surface elasticity theory. Different 

researches have been accomplished in the field of non 

classical small-scale such as shell, beam and plate. For 

example, based on the strain gradient and Eringen‟s 

piezoelasticity theories, wave propagation of an embedded 

double-walled boron nitride nanotube (DWBNNT) 

conveying fluid was investigated by Ghorbanpour Arani et 

al. (2012) using Euler-Bernoulli beam model. Li et al. 

(2013) concerned with transverse vibrations of axially 

traveling nanobeams including strain gradient and thermal 

effects. The strain gradient elasticity theory and the 

temperature field were taken into consideration. The 

buckling problem of linearly tapered micro-columns was 

investigated by Akgoz and Civalek (2013) on the basis of 

modified strain gradient elasticity theory. Bernoulli-Euler 

beam theory is used to model the non-uniform micro 

column. Tadi Beni et al. (2014) investigated the free 

vibration analysis of size-dependent shear deformation 

functionally graded cylindrical shell on the basis of MCST. 

The free vibration of simply supported functionally graded 

cylindrical nanoshell were obtained, and the effects of 

parameters such as dimensionless length scale parameter, 

distribution of FG properties, thickness, and length on the 

natural frequency were identified. Zeighampour et al. 

(2014) studied the cylindrical thin-shell model based on 

modified SGT. The findings indicate that the rigidity of the 

nanoshell in the modified SGT is greater than that in couple 

stress model and the classical theory, which leads to the 

increase in natural frequencies. Zhang et al. (2015b) 

presented the free vibration analysis of four-unknown shear 

deformable functionally graded cylindrical microshells 

based on the strain gradient elasticity theory. Numerical 

results indicate that both the frequency and higher-order 

mode shapes exhibit significant size-dependence when the 

thickness of the microshell approaches to the material 

length scale parameter. Based on the strain gradient 

elasticity theory and a refined shear deformation theory, an 

efficient size-dependent plate model was developed by 

Zhang et al. (2015c) to analysis the bending, buckling and 

free vibration problems of functionally graded microplates 

resting on elastic foundation. Gholami et al. (2016) 

analyzed the Vibration and buckling of first-order shear 

deformable circular cylindrical micro-/nano-shells based on 

Mindlin‟s strain gradient elasticity theory. The motion 

equations are analyzed by employing a Navier-type 

solution. It is shown that the effect of small scale is more 

prominent for lower values of dimensionless length scale 

parameter. Li and Hu (2016) investigated the wave 

propagation in fluid-conveying viscoelastic carbon 

nanotubes based on nonlocal SGT. It is shown that the 

effects of nonlocal parameters and small scale material 

parameters on the dispersion relation between the phase 

velocity and the wave number are significant at high wave 

numbers, however, may be ignored at low wave numbers. 

New torsional models of carbon nanotube in which axial 

velocity and the velocity gradient effect were separately 

considered on the basis of newly proposed nonlocal strain 

gradient theory were presented bu Guo et al. (2016). Ansari 

et al. (2016) reported the Size dependent thermomechanical 

vibration and instability of conveying fluid functionally 

graded nanoshells based on Mindlin‟s SGT. The results 

showed that at small values of dimensionless length scale 

parameters, there are significant differences between the 

natural frequencies, critical flow velocities and instability 

region obtained from SGT and CT. Razavi et al. (2016) 

performed the Free vibration analysis of functionally graded 

piezoelectric cylindrical nanoshell based on consistent 

couple stress theory. It is demonstrated that the length-to-

radius ratio, radius-to thickness ratio, and dimensionless 

length scale parameter play a significant role in the 

vibration behavior of the FGPM cylindrical nanoshell based 

on the size-dependent piezoelectric theory. The size-

dependent elasticity of a series of nickel cantilever 

microbeams was investigated experimentally by Lei (2016) 
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based on SGT and DQM. 

