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1. Introduction 
 

Plates made of functionally graded material (FGM) are 

widely employed in various branches of engineering such as 

mechanical, aerospace, chemical, electrical, etc. The main 

importance of FGM structures and components include high 

thermal resistance and graded variation of material 

characteristics along the desired dimension. FGM 

components like plates are mainly designed for high-

temperature environment. FGM components are first 

introduced for the purpose of employing it as a thermal 

barrier in aerospace structures. Since then it is gradually 

employed in various high-temperature applications. 

Examples include astronautic and aerospace structures like 

rocket launch pad, space vehicle, aircraft, etc. (Hebali et al. 

2014, Al-Basyouni et al. 2015, Attia et al. 2015, Mahi et al. 

2015, Bourada et al. 2015, Ait Atmane et al. 2015, 

Belkorissat et al. 2015, Boukhari et al. 2016, Kar and Panda 

2016a). Recently, various research studies are performed for 

the thermo-mechanical response of FGM components. For 

designing FGM plates for application in high-temperature 

environment, thermal buckling load is an important 

parameter to be considered. Liew et al. (2004) studied the 

post-buckling and buckling of moderately thick composite  
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plates comprising FG layers under thermal loading. Both 

perfect and imperfect FG plates are considered, and 

temperature dependency of material constituents is also 

included. Na and Kim (2006) presented a finite element 

approach to study the instability behavior of clamped 

unsymmetric composite FG plates. In their study, 

temperature dependency of material properties is also 

included. Matsunaga (2009) employed a two-dimensional 

global higher-order deformation theory for thermal buckling 

of FGM plates. Zhao et al. (2009) studied the mechanical 

and thermal buckling response of FG ceramic-metal plates 

using the first-order shear deformation plate theory, in 

conjunction with the Ritz method. Also, Fuchiyama and 

Noda (1995) examined an FGM plate made of ZrO2 and Ti 

6Al 4V under thermal loading. Piovan and Machado (2011) 

investigated dynamic stability response of thin-walled FGM 

beams under axial loading with heat conduction across the 

thickness. Based on first-order shear deformation theory, 

Ma and Lee (2011, 2012) examined thermal post-buckling 

behavior of FG beams under uniform temperature rise using 

both temperature-dependent (TD) and TID material 

properties. Kettaf et al. (2013) studied the thermal buckling 

of FG sandwich plates using a new hyperbolic shear 

displacement model. Duc and Cong (2013) investigated the 

nonlinear post-buckling of symmetric S-FGM plates resting 

on elastic foundations using higher order shear deformation 

plate theory in thermal environments. Tounsi et al. (2013) 

presented a refined trigonometric shear deformation theory 
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for thermo-elastic bending of FG sandwich plates. 

Bouderba et al. (2013) investigated the thermo-mechanical 

bending response of FG thick plates resting on Winkler-

Pasternak elastic foundations. Houari et al. (2013) 

presented a thermo-elastic bending analysis of functionally 

graded sandwich plates using a new higher order shear and 

normal deformation theory. Zidi et al. (2014) examined the 

bending behavior of FG plates under hygro-thermo-

mechanical loading using a four variable refined plate 

theory. Ait Amar Meziane et al. (2014) presented an 

efficient and simple refined theory for buckling and free 

vibration of exponentially graded sandwich plates under 

various boundary conditions. Bousahla et al. (2015) studied 

thermal stability of plates with functionally graded 

coefficient of thermal expansion. Bakora and Tounsi (2015) 

discussed the thermo-mechanical post-buckling response of 

thick FG plates resting on elastic foundations. Hamidi et al. 

(2015) proposed a sinusoidal plate theory with 5-unknowns 

and stretching effect for thermo-mechanical bending of FG 

sandwich plates. Kar et al. (2015) presented a nonlinear 

flexural analysis of laminated composite flat panel under 

hygro-thermo-mechanical loading. Kar and Panda (2015a) 

discussed the thermo-elastic behavior of FG doubly curved 

shell panels using nonlinear finite element method. Akavci 

(2016) studied the mechanical behavior of FG sandwich 

plates on elastic foundation. Recently, Laoufi et al. (2016) 

studied the mechanical and hygro-thermal response of FG 

plates using a hyperbolic shear deformation theory. 

