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1. Introduction 
 

When reinforced concrete (RC) beams are under the 

requirement of strengthening, providing adequate ductility 

and energy dissipation is essential to avoid sudden 

catastrophic failure. However, available retrofitting 

methods, such as attaching steel plates or fibre-reinforced 

polymers to the beam soffits by adhesive bonding, may lead 

to serious debonding and peeling failures, thus unable to 

attain the design strength (Adhikary et al. 2000, Ahmed et 

al. 2000, Anil et al. 2010). On the other hand, bolting steel 

plates to the side faces of RC beams by anchor bolts, i.e., 

the bolted side-plating (BSP) technique, suppresses these 

premature failures (Subedi and Baglin 1998, Su and Zhu 

2005), despite the fact that the BSP beams also have some 

shortcomings, such as their susceptibility to plate buckling 

(Smith and Bradford 1999) and reduction in flexural 

strength due to bolt slippage (Johnson and Molenstra 1991, 

Oehlers et al. 1997, Siu and Su 2011). 

Partial interaction, as a result of both the longitudinal 

and the transverse bolt slips (Su et al. 2013), caused by the  
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shear force transfer between the steel plates and the RC 

beam through the bolt connections, is one of the key 

parameters controlling the strengthening effect of BSP 

beams (Oehlers et al. 2000). The degree of partial 

interaction in the longitudinal and the transverse directions 

can be measured by the following two factors (Siu and Su 

2010, Zhu and Su 2010) 

pc pc, ,p y c y    (1) 

p c    (2) 

The symbols in Eqs. (1), (2) are defined in Fig. 1, which 

illustrates a cross section of a BSP beam. The concrete and 

the steel plates are divided into m and n layers, and the 

reinforcements are also divided into s layers according to 

the actual arrangement of the rebars. i, j, k is the layer 

indexes of concrete, reinforcements and steel plates 

respectively. Accordingly, yc,i, ys,k, yp,j, Ac,i, As,k, Ap,j, εc,i, εs,k, 

εp,j is the distance from the centre of the layer to the beam’s 

bottom surface, the layer area, the strain at the center of the 

layer of concrete, reinforcements and steel plates, 

respectively. dc and dp is the layer thickness of concrete and 

steel plates, respectively. αε is the strain factor defined as 

the ratio between longitudinal strains of the steel plates (

pc,p y ) and the RC beam (
pc,c y ) at the centroidal level of 

steel plates (ypc), and is used to denote the axial strain 

lagging of the steel plates due to the longitudinal bolt slip 

Slc; αφ is the curvature factor defined as the ratio between 

curvatures of the steel plates (φp) and the RC beam (φc), and 

is used to denote the curvature reduction of the steel plates  
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Fig. 1 Strain profiles of a BSP section with partial 

interaction 

 

 

due to the transverse bolt slip Str. 

In a moment-curvature analysis of a RC beam, the 

strains of concrete and reinforcement can be expressed in 

terms of the curvature (φc) and the neutral axis level (yna) of 

the RC beam 

 , ,      1, ...,c i nac i c y y i m     (3) 

 , ,      1, ...,s k nas k c y y k s     (4) 

Similarly, if the two factors (αε and αφ) in Eqs. (1)-(2) is 

known, the flexural strain profile of the steel plates in a BSP 

beam can also be expressed in term of the same two 

unknowns (φc and yna) 
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 (5) 

Thus the internal loading state of a BSP section under a 

certain bending moment M can be determined by solving 

the two unknowns (φc and yna) accordingly 
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where ζc(εc), ζp(εp), and ζs(εs) are the stress-strain 

relationships of concrete, steel plates and rebars 

respectively. Therefore, by employing the strain and 

curvature factors (αε and αφ), a modified moment-curvature 

analysis can be conducted for a BSP section with a minor 

modification to the conventional moment-curvature analysis 

of a RC section. 

