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1. Introduction  
 

Real-time hybrid simulation (RTHS) splits the prototype 
structure under investigation into experimental and 
analytical substructure(s), which allows researchers to 
observe the behavior of critical elements at large or full 
scale when subjected to dynamic loading (Nakashima et al. 
1992, Blakeborough et al. 2001). A typical process of RTHS 
is schematically shown in Fig. 1, where the calculated 
displacements (xc

i) from an integration algorithm are 
applied to both numerical and experimental substructures. 
Measured/calculated restoring forces (ra

i+1 and re
i+1) from 

the substructures are fed back to the numerical algorithm to 
compute structural response for next time step. Since this 
process is conducted in a real-time manner, RTHS provides 
an efficient and economical technique to account for rate-
dependence within civil engineering structures in size-
limited laboratories (Christenson et al. 2008, Chen et al. 
2012, Chen et al. 2014, Asai et al. 2015, Friedman et al. 
2015). After years of development, the RTHS technique has 
become a viable alternative for the more well-established 
shaking table testing method and the pseudo-dynamic 
testing method (Mahin et al. 1989, Kwon et al. 2008). 
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In RTHS, there are inevitable time delays due to 

communication, computation as well as actuator dynamics, 
resulting in unsynchronized displacements of experimental 
substructures with the calculated ones. Due to actuator 
delay, the forces of experimental substructures are measured 
before the actuators actually reach their target positions. 
Researches showed that actuator delay would lead to 
inaccurate test results and even destabilize the entire 
simulation if not compensated properly (Chen and Ricles 
2009, Karavasilis et al. 2011, Gao et al. 2013). Various 
compensation methods have been proposed to avoid the 
instability caused by actuator delay and to improve actuator 
tracking. For conventional delay compensation methods of 
which the time delay is often assumed constant during test, 
their performances therefore depend on the accuracy of 
estimated delay, such as the polynomial extrapolation 
method and linear acceleration extrapolation (Horiuchi et 
 
 

Fig. 1 Schematic representation of a real-time hybrid 
simulation 
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Abstract.  Accurate actuator tracking plays an important role in real-time hybrid simulation (RTHS) to ensure accurate and 
reliable experimental results. Frequency-domain evaluation index (FEI) interprets actuator tracking into amplitude and phase 
errors thus providing a promising tool for quantitative assessment of real-time hybrid simulation results. Previous applications of 
FEI successfully evaluated actuator tracking over the entire duration of the tests. In this study, FEI with moving window 
technique is explored to provide post-experiment localized actuator tracking assessment. Both moving window with and without 
overlap are investigated through computational simulations. The challenge is discussed for Fourier Transform to satisfy both 
time domain and frequency resolution for selected length of moving window. The required data window length for accuracy is 
shown to depend on the natural frequency and structural nonlinearity as well as the ground motion input for both moving 
windows with and without overlap. Moving window without overlap shows better computational efficiency and has potential for 
future online evaluation. Moving window with overlap however requires much more computational efforts and is more suitable 
for post-experiment evaluation. Existing RTHS data from Network Earthquake Engineering Simulation (NEES) is utilized to 
further demonstrate the effectiveness of the proposed approaches. It is demonstrated that with proper window size, FEI with 
moving window techniques enable accurate localized evaluation of actuator tracking for real-time hybrid simulation. 
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al. 1999, Horiuchi and Konno 2001), the inverse 
compensation (Chen and Ricles 2008), and the model-based 
compensation (Carrion and Spencer 2006). Many efforts 
have been devoted to improve the performance of the delay 
compensation methods. The Darby estimator, for example, 
updates the estimated delay by calculating the error between 
the measured and the desired actuator positions (Darby et 
al. 2002). Chen and Ricles (2010) proposed adaptive 
inverse compensation (AIC) method, which adapts the 
parameters of the inverse compensation based on the trend 
of tracking indictor in the test. Phillips and Spencer (2012) 
modified the parameters of mode-based strategies to 
achieve desirable compensation by feed forward-feedback 
tracking control. Gao et al. (2013, 2014) developed a robust 
mode control for actuator based on H∞ loop shaping design, 
which utilized both in single-degree-of-freedom (SDOF) 
and multiply-degree-of-freedom (MDOF) tests. Instead of 
associating the execution error with a variable or a constant 
delay, Elkhoraibi and Mosalam (2012) corrected the 
command signal according to actuator velocity.  