However, to date, no report has been found in the 

literature on the vibration behavior of a micro cylindrical 

shell reinforced with agglomerated CNTs. This paper aims 

to study of vibration analysis in micro cylindrical shells 

reinforced with CNTs considering agglomeration effects 

based on Mori-Tanaka model. The structure is surrounded 

by the orthotropic Pasternak foundation and is subjected to 

magnetic field. Size effects are considered by the SGT. 

Using Hamilton‟s principle and Mindlin cylindrical shell 

theory, the motion equations are derived and solved by 

DQM. The effects of CNTs volume percent, agglomeration 

of CNTs, elastic medium, magnetic field, boundary 

conditions, length to radius ratio and small scale parameter 

are shown on the frequency of the nanocomposite micro 

cylindrical shell. 

 

 

2. Formulation 
 
Fig. 1 illustrates the embedded micro cylindrical shell 

reinforced with agglomerated CNTs in which geometrical 

parameters of radius, R, length, L, and thickness h are also 

indicated. The structure is subjected to axial magnetic field 

and the surrounding elastic medium is modeled by spring 

and shear constants.  

 

2.1 Strain gradient theory 
 
Based on the SGT, the potential energy can be 

considered as function of the symmetric strain tensor, the 

dilatation gradient vector, the deviatoric stretch gradient 

tensor and the symmetric rotation gradient tensor. In the 

mentioned tensors and vectors, three independent material 

length scale parameters are existed. However, the potential 

energy U can be expressed as follows (Li and Hu 2016) 

    1 11
,

2

s s

ij ij i i ijk ijk ij ij

V

U P m dV          
(1) 

 

 

 
Fig. 1 A schematic figure for embedded micro 

cylindrical shell reinforced with agglomerated CNTs 

subjected to axial magnetic field 

where 
ij , i , 

)1(

ijk  and 
ij denote the strain tensor, the 

dilatation gradient vector, the deviatoric stretch gradient and 

the symmetric rotation gradient tensors, respectively, which 

are defined by (Li and Hu 2016, Razavi et al. 2016) 
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 , ,

1
,

2

s

ij i j j i     (5) 

where ui and 
ij

 
are the displacement vector and

 

the 

knocker delta, respectively. In addition, the rotation vector (

i ) can be defined as 

 
1

.
2

i

i

curl u
 

  
 

 (6) 

The classical stress tensor, 
ij , the higher-order 

stresses, 
ip , 

)1(

ijk and mij can be given by 

2 ,ij ij ijtr      (7) 

2

02 ,i ip l   (8) 

1 2 1

12 ,ijk ijkl    (9) 

2

22 ,s s

ij ijm l   (10) 

where   and   are the bulk and shear modulus, 

respectively; ),,( 210 lll  are independent material length 

scale parameters. 

 

2.2 Mindlin cylindrical shell 
 
The displacement fields in the Mindlin theory can be 

described as (Reddy 2002) 

     0, , , , , , , ,xU x z t u x t z x t      (11) 

     0, , , , , , , ,V x z t v x t z x t      (12) 

   0, , , , , ,W x z t w x t 

 

(13) 
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where 0 0 0( , , )u v w are the axial, circumferential and 

transverse displacements on the mid-plane (i.e., 0z ) of 

the shell; x and  are the rotations of the normal to the 

mid-plane about x- and  - directions, respectively. 

Substituting Eq. (12) into Eq. (2), the non-zero strains are 

0 ,x
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Substituting Eqs. (14) into Eqs. (2)-(5), the non-zero 

components of the dilatation gradient vector, the deviatoric 

stretch gradient and the symmetric rotation gradient tensors 

can be expressed as 
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Substituting the non-zero strain gradients detailed in 

Eqs. (14)-(17) into Eqs. (7)-(10), the non-zero stresses can 

be written as 
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Noted that in above equations, Yong modulus and 

poison‟s ratio of system can be calculated by Mori-Tanaka 

model which is explained in next section. 