However, unlike the effects of the longitudinal partial 

interaction, which have been studied comprehensively 

(Newmark et al. 1951, Siu 2009), limited studies have been 

undertaken to investigate the influence of the transverse 

partial interaction. Oehlers et al. (Oehlers et al. 1997). 

established the relationship between the degree of 

transverse partial interaction and the properties of anchor 

bolts, in which the uniform shear distribution assumption on 

the steel-concrete interface was employed. Based on this 

model, Nguyen et al. (Nguyen et al. 2001) derived the 

relationship between longitudinal and transverse partial 

interactions. Zhu et al. (Zhu et al. 2007) found that the 

translational and rotational partial interactions of the shear 

connectors would weaken the load-carrying capacity of the 

steel plates. Su and Siu (Su and Siu 2007, Siu and Su 2011) 

proposed a procedure to predict transverse slip, despite the 

fact that the assumption of a linear transverse slip profile 

has yet to be verified by extensive experimental results. Li 

et al. (Li et al. 2013) conducted an experimental study to 

investigate the transverse slip profile and shear transfer 

profile along the beam span for four-point-bent BSP beams 

with different strengthening details. Su et al. (Su et al. 

2013) conducted a numerical study to investigate the 

variation of shear transfer due to the changes in beam 

geometry, strengthening arrangements and loading 

conditions. Kolsek et al. (Kolsek et al. 2013) proposed a 

new mathematical model and analytical solution for the 

analysis of the stress-strain state of a linear elastic BSP 

beams; an important novelty of the model to mention was 

that both longitudinal and transversal interactions in BSP 

beams were considered. However, the solution was based 

on several ordinary differential equations and an explicit 

solution that can be used conveniently by engineers was not 

provided. 

Due to the complicated nature of transverse partial 

interaction, it is difficult to obtain a closed-form explicit 

analytical solution for the transverse slip and shear transfer. 

In this study, a piecewise linear model is proposed to yield 

explicit equations for estimating the shape of the shear 

transfer of BSP beams, based on the simplified shear 

transfer profiles derived from a previous numerical study 

(Su et al. 2013). Then the magnitude of the piecewise linear 

shear transfer profile is determined by considering the 

displacement compatibility and force boundary conditions. 

The experimental results (Li et al. 2013) of four BSP beams 

with different bolt-plate arrangements subject to four-point 

bending were employed to verify the proposed model. 

Simplified design formulae for calculating the maximum 

transverse slips and bolt shear forces, as well as the 

minimum curvature factors under several basic load cases 

were also developed to facilitate the design of BSP beams, 

those under more complicated loading conditions can be 

solved by employing the force superposition principle. A 

worked example was also provided to illustrate the 

feasibility of the proposed design formulae. 

 

 

2. Theoretical model 
 

When a simply supported BSP beam is subjected to an 

applied point load at the midspan as shown in Fig. 2(a), the 

RC beam bends down with a maximum curvature at the 

midspan, thus imposes a downward transverse shear force 

on the steel plates through the shear transfer of the bolt 

connection. Since the steel plates are not supported by 

external supports, they transfer the transverse shear force 

back to the RC beam away from the loading region to 

achieve equilibrium of vertical forces. Therefore, the 

yc,i
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(a) Loading condition 

 

(b) Transverse shear force on steel plates 

 

(c) Transverse shear force on RC beam 

Fig. 2 Shear transfer profiles of a BSP beam under a 

point load at the midspan 

 

 

transverse forces on the steel plates are as illustrated in Fig. 

2(b), and those on the RC beam are as shown in Fig. 2(c), 

which include the positive shear transfer at the midspan, the 

negative shear transfer near the supports, and the external 

applied load and the support reactions. 

 

2.1 Simplified piecewise linear shear transfer model 
 

The distribution of the transverse shear transfer is very 

difficult to derive by an analytical analysis. However, it can 

be obtained conveniently by employing a nonlinear finite 

element analysis (FEA) (Su et al. 2013). The entire shear 

transfer profiles of BSP beams under different load cases, 

which were derived from FEA numerical study, were 

shown in Fig. 3. 

Fig. 3(a) shows the same load case as that in Fig. 2, 

where the positive and the negative shear transfers are 

found to be localised in a small region. Fig. 3(b) shows a 

load case in which the point load is closer to the right 

support, where the shear transfer increases, while that at the 

other support decreases to achieve force equilibrium. Fig. 

3(c) presents a load case in which two widely separated 

point loads are imposed on the BSP beam simultaneously. 

The interaction between the two shear transfer regions can 

be neglected. Fig. 3(d) shows the last load case, in which 

the two point loads are close to each other. The two shear 

transfer profiles are found to overlap and interact with each 

other, and the positive shear transfer in the overlapping 

region accumulates due to the force superposition effects. 