Experimental studies however showed that the actuator 
delay can be reduced but cannot be completely eliminated 
even with sophisticated compensation methods. Thus, 
assessment of actuator tracking in RTHS becomes critical to 
ensure reliable experimental results for appropriate 
interpretation of structural performance under selected 
ground motions. Existing evaluation methods are mainly 
based on time domain analysis through comparing the 
command and measured displacements of the actuators, 
such as the maximum tracking error (MTE), root-mean-
square (RMS) of the tracking error, tracking indicator (TI) 
(Mercan and Ricles 2007) and energy error (EE) (Mosqueda 
et al. 2007a, b). These variables can provide qualitative but 
not quantitative assessment on actuator tracking. Guo et al. 
(2014) proposed a frequency evaluation index (FEI) method 
to evaluate actuator tracking in terms of amplitude error and 
phase error. Using the concept of equivalent frequency, an 
equivalent time delay can be calculated quantitatively for 
the entire test. More recently, Guo et al. (2014) also 
proposed two decimation techniques to improve the 
computational efficiency of FEI. These findings show that 
the FEI method provides an efficient and effective way for 
post-experiment assessment of actuator tracking error. 

For a typical seismic test, peak structural response often 
occurs within a short time window of 2 to 8 seconds, while 
the duration of the entire test could be as long as 120 
seconds. Accurate actuator tracking during this short time 
window is critical for replicating structural response under 
earthquakes. This requires a tool for localized assessment of 
actuator tracking. In this paper, an FEI based technique is 
developed through Short Time Fourier Transform (STFT) 
for localized actuator tracking assessment. The localized 
evaluation is not intended to calculate the time delay at 
every millisecond, but to calculate the average delay within 
the short time window. When this window becomes small 
enough, the average delay in each window provides a 
truthful evaluation of the actuator tracking for RTHS. 
Moving windows with and without overlap are explored in 
this study to provide localized quantitative assessment of 
actuator tracking. Both computational simulations and 

existing laboratory tests are used to demonstrate the 
effectiveness of proposed method. 

 
 

2. Frequency-domain evaluation indices 
 
The FEI provides an effective way for quantitative post-

experiment evaluation of actuator tracking errors. Utilizing 
the Fast Fourier Transform (FFT) in Eq. (1), the FEI 
interprets actuator tracking error in terms of amplitude and 
phase errors defined in Eq. (2) and Eq. (3), respectively 
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Introducing the concept of equivalent frequency in Eq. 
(4), the equivalent delay can be calculated based on the 
phase error as Eq. (5) 
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where yI (f) and yo(f) represent the FFT of the input yI (t) and 
output yo(t), respectively; A, , f eq and d are generalized 
amplitude, phase, equivalent frequency and equivalent 
delay, respectively; p is the number of frequencies 
considered in the computation; and fi is the ith frequency. 
For FFT, 2p equals to the smallest power of two greater than 
or equal to the number of data points. To eliminate the 
effect of the spectrum leakage, the mean of both input and 
output signals should be removed and a Hanning window is 
applied before FFT. The closer A is to 1 and d is to 0, the 
more accurately the output signal replicates the input signal, 
implying better actuator tracking. The error between A and 
1 is often referred to as amplitude error, while d is referred 
to as time delay. Under the circumstance of perfect actuator 
tracking, neither time delay nor amplitude error exists 
between input and output, i.e., A=1 and d =0. 

 
 

3. FEI with moving window 
 
3.1 Moving window technique 

 
For signals with limited length, the Short Time Fourier 

Transform (STFT) (Bracewell 2000) can be expressed as 
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where ω(t) is window function to reduce the effect of 
spectrum leakage; x(τ) and X(t, f) are the signals in the time 
and frequency domain, respectively. In this study, a 
Hanning window is used in the FEI, which can be written as 
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where t1 and t2 are the start time and the end time of the 
signal to be analyzed. According to Eq. (3), the window size 
tw equals (t2-t1). The corresponding data length N equals the 
window size multiplying the sampling frequency. It is 
obvious that both the data length N and window size tw refer 
to the same concept, where the former represents the 
number of data points and the latter is the length of window 
in time. 

The moving windows are applied in two different ways, 
namely moving window without overlap (MW) and moving 
window with overlap (MWO). As shown in Fig. 2, the end 
time t2 of existing window is the start time t1 of the next 
window for windows without overlap, while for windows 
with overlap the end time t2 is larger than the start time t1 of 
the next window. 

One of the disadvantages of the STFT is that the data 
length of the window determines the frequency resolution 
(the smallest frequency that can be identified from STFT) 
and time resolution (the time duration to identify variation 
within the signal). The width of the windowing function 
relates to how the signal is represented-it determines 
whether there is good frequency resolution (i.e., frequency 
components close together can be separated) or good time 
resolution (i.e., the time at which frequencies change). A 
wide window gives better frequency resolution but poor 
time resolution. A narrow window however gives good time 
resolution but poor frequency resolution. 