Bouderba et al. (2016) discussed the thermal buckling of 

FG sandwich plates using a simple shear deformation 

theory. Beldjelili et al. (2016) analyzed the hygro-thermo-

mechanical bending of S-FGM plates resting on variable 

elastic foundations using a four-variable trigonometric plate 

theory. The nonlinear free vibration behavior of laminated 

composite shell panels is studied in detail with and without 

hygrothermal effect by Mahapatra et al. (2016a, b, c, d, e, 

f), Singh and Panda (2015) and Mahapatra and Panda 

(2015, 2016). The buckling, post-buckling and thermo-

mechanical responses of composite structures have been 

also reported in the open literature (Panda and Singh 2009, 

2010a, b, 2011, 2013a, b, c, d, Kar and Panda 2015b, c, 

2016b, c, d, Panda and Katariya 2015, Katariya and Panda 

2016, Mehar and Panda 2016a, b, 2017, Mehar et al. 2016, 

Kar et al. 2016). 

It is worth noting that in many of the above mentioned 

HSDTs as in the CPT or the simple FSDT proposed by 

Meksi et al. (2015) and Bellifa et al. (2016), the expression 

or is present in the displacement field. Consequently, the 

numerical computation is harder to handle. Normally C1-

FEM is required. However, this can be changed if the 

displacement field is composed with undetermined integral 

terms as in this article. 

In the present investigation, a novel displacement field 

is developed by considering higher-order distribution of in-

plane displacements within the plate thickness and the new 

constructed displacement field is employed to study the 

thermal buckling behavior of FG sandwich plates. The use 

of the integral term in the plate kinematics led to a 

reduction in the number of unknowns and governing 

equations. The material characteristics as Young’s modulus 

and thermal expansion coefficient vary according a power 

law form through-the-thickness coordinate. The governing 

equations are solved analytically for a FG sandwich plate 

with simply-supported boundary conditions and subjected 

to various type of temperature rise. The results based on the 

hyperbolic theory are compared with those obtained by the 

higher- and first-order shear deformation plate theories and 

classical plate theory. The effects of several parameters are 

discussed. 

 

 

2. Problem formulation 
 

In this work, a rectangular sandwich plate with uniform 

thickness h is considered. a and b are the length and the 

width of the plate, respectively (Fig. 1). The face layers of 

the sandwich plate are made of an isotropic material with 

material properties varying smoothly in the z (thickness) 

direction only. The core layer is made of an isotropic 

homogeneous material. The vertical positions of the bottom 

surface, the two interfaces between the core and faces 

layers, and the top surface are denoted, respectively, by h0=-

h/2, h1, h2 and h3=h/2. The total thickness of the FG plate is 

h, where h=tC+tFGM and tC=h2-h1. tC and tFGM are the layer 

thickness of the core and all-FGM layers, respectively. 

The effective material properties at the j-th layer of FG 

plates according to the power-law form are defined by 

(Belabed et al. 2014, Ait Yahia et al. 2015, Bounouara et al. 

2016, Houari et al. 2016, Tounsi et al. 2016) 

  m

j

mc

j PzVPPzP  )()( )()(  (1) 

where Pm and Pc are the Young’s modulus (E), Poisson’s 

ratio (v) of the bottom and top faces of layer 1 (h0≤z≤h1), 

respectively, and vice versa for layer 3 (h2≤z≤h3) depending 

on the volume fraction V
(j)

 (j=1,2,3). Note that Pm and Pc 

are, respectively, the corresponding properties of the metal 

and ceramic of the FG sandwich plate. The volume fraction 

V
(j)

 of the FGMs is assumed to obey a power-law function 

along the thickness direction (Houari et al. 2011, Bennoun 

et al. 2016) 
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Fig. 1 Geometry of the FGM sandwich plate 
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Fig. 2 Variation of volume fraction function through 

plate thickness for various values of the gradient index 

k with tc=0.5h 

 

 

where k is the power-law exponent, which is non-negative 

and 









2
,

2

hh
z . Fig. 2 shows the through-the-thickness 

variation of the volume fraction function of the ceramic for 

k=0.01, 0.2, 0.5, 2, 5, and 10. Note that the core of the plate 

is fully ceramic while the bottom and top surfaces of the 

plate are metal-rich. 