It is worth noting that each of these profile curves can be 

simplified as a piecewise linear polyline. Therefore, a 

simplified piecewise linear model may be developed for 

determining the shear transfer profile in BSP beams. The 

basic assumptions of the proposed model are as follows: 

(1) The plane section assumption and the small 

deformation flexural theory, i.e., the Bernoulli hypothesis, is 

adopted for both the RC beam and the steel plates. 

(2) The bond-slip effect of both tensile and compressive 

reinforcement is ignored, i.e., the strain in the rebars is the 

same as that in the surrounding concrete. 

(3) The tensile strength of concrete is ignored; the 

compressive stress of concrete, the tensile and compressive 

stresses in reinforcing steel and plate steel can be computed 

by any proper stress-strain relations. 

(4)The shear force-slip relationship of bolt connection is 

linearly elastic 

tr m mS v k  (8) 

where vm is the transverse shear transfer, Str is the ransverse 

slip, and km is the stiffness of bolt connection. 

(5) The parabolic positive shear transfer distribution at 

the loading point is simplified as a triangular profile 

composed of piecewise straight lines, as shown in Fig. 3(a)-

(c). 

(6) When adjacent loads are close to each other, the 

shear transfer in the overlap region is computed based on 

superposition principle, as shown in Fig. 3(d). 

(7) The negative shear transfer distribution near the 

support is also simplified as a linear profile. 

 

 

 

(a) Under a point load at the midspan 

 

(b) Under a point load close to the support 

Fig. 3 Shear transfer profiles of a BSP beam under 

different load conditions 
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(c) Under two point loads close to the supports 

 

(d) Under two point loads close to the midspan 

Fig. 3 Continued 
 

 

Fig. 4 The piecewise linear profile model for 

transverse slip and shear transfer in BSP beams 
 

 

Based on the above assumptions, the proposed 

piecewise linear shear transfer model for a simply supported 

BSP beam under arbitrary point loads is illustrated in Fig. 4. 

It can be observed that each applied point load (Fi) acting 

on the beam span induces an isosceles-triangle-shaped 

stress block for the positive shear transfer, with a maximum 

magnitude of vm,i and a width of 2wi. The support reactions 

induce right-triangle-shaped stress blocks for negative shear  

 

(a) Loading condition 

 

(b) Piecewise linear model 

 

(c) Transverse loads of steel plates (vm) 

 

(d) Transverse loads of RC beam (−vm) 

 

(e) Vertical deflections of steel plates (δp) 

 

(f) Vertical deflections of RC beam (δc) 

 

(g) Transverse slip (Str) 

 

(h) Transverse shear transfer (vm’) 

Fig. 5 Linear transverse shear transfer model for a BSP 

beam under four-point bending 
 

 

transfers, with a peak value of vm,L for the left support and 

vm,R for the right support. 

 
2.2 Transverse shear transfer in a BSP beam under 

four pointing bending 
 

The shear transfer profile of a simply supported BSP 

beam under four-point bending (as shown in Fig. 5) is 

expressed as a piecewise linear function controlled by 
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several undetermined constants. The force equilibrium and 

deformation compatibility conditions are then used to 

determine these undetermined constants. 

If the x axis is defined along the undeformed beam axis, 

originating from the left support, and the y axis is defined 

along the depth of the section, the shear transfer profile vm, 

which is controlled by three undetermined constants, ξS, ξF 

and ξw, can be expressed as a piecewise linear function that 

is symmetrical with respect to the midspan. 
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 (9) 

As Fig. 5(b) shows, w is the half-width of the positive 

shear transfer region, and vm,F and vm,S are the critical shear 

transfers at the loading point and the support, respectively. 

Since the transverse shear force of the steel plates is 

equivalent to the shear transfer vm (see Fig. 5(c)), one of the 

unknown constants (ξS) can be solved by using the vertical 

force equilibrium of the steel plates. Thus Eq. (9) can be 

simplified as 
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Since the vertical forces imposed on both the RC beam 

and the steel plates are known (as shown in Fig. 5(c)-(d)), 

their vertical deflections (δp and δc as shown in Fig. 5(e)-(f)) 

can be solved. Thus the transverse slip (Str), or in other 

words the deflection difference between the steel plates and 

the RC beam (δp–δc as shown in Fig. 5(g)) can also be 

solved. Furthermore, by implementing the linear shear 

force-slip relationship of the bolt connection in Eq. (8), the 

transverse shear transfer can be computed as following 

 

 

2

3

2

1

1 1

3

2

'