 

2.3 Mori-Tanaka Model and agglomeration effects 
 
In this section, the effective modulus of the concrete 

column reinforced by CNTs is developed. Different 

methods are available to obtain the average properties of a 

composite. Due to its simplicity and accuracy even at high 

volume fractions of the inclusions, the Mori-Tanaka method 

(Shi and Feng 2004) is employed in this section. The matrix 

is assumed to be isotropic and elastic, with the Young‟s 

modulus Em and the Poisson‟s ratio m. The experimental 

results show that the assumption of uniform dispersion for 

CNTs in the matrix is not correct and the most of CNTs are 

bent and centralized in one area of the matrix. These 

regions with concentrated nanoparticles are assumed to 

have spherical shapes, and are considered as „„inclusions‟‟ 

with different elastic properties from the surrounding 

material. The total volume Vr of nanoparticles can be 

divided into the following two parts (Mori and Tanaka 

1973) 

,inclusion m

r r rV V V   (22) 

where 
inclusion

rV  and 
m

rV  are the volumes of nanoparticles 

dispersed in the spherical inclusions and in the matrix, 

respectively. Introduce two parameters  and  describe the 

agglomeration of nanoparticles 
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However, the average volume fraction cr of 

nanoparticles in the composite is 

.r
r

V
C

V
  (25) 

Assume that all the orientations of the nanoparticles are 

completely random. Hence, the effective bulk modulus (K) 

and effective shear modulus (G) may be written as 
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where , , ,r r r r   
 

may be calculated as 
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(35) 

where kr , lr , nr , pr , mr are the Hills elastic modulus for the 

CNTs [17]; Km and Gm are the bulk and shear moduli of the 

matrix which can be written as 
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Furthermore, ,   
can be obtained from 
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Finally, the elastic modulus (E) and poison‟s ratio (υ) 

can be calculated as 

9

3

KG
E

K G



 (41) 

3 2
.

6 2

K G

K G






 (42) 

 

2.4 Motion equations 
 
Here, the energy method and Hamilton's principal are 

used. The potential energy can be calculated by Eq. (1). The 

kinetic energy of the structure is 

2 2 2
2

2

0 0
2

1
,

2

h
l

h

U V W
K dxd dz

t t t



 


        
        

         
  

 
(43) 

where   represents the density of structure.  

The external work due to surrounding elastic medium is 

written as (Kolahchi et al. 2016a, b) 

 

 

2 2
2

, , ,

2 2
0 0 , , ,

cos 2cos sin sin
,

sin 2sin cos cos

L
w xx yx yy

xx yx yy

p

k w G w w w
W dA

G w w w






   

   

    
 
   
 

 
 

(44) 

where θ describes the local ξ direction of orthotropic 

foundation with respect to the global x-axis of the shell; G 

and G are the shear constants in  and  directions, 

respectively; kW is the spring constant. 

The external work by the axial magnetic field can be 

expressed as (Kolahchi et al. 2016b) 

2
2

2
h ,x

q

w
W H wdA

x


 
 

  
 
 

  (45) 

where  is the magnetic permeability of the CNTs and Hx is 

the magnetic field. Substituting expressions (1), (43), (44) 

and (45) into Hamilton‟s principle (i.e., 

 
0

0
t

K U W dt    ) and integrating by parts and 

setting the coefficients of mechanical displacements to zero, 

lead to the following motion equations 
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(46) 

557



 

H. Tohidi, S.H. Hosseini-Hashemi, A. Maghsoudpour and S. Etemadi 

 

2 2 2 2

0
1 22 2 2 2

1
,

2

z xY u
I I

r t t

 



  
  

  
 

2 0 2 0

2 2

2 1 2 1 2 1 2 1

2 2 2 2

1 1 1

2 2 1 4

5 5 5 5

x z x

xxx xx

N N N Y Y

r x r r x r

Y Y Y Y

r x r x x

   

  

  

 

   
   

    

   
   

    

 

2 1 2 1 2 1 2 1

2 2 2 2

2 1 2 2 2

2 2

3 8 2 3

5 5 5 5

1 1 1 1

5 2 2 2

xx x zzx zz

zz xx x

Y Y Y Y

r r x r x r

Y Y Y Y

x r x r x r

  