 
2.1 Kinematics and strains 

 

In this study, the conventional HSDT is modified by  

considering some simplifying suppositions so that the  

number of unknowns is reduced. The displacement    

field of the conventional HSDT is defined by  
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(3c) 

Where u0; v0; w0, φx, φyare five unknown displacements 

of the mid-plane of the plate, f(z) represents shape function 

defining the variation of the transverse shear strains and 

stresses within the thickness. By considering that φx=

 dxyxx ),(  and φy=  dyyxy ),( , the Kinematic of the 

present theory can be expressed in a simpler form as 
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In this study, the shape function is defined by 
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It can be seen that the Kinematic in Eq. (4) presents only 

four unknowns (u0, v0, w0 and θ). The non-linear von 

Karman strain–displacement equations are as follows 
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The integrals used in the above equations shall be resolved 

by a Navier type method and can be given as follows 

yx
Adx

y 












2

' ,   
yx

Bdy
x 












2

' ,  

x
Adx






 ' , 

y
Bdy






 ' 

 

(8) 

Where the coefficients A’ and B’ are expressed according to 

the type of solution used, in this case via Navier. Therefore, 

A’, B’, k1 and k2 are expressed as follows 

(3a) 

(3c) 

(6) 

403



 

Bouchra Elmossouess, Said Kebdani, Mohamed Bachir Bouiadjra and Abdelouahed Tounsi 

 

2

1
'


A ,  

2

1
'


B ,

2
1 k ,

2
2 k  (9) 

where α and β are used in expression (20). 

It should be noted that unlike the FSDT, this model does 

not require shear correction coefficients. Moreover, the 

constitutive relations of a FG sandwich plate can be 

expressed as 
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where Cij (i, j=1, 2, 4, 5, 6) are the elastic stiffness of the FG 

sandwich plate defined by 
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and T(x, y, z) is the temperature rise through-the-thickness. 

 
2.2 Stability equations 
 

The equilibrium equations of FG sandwich plates under 

thermal loadings may be obtained on the basis of the 

stationary potential energy (Reddy 1984, Bousahla et al. 

2014, Larbi Chaht et al. 2015, Meradjah et al. 2015, 

Nguyen et al. 2015, Bourada et al. 2016, Draiche et al. 

2016). The equilibrium equations are deduced as 
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Using constitutive relations, the stress and moment   

resultants are defined by 
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Upon substitution of Eq. (6) into Eq. (10) and the 

subsequent results into Eq. (13) the stress resultants are 

determined in the matrix form as 
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Where stiffness components are expressed as 
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The stress and moment resultants, 
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In order to determine the stability equations and study the 

thermal buckling behavior of the FG sandwich plate, the 

adjacent equilibrium criterion is employed (Brush and 

Almroth 1975). By using this formulation, the governing 

stability equations are obtained as 
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(17) 

where 
0
xN , 

0
xyN  and 

0
yN  are the pre-buckling forces. 

Eq. (17) can be expressed in terms of displacements (
1
0u , 

1
0v , 

1
0w , 

1 ) by substituting for the stress resultants from 

Eq. (14). For FG sandwich plate, the governing equations 

Eq. (17) take the form 
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3. Closed-form solution 

 

Rectangular sandwich plates are generally classified 

according to the type of support employed. Here, we are 

concerned with the exact solutions of Eq. (18) for a simply 

supported FG sandwich plate. 

Based on the Navier method, the following expansions 

of displacements 
1

0u ; 
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where 
mnU , 

mnV , 
mnW , 

mnX  are arbitrary parameters  

to be determined. α and β are defined as 

am /   and bn /   (20) 

Substituting Eq. (19) into Eq. (18), the closed-form solution 

of buckling load can be obtained from 
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By using the condensation technique to eliminate the axial 

displacements mnU  and mnV , Eq. (21) can be rewritten as 
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The system of homogeneous Eq. (23) has a nontrivial 

solution only for discrete values of the buckling load. For a 

nontrivial solution, the determinant of the coefficients (Wmn, 

Xmn) must equal zero 
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The obtained equation may be solved for the buckling load. 