1
5832 324

1

1 11

162 486

1

tr p c

F F
p

m

m m mv k S k

FL

 


 

 

 







 

  
  

   
  

  

  
 
  
 
 
 



 
 
 
 
 
 
 
 
 
 
 
  

0 0
A W A W

A

 (11) 

 

where

52 15 648 540 648 
0

A
 

1

0 0 12 9 108 0 0 0 0

36 108 36 135 108 4 36 108 108

36 135 36 153 108 4 39 108 108

36 189 36 189 0 4 45 72 162

  
 

    
 
     
 

    

A  

2

27 0 18 0

27 0 18 0

0 27 27 1

0 27 27 1

 
 


 
 
 

 

A  

2 3 4 5

where

T

w w w w w       0
W

 

2

2 3

1

2 3 4

T

w w

w w w

w w w w

 

  

   

 
 

  
 
 

W  

Eq. (11) shows that the resultant transverse shear 

transfer (vm’) is directly proportional to the bolt-RC 

stiffness ratio (βm=km/(EI)c) and the applied load (F), and 

linearly proportional to the undetermined constant ξF . It 

should be noted that vm’ is a polynomial function of order 5 

with respect to ξw and of order 3 with respect to ξ. 

It should be noted that the resultant transverse shear 

transfer vm’ in Eq. (11) is a cubic polynomial function, 

while the pre-assumed transverse shear transfer vm in Eq. 

(10) is a piecewise linear function. According to the 

deformation compatibility requirement, although their 

forms are different, they should be equal to each other along 

the beam span. Therefore, a least-square fitting can be used 

to determine the undetermined constants ξw and ξF 
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Thus the following 6th-order polynomial equation with 

respect to ξw and the expression of ξF in term of ξw can be 

derived accordingly 
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Solving Eq. (14) gives the unknown constant ξw and 

substituting Eq. (14) into Eq. (15) gives the unknown ξF. 

However, it is evident that Eq. (14) is not convenient for 

strengthening design because computer software is needed 

to solve this 6th-order polynomial equation. On the other 

hand, by implementing the numerical results (Su et al. 

2013) of ξw for a BSP beam under four point bending as 

following 
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where Dc and Dp is thickness of the RC beam and the steel 

plates respectively. The maximum transverse slips Str,max at 

the supports (i.e., x=0) and the loading points (i.e., x=L/3), 

and the minimum curvature factor αφ,min at the midspan (i.e., 

x=L/2) can be computed as follows 
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2.3 Transverse shear transfer in a BSP beam under 
other loading conditions 

 

For a BSP beam under symmetrical three-point bending, 

by employing the aforementioned strategy, the design 

formulae can also be derived similarly as follows 
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For a BSP beam under asymmetrical three-point 

bending (the loading position is xF/L=1/4), the design 

formulae can also be derived similarly as follows 
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According to the superposition principle, the internal 

reaction of a structural member under a uniformly 

distributed load (UDL) can be simulated by that under a 

group of uniformly spaced point loads. Therefore, the shear 

transfer profile of a BSP beam under UDL can be estimated 

by that under several uniformly spaced point loads. For 

brevity, instead of simulating the UDL by many point loads, 

the shear transfer profile under UDL is approximated by 

that under three point loads with some modification (see Fig. 

6): the shear transfer between adjacent point loads is 

simulated by connecting the maximum shear transfers at the 

loading points using piecewise lines. Then by employing 

the same aforementioned strategy, the design formulae can 

also be derived similarly as follows 
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Fig. 6 Shear transfer profile model for a BSP beam under 

UDL 
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(32) 

The comparison between the results of a BSP beam under a 

UDL derived from the simplified model and the numerical 

study (Su et al. 2013) is shown in Fig. 6, and good 

agreement can be found. 

By utilising Eqs. (17)-(32), the distribution of the 

transverse shear transfer of a BSP beam under the basic 

loading conditions can be determined. Furthermore, by 

employing the superposition principle, the transverse shear 

transfer under other complicated loading condition can also 

be determined.  

Eqs. (17)-(32) also indicate that the maximum 

transverse slip Str,max is proportional to the magnitude of the 

external loads (F or q), while the minimum curvature factor 

αφ,min is independent of the magnitude of external loads. 

 

2.4 Verification by experimental results 
 

In a previous experimental study (Li et al. 2013), the 

transverse shear transfer profiles of four BSP beams under 

four point bending were investigated, as shown in Fig. 7. 