  

   



   
   

     

   
   

   
2 2 2 2 1 1

2 2

1 1 2 2

0
1 22 2 2 2

1 1 1 1

2 2 5

1 4
,

5 5

xz z zzz x z

xxz z

Y Y Y Y

x r x r r x

Y Y v
I I

r r t t

 

 

 



 

   
   

    

   
   

   

 

(47) 
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(50) 

In above equations, the moment of inertia can be 

defined as 

   22
1 2 3

2

, , 1, , .
h

hI I I z z dz


   (51) 

In addition, the stress resultant can be expressed as 

follows 
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Substituting Eqs. (18)-(21) into Eq. (52) yields 
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1 0,xxzT   (59e) 
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1 0,x zT    (59j) 
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Noted that in the motion equations, ignoring l0 and l1 

leads to the motion equations for the MCST. In addition, 

ignoring l0, l1 and l2 leads to the motion equations for the 

classical cylindrical shell theory. In this paper, three types 

of boundary conditions are considered as follows 

 Simple-Simple (SS) 

0, 0,xxx L u v w M      
 

(61) 

 Clamped- Clamped (CC) 

0, 0,xx L u v w        
 

(62) 

 Clamped- Simple (CS) 

0 0,

0.

x

x xx

x u v w

x L u v w M

 



      

        
(63) 

 

 

3. Solution procedure  
 
At the first, the mechanical displacement of structure 

can be defined as (Ghorbanpour Arani et al. 2012) 

( , , ) (x)cos(n ) ,i t

o n

n

u x t u e    (64a) 

( , , ) (x)sin(n ) ,i t

o n

n

v x t v e    (64b) 

( , , ) (x)cos(n ) ,i t

o n

n

w x t w e    (64c) 

( , , ) (x)cos(n ) ,i t

x n

n

x t x e      (64d) 

( , , ) (x)sin(n ) ,i t

n

n

x t e 

     (64e) 

where n is the circumferential wave number and ω is the 

frequency of structure. Substituting above equations into 
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Eqs. (46)-(50) and combine with Eqs. (53)-(60) leads to the 

differential motion equations in x direction. However, DQM 

is used for discretization of motion equations using 

following relation (Kolahchi et al. 2016a, b) 

( )

1

( )
( ) 1,..., 1,

xNm
mx i

ik k xm
k

d f x
A f x m N

dx 

    (65) 

where Nx and ( )m

ikA  are the axial grid point number and 

weighting coefficient which may be defined as 

1
1 cos 1,..., ,

2 1
i x

x

L i
x i N

N


  
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(66) 
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ji
j

xij
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jji
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ij
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xMxx

xM
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1

)1(
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,...,2,1,,
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(67) 

where 

1

( ) ( ).
xN

i i j

j
j i

M x x x



 
 

(68) 

For higher order derivatives we have 

( 1)

( ) ( 1) (1) .
( )

m

ijm m

ij ii ij

i j

A
A m A A

x x




 

      

(69) 

Finally, the motion equations in matrix form can be 

expressed as  

  2[ ] [ ] [0],K M d   (70) 

where [ ] [ ]Tn n n n nd u v w x   is displacement 

amplitude vector. However, using an eigenvalue problem 

solution, the frequency of structure can be calculated.  

 

 

4. Numerical results and discussion 
 
A micro cylindrical shell with length to radius ratio 

(L/R=3) and thickness to radius ratio of (h/R=0.1) is 

considered which is made from polystyrene with the Yong 

modulus of Em=1190 MPa and poison‟s ratio of vm=0.3 is 

considered (Qian et al. 2000). The structure is reinforced 

with CNTs with the Hills elastic modulus reported in (Shi 

and Feng 2004). The small scale parameters are considered

0 1 2 17.6l l l m   . This section is divided to three 

parts including validation of present work, convergence and 

accuracy of DQM and discussing about the effects of 

different parameters on the dimensionless frequency (

/R E   ) of structure.  