This gives the following relation for buckling load 
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In this case, a rectangular sandwich plate subjected to 

thermal loads is examined.To obtain the critical buckling 

temperature, the pre-buckling thermal loads should be 

determined. Hence, solving the membrane form of the 

equilibrium equations and by using the technique proposed 

by Meyers and Hyer (1991), the pre-buckling load 

resultants of FG sandwich plate exposed to the temperature 

variation within the thickness are found to be 
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In this article, to examine the effect of the considered 

type of temperature variation within the thickness on 

stability buckling response of FG sandwich plate, three 

types of thermal loading within the plate thickness are 

taken. 

 

3.1 Uniform temperature rise (UTR) 
 
It is assumed that the initial uniform temperature of the FG 

sandwich plate is Ti, and the temperature is uniformly elevated 

to a final value Tf such that the plate buckles. Thus, the 

temperature change is 
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By employing the equations (26), (27), and (28) the 

following equation for thermal buckling load is deduced 
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(29) 

 
3.2 Linear temperature distribution through the 

thickness (LTD) 
 
The following linear temperature distribution within the 

thickness of the FG sandwich plate is considered 
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Identically to the UTR procedure, the following expression 

for thermal buckling load is deduced 
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3.3 Non-linear temperature distribution through the 
thickness (NTD) 

 
The following non-linear temperature distribution within 

the thickness of the FG sandwich plate is considered  
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Identically to the UTR procedure, the following expression 

for thermal buckling load is deduced 
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where γ is the temperature exponent (0<γ<∞). Note that the 

value of γ equal to unity represents a linear temperature 

change across the thickness. While the value of γ excluding 

unity represents a non-linear temperature change through-

the-thickness.  

 

 

5. Results and discussion 
 

This section is dedicated to inspect the thermal buckling 

characteristics of FG sandwich plates under thermal 

loading. For this purpose, three different functionally 

graded plate materials are considered for the present study. 

These are Titanium alloy (Ti–6A1–4V)-Zirconia (ZrO2), 

Stainless Steel (SUS304)-Silicon Nitride (Si3N4), and 

Stainless Steel-Alumina (Al2O3) and hereafter, these are 

referred as FGM 1, FGM 2 and FGM 3 respectively. The 

material properties of the constituents of these FGMs are 

given in Table 1. The general formulation presented in the 

previous sections for the thermal stability analysis of the FG 

sandwich plates subjected to uniform, linear and non-linear 

temperature rises through-the-thickness is illustrated in this 

section using the new HSDT.  

The shear correction factor for FSDT is set equal to 5/6. 

For the linear and non-linear temperature rises through-the-

thickness, Tm=25°C. 

In Tables 2-4, FGM 1 is considered and comparisons of 

the critical buckling temperatures difference (Tcr=10
-3

ΔTcr) 

of FG sandwich plates with those of reported by Kettaf et 

al. (2013) is presented for the uniform, linear and nonlinear 

cases of temperature distribution within the thickness, 

respectively. In these tables, critical buckling temperature 

 

 

Table 1 Material properties used in the FG sandwich plate 

Properties Ti–6A1–4V ZrO2 SUS304 Si3N4 Al2O3 

E (GPa) 66.2 244.27 201.04 348.43 349.55 

v 0.3 0.3 0.3 0.3 0.3 

α (10-6/K) 10.3 12.766 12.330 5.8723 6.8269 

results are presented for various gradient indices and 

thickness of the core tc (ceramic layer) at a/h=5. The results 

of present work are in good agreement with the previous 

ones. It can be observed from Tables 2 and 3, that with 

increasing the gradient index k, the thermal buckling 

temperatures are reduced. Thus, the reduction in thermal 

buckling temperature of a FG sandwich plate could be 

attributed to the metal property. This remark is also 

confirmed when small gradient indices are considered (k≤2) 

for all values of tc. A small gradient index k shows that the 

ceramic is the dominant constituent in FG sandwich plates. 