Steel plates with a thickness of 6 mm and two different 

depths of 100 mm and 250 mm were bolted to the beam’s 

sides by one or two rows of anchor bolts with a longitudinal 

spacing of 300 mm or 450 mm to yield distinct 

strengthening effects. To prevent the plate from buckling, 

which might otherwise occur in the compressive regions, 

buckling restraint devices were added. The transverse slips 

between the steel plates and the RC beams along the beam 

span were measured by linear variable differential 

transducers (LVDTs). The shear transfer profiles were then 

computed based on the measured transverse slips and the 

load-slip relationship of anchor bolts. 

The comparison between the experimental and 

theoretical transverse shear transfer profiles for all the 

specimens at the load level F/Fp=0.5 is shown in Fig. 8. 

These figures indicate that the piecewise linear model is 

generally capable of predicting the behaviour of transverse 

shear transfer in BSP beams of different beam geometries. 

 

 

 

(a) Test set-up 

 

(b) Cross-section 

 

(c) Strengthening arrangements 

Fig. 7 Specimen details (dimensions in mm) 
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(a) P100B300 

 

(b) P100B450 

 

(c) P250B300R 

 

(d) P250B450R 

Fig. 8 Comparison of experimental and theoretical 

shear transfer profiles at load level F/Fp=0.5 

 

 

The comparison between the experimental and 

theoretical transverse shear transfer at the supports and near 

the loading points for all the specimens are tabulated in 

Table 1. It is evident that the theoretical model can predict  

Table 1 Comparison between the experimental and 

theoretical transverse shear transfer 

 P100B300 P100B450 P250B300R P250B450R 

Ss
* 

Experimental 4.3 6.1 7.9 11.2 

Theoretical 7.6 10.8 13.7 17.4 

Error 43.40% 43.50% 42.30% 35.60% 

Average error 41.20% 

Sp 

Experimental 5.6 7.9 11.1 11.6 

Theoretical 6.1 8.2 10.2 12.1 

Error 8.20% 3.70% 8.80% 4.10% 

Average error 6.20% 

*Ss: shear transfer in at the support; Sp: shear transfer near 

the loading point 

 

 

the transverse shear transfer near the loading point very 

well, the maximum discrepancy is 8.8% and the average 

error is 6.2%. However, it failed to predict the transverse 

shear transfer in at the support, the maximum discrepancy is 

43.5% and average is 41.2%. This is because in our 

theoretical model, a linear shear force-slip relation is 

assumed for the bolt connection, and the influence of the 

longitudinal shear transfer is ignored. However, for the 

specimens in the experimental study, the actual bolt shear 

deformation is not linear and the longitudinal and transverse 

shear transfers interact with each other. According to the 

experimental investigation (Li et al. 2013), the longitudinal 

slips at the support were about 8 times of the transverse 

slips, thus the bolt connect at this location was no longer 

linear and the shear stiffness km degraded considerably. 

Therefore, to yield a more accurate solution for the shear 

transfer at the supports, this degradation in km should be 

taken into account. 

 

 

3. Worked example 
 

Consider a simply supported BSP beam under four-point 

bending as shown in Fig. 9. The clear span is 7200 mm and 

the cross section is 350×700 mm. Compression 

reinforcement of 3T20 and tension reinforcement of 4T25 

are employed. Two steel plates of 6×400 mm are bolted to 

the side faces of the beam by 2 rows of anchor bolts at a 

horizontal spacing of 150 mm. The material properties are 

as follows 
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 (33) 

The flexural stiffness of the cracked RC beam section, 

the flexural stiffness of the steel plates, and the stiffness of 

the bolt connection, thus the plate-RC and bolt-RC stiffness 

ratio (βp and βm) can be computed based on the beam 

geometry and the material properties, which are given by 
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A piecewise linear transverse shear transfer model for bolted side-plated beams 
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By substituting Eq. (35) into Eq. (19), the minimum 

curvature factor (αφ,min) at the loading points (i.e., x=L/3) 

can be computed as 

4 1

,min

2

1
0.25

2500 0.201
3.6 0.8 0.201

7200 3.76 10
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(36) 

The computation of the minimum strain factor (αε,min) 

can be referred to a previous paper (Su et al. 2014). For 

brevity, only the result is listed as following 

,min 0.50   (37) 

By employing a modified moment-curvature analysis 

with the consideration of partial interaction as shown in 

 

 

 

(a) Elevation layout (dimensions in mm) 

 

(b) Cross-section (dimensions in mm) 

  

(c) Strain profile (d) Stress profile 

Fig. 9 An example of the evaluation of transverse 

partial interaction in a BSP beam 

Eqs. (3)-(6), the ultimate flexural strength Mu can be 

computed. For illustration purpose, the simplified method 

as shown in Fig. 9 is employed herein to compute Mu. 