The conversion from continuous time to samples 
(discrete-time) changes the underlying Fourier transform of 
x(t) into a discrete-time Fourier transform (DTFT), which 
generally entails a type of distortion called aliasing. Choice 
of an appropriate sampling rate is the key to minimizing the 
effect of aliasing. Similarly, the conversion from a very long 
(or infinite) sequence to a manageable size entails a type of 
distortion called leakage, which is manifested as a loss of 
resolution in the DTFT. Choice of an appropriate window  

 
 

 
(a) MW (b) MWO 

Fig. 2 Two moving window techniques 

length is the primary key to minimize the effect of spectrum 
leakage. The DTFT is not reliable if the available data (and 
time to process it) is less than the amount needed to attain 
the desired frequency resolution (Bracewell 2000). Better 
time resolution, on the other hand, requires smaller data 
window, satisfying the frequency resolution. To be more 
specific, the window should be long enough to guarantee 
the frequency resolution, while the window length should 
also be short enough to ensure sufficient time resolution. 
 

3.2 Window size for MW 
 

The window length for the FFT should be an integer 
power of two and, if not, will have zeros patched to the end 
of the signals. Thus, the window size tw and frequency 
interval Δf for the FEI become 

/w st N f  (8a)

2( )/ 2nextpow N
sf f   (8b)

where 2 nextpow2(N) is the smallest power of two that is greater 
than or equal to the data length N. According to Eqs. (8a) 
and (8b), a larger window size of tw leads to better 
frequency resolution. 

To find appropriate window size that provides 
acceptable time and frequency resolution, computational 
simulations of a SDOF structure are conducted using delay 
differential equation model (Wallace et al.). The mass of the 
structure is 1000 kg, and the inherent viscous damping ratio 
of the SDOF structure is assumed to be 2%. The natural 
frequency of the structure varies from 0.2 Hz to 5.1 Hz with 
an increment of 0.1 Hz. The amplitude kp and time delay τ 
have constant values of 1 and 1 msec., respectively. Ten 
different ground motions are randomly selected from the 
Pacific Earthquake Engineering Research (PEER) Strong 
Motion Database, and the sampling rate is 1024 Hz. The 
window size tw increases from the natural period of the 
structure with an increment of ten percent of natural period 
until the error between calculated time delay using the FEI 
and the theoretical value is less than 5% (i.e., 0.05 msec.). 
The variation of the desired window size tw with respect to 
the structural natural frequency and period are presented in 
Fig. 3. 

As can be observed from Fig. 3(a), the window size to 
achieve accurate analysis varies with respect to the natural 
frequency of the structure. For the same ground motion, the 
lower the natural frequency is, the larger the window size 
should be. For the same natural frequency/period, the 
window size varies for different ground motions to achieve 
good accuracy. It can also be observed in Fig. 3(b) that 
accurate results can be achieved when the window size is 
between two and four times of the natural period for linear 
elastic structures.  

 
3.3 Overlap for MWO 
 
To guarantee the accuracy of the FEI with MW, the 

window size tw should be at least twice the fundamental 
period of the structure. For structures with low natural  
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to appropriately interpret structural performance under 
earthquakes. The FEI has been demonstrated to provide 
good assessment of actuator tracking over the entire test 
duration. In RTHS, the peak structural response often 
occurs within a short time window, while the duration of the 
entire test could very long. Thus, a tool for localized 
assessment of actuator tracking is required. In this study, the 
FEI is further developed to integrate with moving window 
technique to provide accurate localized post-experiment 
assessment of actuator tracking. Computational simulations 
are conducted to determine the window length and verify 
the effectiveness of moving windows with or without 
overlap. Existing real-time hybrid simulation results are 
utilized to further demonstrate the effectiveness of the 
proposed approaches.  

With appropriate window size, both moving window 
with and without overlap can provide good localized 
evaluation. Moving window without overlap does not need 
much computational effort, therefore has great potential for 
future online evaluation. Moving window with overlap has 
better time resolution but requires more computational 
efforts, which make it more suitable for post-experiment 
evaluation. The required window size depends on the 
natural frequency and structural nonlinearity as well as the 
ground motion input. The larger natural period and stronger 
nonlinearity of the structure, the larger window length is 
required in localized evaluation. The time length of the 
window should be more than twice the fundamental period 
for linear structure to balance the time resolution and 
accuracy of the analysis results 
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