However, Table 3 demonstrates that the thermal stability 

temperatures are reduced with decreasing the gradient index 

k when the plate is subjected to non-linear temperature rise 

with γ=5. It can be seen that the thermal stability 

temperature Tcr is reduced with increasing the thickness of 

the core layer (tc) for all employed index. 

Fig. 3 presents the influence of the gradient index on the 

critical stability temperature Tcr of FG sandwich plates 

under uniform, linear and non-linear temperature change 

through-the-thickness using the present HSDT. It can be 

seen from Fig. 3 that the critical stability temperature for 

the plates under a non-linear temperature variation is higher 

than that for the plates under uniform temperature variation.  
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Fig. 3 Critical stability temperature difference Tcr of 

FGM 1 versus the gradient index k for FG sandwich 

square plate with a/h=10 and tc=0.6h 
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Fig. 4 Critical stability temperature difference Tcr of FGM 1 

versus the thickness ratio a/h for FG sandwich square plate 

with k=2 and tc=0.8h 
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Table 2 Critical buckling temperature Tcr of FG sandwich square plates under uniform temperature rise versus gradient 

index k and tc/h (a/h=5) 

   k     

tc/h Theory 0 0.2 0.5 1 2 5 10 

0 

Present 3.23681 3.07015 2.86983 2.68604 2.62702 2.92887 3.29712 

Ref(a) 3.23720 3.07138 2.87207 2.68975 2.63325 2.93978 3.30959 

SSDT(a) 3.23775 3.071197 2.87277 2.69065 2.63460 2.94205 3.31226 

TSDT(a) 3.23652 3.07042 2.87074 2.68781 2.63018 2.93446 3.30340 

FSDT(a) 3.23493 3.04858 2.83507 2.64222 2.57355 2.86226 3.23289 

CPT(a) 3.96470 3.66606 3.34559 3.06734 2.96200 3.32950 3.82441 

0.2 

Present 3.23681 3.05449 2.82968 2.59114 2.39414 2.34515 2.41700 

Ref(a) 3.23720 3.05543 2.83135 2.59388 2.39856 2.35252 2.42641 

SSDT(a) 3.23775 3.05598 2.83194 2.59458 2.39953 2.35401 2.42827 

TSDT(a) 3.23652 3.05461 2.83030 2.59241 2.39637 2.34898 2.42195 

FSDT(a) 3.23493 3.03394 2.79675 2.55053 2.34734 2.28926 2.35538 

CPT(a) 3.9647 3.64978 3.30066 2.955338 2.68016 2.59922 2.68195 

0.4 

Present 3.23681 3.05896 2.84261 2.60446 2.37248 2.19597 2.15439 

Ref(a) 3.23720 3.05915 2.84285 2.60512 2.37406 2.19921 2.17624 

SSDT(a) 3.23775 3.05956 2.84318 2.60545 2.3745 2.19992 2.17714 

TSDT(a) 3.23652 3.05867 2.84246 2.60462 2.3732 2.19763 2.17417 

FSDT(a) 3.23493 3.04171 2.81495 2.57038 2.33409 2.15296 2.12571 

CPT(a) 3.96470 3.66567 3.33354 2.99117 2.67295 2.43609 2.39804 

0.5 

Present 3.23681 3.07004 2.87034 2.65022 2.42889 2.23857 2.17543 

Ref(a) 3.2372 3.0698 2.86974 2.64965 2.42885 2.23972 2.17737 

SSDT(a) 3.23775 3.07014 2.86992 2.64976 2.429 2.24005 2.17784 

TSDT(a) 3.23652 3.06952 2.86972 2.6497 2.42873 2.2391 2.1764 

FSDT(a) 3.23493 3.05527 2.84659 2.62069 2.39542 2.2013 2.13606 

CPT(a) 3.9647 3.68764 3.38155 3.06366 2.75801 2.50252 2.41816 

0.6 

Present 3.23681 3.08772 2.91272 2.72089 2.52472 2.34401 2.27490 

Ref(a) 3.2372 3.08713 2.91139 2.71917 2.52309 2.34313 2.27452 

SSDT(a) 3.23775 3.08741 2.91146 2.71909 2.52297 2.3431 2.27458 

TSDT(a) 3.23652 3.08699 2.91168 2.71971 2.52367 2.34345 2.27461 

FSDT(a) 3.23493 3.07586 2.89364 2.6968 2.49698 2.31286 2.2419 

CPT(a) 3.9647 3.71993 3.45164 3.17226 2.89771 2.65182 2.55878 

0.8 

Present 3.23681 3.14514 3.04268 2.93303 2.81997 2.70848 2.66018 

Ref(a) 3.2372 3.14445 3.04101 2.93052 2.81681 2.74134 2.65659 

SSDT(a) 3.23775 3.14474 3.04107 2.93038 2.8165 2.74092 2.65609 

TSDT(a) 3.23652 3.14431 3.04137 2.93131 2.81794 2.74272 2.65798 

FSDT(a) 3.23493 3.13952 3.03406 2.92193 2.80661 2.72895 2.64315 

CPT(a) 3.9647 3.818 3.66058 3.49712 3.33246 3.21552 3.10423 

1 

Present 3.23681 3.23681 3.23681 3.23681 3.23681 3.23681 3.23681 

Ref(a) 3.2372 3.2372 3.2372 3.2372 3.2372 3.2372 3.2372 

SSDT(a) 3.23775 3.23775 3.23775 3.23775 3.23775 3.23775 3.23775 

TSDT(a) 3.23652 3.23652 3.23652 3.23652 3.23652 3.23652 3.23652 

FSDT(a) 3.23493 3.23493 3.23493 3.23493 3.23493 3.23493 3.23493 

CPT(a) 3.96470 3.96470 3.96470 3.96470 3.96470 3.96470 3.96470 

(a) Kettaf et al. (2013) 
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Table 3 Critical buckling temperature of FG sandwich square plates under linear temperature rise versus gradient index 

k and tc/h (a/h=5) 