According to Eqs. (3)-(5), the strains of the compressive 

concrete surface (εcu), the compressive and tensile rebars 

(εsc and εst), and the top and bottom edges of the steel plates 

(εpt and εpb) can be expressed in terms of the curvature and 

the neutral axis depth (φc and xn) as follows (see Fig. 9(c)) 

   

   

   
 

   
 

35

661

     50 0.50 500

     50 0.50 500

st

p pt p

cu c n

sc c n sc c n

st c n c n

pt c c n

p

c c n

p b p pb c c n

c c n

x

x h x

h x x

h h h x

x

h h h x

x

 

 



 

 

   

 





  

 












   
    

    


  

    

   

 (38) 

Thus the axial forces of the compressive concrete (Nrc), 

the compressive and tensile rebars (Nsc and Nst), and the 

compressive, the top and bottom tensile parts of steel plates 

(Npt and Npb1 and Npb2), along with their separations from 

the RC neutral axis level, can be expressed as follows (see 

Fig. 9(d)) 
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where xpn is the neutral axis level of the steel plates and xpy 

is the yielding level of the steel plates, which can be easily 

computed by setting the plate strains to be zero and the 

yielding strain εpy of steel plates as follows 
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For a flexural beam, the resultant axial force is zero, 

thus 

1 2
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x x
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 (42) 

Solving this quadratic equation yield the RC neutral axis 

level as 

293 mmnx   (43) 

By substituting Eq. (42) back into Eqs. (39)-(40), thus 

the ultimate flexural strength Mu can be yielded as 

1 1 2 2
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968 kN m
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 

 (44) 

The negative sign in Npt indicates the steel plates are 

under tensile stress in the entire section. It is also worth 

noting that xn in Eq. (43) should be substituted into Eq. (38) 

to check the yielding state of the rebars and steel plates, and 

subsequent modification might be needed for Eqs. (39)-

(40). Then the peak load Fp can be computed as 

968
398 kN

7.2 3
pF    (45) 

By substituting Eq. (45) into Eq. (17), the maximum 

transverse slip Str,max, shear transfer vm,max, and transverse 

bolt force Vm,max at the support under the peak load Fp can 

be obtained as 
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(46) 

If full interaction assumption is employed, the ultimate 

flexural strength (Mu,FI) can also be obtained by replacing 

the strain and curvature factors in Eqs. (38) and (41) with 

αε=αφ=1. Similarly, the ultimate flexural strength (Mu,0) of 

the unstrengthened RC beam can also be computed by 

replacing these two factors with αε=αφ=0. For brevity, the 

calculation is not repeated herein and the result is listed as 

Mu,FI=1021 kN·m>Mu=968 kN·m>Mu,0=494 kN·m (47) 

, FI

, FI , 0

, 0

             
1 5.5%

  
1 11.2%
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u u
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M M

M M
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 

 (48) 

Thus the loading capacity of the beam would be 

overestimated by 5.5% and the strengthening effect would 

be overestimated by 11.2%, if the influence of partial 

interaction is ignored in analysing the bending performance 

of BSP beams. 

 

 

4. Conclusions 
 

In this paper, a theoretical study on the transverse shear 

transfer in BSP beams was presented. Based on the results 

of this study, the following conclusions are drawn. 

(1) The magnitudes of the transverse slip and transverse 

shear transfer were found to be controlled by the magnitude 

of the applied load. However, the curvature factor, i.e., the 

degree of the transverse partial interaction, was controlled 

by the stiffness of the RC beam, the steel plates and the 

connection medium and not by the magnitude of applied 

loads. 

(2) For BSP beams under four-point bending, the 

proposed piecewise linear shear transfer model could 

generally predict the distribution profile of the transverse 

shear transfer. It could predict the transverse shear transfers 

near the loading point, but failed for those at the supports. 

(3) The proposed design formulae of the maximum 

transverse slip, the maximum transverse bolt shear force, 

and the minimum curvature factor, can be used for the 

strengthening design of BSP beams. 
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