 

4.1 Validation 
 

Table 1 Validation of this work with Ref. [23] 

MCST, 

Present 

work 

Classical 

theory, 

Present work 

MCST, 

Tadi Beni et al. 

(2014) 

Classical 

theory, 

Tadi Beni et al. 

(2014) 

n h/R 

1.1264 0.9335 1.126 0.933 1 0.1 

1.0688 0.7764 1.0688 0.776 2  

1.2071 0.7132 1.207 0.713 3  

      

1.5373 1.0483 1.537 1.048 1 0.2 

1.5901 0.9714 1.590 0.971 2  

1.9284 1.0522 1.928 1.052 3  

      

1.8787 1.1812 1.878 1.181 1 0.3 

1.9742 1.1626 1.974 1.162 2  

2.4153 1.3305 2.415 1.330 3  

 

 

In order to validate the presented results, the elastic 

medium, magnetic field, l0 and l1 are ignored. However, the 

vibration of a nano cylindrical shell with Yong modulus of 

E=1.06 TPa, Poisson‟s ratio of v=0.3, radius of R=2 nm, 

density of ρ=2300 kg/m3 and length to radius ratio of L/R=1 

is considered. The size effects are considered based on 

MCST. The dimensionless frequency for different thickness 

to radius ratio (h/R) and circumferential wave number is 

reported in Table 1. The presented results based on DQM 

are compared with those reported by Tadi Beni et al. 

(2014). As can be seen, there are a good agreement between 

the results of this work and Tadi Beni et al. (2014). 

 

4.2 DQM convergence 
 
The effect of the grid point number in DQM on the 

dimensionless frequency of the structure is demonstrated in 

Fig. 2. As can be seen, fast rate of convergence of the 

method are quite evident and it is found that 14 DQM grid 

points can yield accurate results. However, in the present 

work, the number of grid point is selected to be 14 for 

obtaining the accurate results. 

 

 

 
Fig. 2 The effect of DQ grid points number on the 

dimensionless frequency 
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4.3 The effects of different parameters 
 
In Fig. 3, the first dimensionless frequency predicted by 

three theories of classical, MCST and SGT is plotted versus 

volume percent of CNTs for SS boundary condition. It can 

be seen that with increasing the volume percent of CNTs, 

the dimensionless frequency increases. It is due to the fact 

that with increasing the volume percent of CNTs, the 

stiffness of structure enhances. The dimensionless 

frequency obtained by the SGT is higher than that predicted 

by MCST. This is because the SGT expresses the three 

additional dilatation gradient tensor, the deviatoric stretch 

gradient tensor and the rotation gradient tensor while the 

MCST considered only the rotation gradient tensor. This 

figure illustrates that small scale theories, SGT and MCST 

have more difference with classical theory at higher volume 

percent of CNTs. 

Size effects in SGT on the dimensionless frequency are 

shown in Fig. 4 as a function of CNTs volume percent. It is 

obvious that with increasing the small scale parameter, the 

dimensionless frequency of structure is enhanced. It is 

because with increasing the small scale parameter in the 

SGT, the stability of structure improved. 

 

 

 
Fig. 3 Comparison of SGT, MCST and classical theory 

on the dimensionless frequency versus CNTs volume 

percent 

 

 
Fig. 4 The effect of material length scale parameter on the 

dimensionless frequency versus CNTs volume percent 
 

 
Fig. 5 The effect of CNT agglomeration on the 

dimensionless frequency versus CNTs volume percent 

 

 
Fig. 6 The effect of elastic medium on the 

dimensionless frequency versus CNTs volume percent 

 

 

The effects of agglomeration () on the dimensionless 

frequency versus volume percent of CNTs are demonstrated 

in Fig. 5. It is worth noting that the dimensionless frequency 

decreases with considering . It is due to the fact that 

considering agglomeration effect leads to lower stiffness in 

structure. However, the agglomeration effect has a major 

effect on the vibration behaviour of the structure. In 

addition, with increasing the volume percent of CNTs, the 

dimensionless frequency is increased and the effect of 

agglomeration becomes more prominent. 