   k     

tc/h Theory 0 0.2 0.5 1 2 5 10 

0 

Present 6.42362 6.09032 5.68966 5.32209 5.20405 5.80773 6.54425 

Ref(a) 6.42441 6.09275 5.69414 5.32949 5.21651 5.82957 6.56918 

SSDT(a) 6.4255 6.09396 5.69554 5.3313 5.2192 5.83411 6.57458 

TSDT(a) 6.42305 6.09084 5.69148 5.32562 5.21036 5.81891 6.5568 

FSDT(a) 6.41986 6.04716 5.62014 5.09711 5.09711 5.67452 6.41578 

CPT(a) 7.8794 7.28211 6.64118 5.874 5.874 6.60901 7.59882 

0.2 

Present 6.42362 6.05899 5.60936 5.13228 4.73827 4.64031 4.78400 

Ref(a) 6.42441 6.06087 5.61271 5.13775 4.74712 4.65504 4.80264 

SSDT(a) 6.4255 6.06197 5.61388 5.13917 4.74907 4.65803 4.80632 

TSDT(a) 6.42305 6.05922 5.61059 5.13482 4.74275 4.64797 4.79372 

FSDT(a) 6.41986 6.01789 5.5435 5.05105 4.64468 4.52851 4.66058 

CPT(a) 7.8794 7.24955 6.55131 5.86076 5.31032 5.14843 5.31369 

0.4 

Present 6.42362 6.06791 5.63522 5.15892 4.69495 4.34195 4.25879 

Ref(a) 6.42441 6.0683 5.63571 5.16024 4.69812 4.34842 4.26735 

SSDT(a) 6.4255 6.06913 5.63636 5.16089 4.699 4.34984 4.24818 

TSDT(a) 6.42305 6.06734 5.63491 5.15923 4.6964 4.34526 4.26325 

FSDT(a) 6.41986 6.03341 5.5799 5.09075 4.61818 4.25591 4.16712 

CPT(a) 7.8794 7.28133 6.61708 5.93233 5.29588 4.82217 4.70737 

0.5 

Present 6.42362 6.09009 5.69067 5.25044 4.80779 4.42714 4.30086 

Ref(a) 6.42441 6.08961 5.68948 5.24929 4.8077 4.42943 4.30474 

SSDT(a) 6.4255 6.09029 5.68986 5.24952 4.808 4.43011 4.30569 

TSDT(a) 6.42305 6.08903 5.68943 5.2494 4.80746 4.42821 4.30281 

FSDT(a) 6.41986 6.06053 5.64319 5.19137 4.74084 4.35259 4.22211 

CPT(a) 7.8794 7.32529 6.7131 6.07732 5.46601 4.95505 4.78633 

0.6 

Present 6.42362 6.12545 5.77543 5.39175 4.99943 4.63803 4.49981 

Ref(a) 6.42441 6.12425 5.77278 5.38833 4.99619 4.63616 4.49905 

SSDT(a) 6.4255 6.12482 5.77291 5.38818 4.99595 4.63609 4.84881 

TSDT(a) 6.42305 6.12398 5.77335 5.38942 4.99734 4.6368 4.49922 

FSDT(a) 6.41986 6.10171 5.73728 5.34361 4.94396 4.57561 4.43382 

CPT(a) 7.8794 7.38985 6.85328 6.29453 5.74542 5.25352 5.06756 

0.8 

Present 6.42362 6.24028 6.03536 5.81607 5.58995 5.36696 5.27037 