Fig. 6 illustrates the effect of the elastic medium on the 

dimensionless frequency versus the CNTs volume percent 

for SGT. It can be found that considering elastic medium 

leads to more stiffness in the structure and consequently 

higher dimensionless frequency. Comparing Winkler-type 

and orthotropic Pasternak-type elastic medium, it is found 

that the dimensionless frequency predicted by the Pasternak 

medium is higher than that obtained by the Winkler 

medium. It is perhaps due to the fact that the Winkler-type 

is capable to describe just normal load of the elastic 

medium while the Pasternak-type describes both transverse 

shear and normal loads of the elastic medium. 

In order to show the effect of magnetic field, Fig. 7 is  
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Fig. 7 The effect of magnetic field on the 

dimensionless frequency versus CNTs volume percent 

 

 
Fig. 8 The effect of boundary condition on the 

dimensionless frequency versus CNTs volume percent 

 

 
Fig. 9 The effect of length to radius ratio on the 

dimensionless frequency versus CNTs volume percent 

 

 

presented. In this figure, the dimensionless frequency is 

plotted versus CNTs volume percent. It can be seen that 

considering magnetic field leads to higher dimensionless 

frequency due to increase in the stiffness of structure. Noted  

 
Fig. 9 The effect of length to radius ratio on the 

dimensionless frequency versus CNTs volume percent 

 

 
Fig. 10 The effect of circumferential wave number on the 

dimensionless frequency versus CNTs volume percent 

 

 

that the effect of magnetic field becomes more considerable 

with increasing CNTs volume percent. 

The effect of the different boundary conditions on the 

dimensionless frequency of structure versus CNTs volume 

percent is illustrated in Fig. 8. It can be found that the 

dimensionless frequency predicted by CC cylindrical shell 

is higher with respect to other considered boundary 

conditions. It is because that considering CC boundary 

condition leads to harder structure.  

The effect of circumferential wave number on the 

dimensionless frequency versus CNTs volume percent is 

shown in Fig. 9 considering agglomeration effects. 

Obviously, increasing the circumferential wave number 

leads to higher dimensionless frequency. 

Fig. 10 demonstrates the effect of length to radius ratio 

of cylindrical shell on the dimensionless frequency against 

CNTs volume percent. As can be seen, with increasing the 

length to radius ratio, the dimensionless frequency is 

decreased due to the reduction in the stiffness of structure. 

In addition, in all length to radius ratios, the dimensionless 

frequency increases with increasing the CNTs volume 

percent. 
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5. Conclusions 
 
Agglomeration effect on the vibration analysis of a 

micro cylindrical shell reinforced with CNTs was the main 

contribution of this work. The structure was simulated with 

Mindlin cylindrical shell theory mathematically. The 

characteristics of the equivalent composite were determined 

using Mori-Tanaka model. The structure was surrounded by 

orthotropic Pasternak medium and was subjected to axial 

magnetic field. Applying DQM, the frequency of structure 

was obtained and the effects of CNTs volume percent, 

agglomeration of CNTs, elastic medium, magnetic field, 

boundary conditions, length to radius ratio, circumferential 

wave number and small scale parameter were shown. 

Results indicate that with increasing the volume percent of 

CNTs, the frequency increases. It was also worth to 

mention that the frequency of micro cylindrical shell 

decreases considering agglomeration effects. Obviously, 

considering elastic medium and magnetic field as well as 

decreasing the length to radius ration lead to higher 

frequency. In addition, the frequency predicted by SGT was 

higher than those obtained by the MCST and classical 

theory. The results of this work were validated as far as 

possible with Tadi Beni et al. (2014). Finally, it is hoped 

that the results presented in this paper would be helpful for 

design and analysis of micro structures based cylindrical 

shell. 
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