Ref(a) 6.42441 6.23889 6.03202 5.81104 5.58362 5.35987 5.26317 

SSDT(a) 6.4255 6.23949 6.03215 5.81076 5.58301 5.35923 5.26229 

TSDT(a) 6.42305 6.23862 6.03273 5.81262 5.58589 5.36259 5.26598 

FSDT(a) 6.41986 6.22905 6.01812 5.79385 5.56322 5.33541 5.2363 

CPT(a) 7.8794 7.586 7.27115 6.94424 6.61492 6.29563 6.15846 

1 

Present 6.42362 6.42362 6.42362 6.42362 6.42362 6.42362 6.42362 

Ref(a) 6.42441 6.42441 6.42441 6.42441 6.42441 6.42441 6.42441 

SSDT(a) 6.4255 6.4255 6.4255 6.4255 6.4255 6.4255 6.4255 

TSDT(a) 6.42305 6.42305 6.42305 6.42305 6.42305 6.42305 6.42305 

FSDT(a) 6.41986 6.41986 6.41986 6.41986 6.41986 6.41986 6.41986 

CPT(a) 6.42363 6.12545 5.77544 5.39175 4.99944 4.63813 4.49981 

(a) Kettaf et al. (2013) 
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Table 4 Critical buckling temperature Tcr of FG sandwich square plates under non-linear temperature rise versus 

gradient index k and tc/h (a/h=5 and γ=5) 

   k     

tc/h Theory 0 0.2 0.5 1 2 5 10 

0 

Present 19.27088 20.56301 21.606477 22.39586 23.00134 23.66406 23.96531 

Ref(a) 19.27322 20.57122 21.62347 22.42701 23.05643 23.75304 24.05661 

SSDT(a) 19.27655 20.57531 21.62882 22.43468 23.06838 23.77163 24.07624 

TSDT(a) 19.26915 20.56479 21.61337 22.41074 23.02926 23.70963 24.01127 

FSDT(a) 19.25957 20.41729 21.34246 22.027 22.52869 23.12129 23.49484 

CPT(a) 23.6382 24.58692 25.21986 25.60494 25.96247 26.92893 27.8272 

0.2 

Present 19.27088 20.42384 21.33354 21.97190 22.33166 22.57761 22.76694 

Ref(a) 19.27322 20.43016 21.34626 21.99533 22.37338 22.64929 22.85562 

SSDT(a) 19.27655 20.43388 21.35077 22.00145 22.38259 22.66392 22.87344 

TSDT(a) 19.26915 20.42463 21.33822 21.98279 22.35275 22.61489 22.81317 

FSDT(a) 19.25957 20.28528 21.08307 21.62417 21.89055 22.03367 22.17958 

CPT(a) 23.6382 24.43703 24.91598 25.09061 25.02775 25.04991 25.2877 

0.4 

Present 19.27088 20.24425 21.00562 21.53603 21.80468 21.83985 21.83146 

Ref(a) 19.27322 20.24553 21.00745 21.54152 21.81937 21.87237 21.87534 

SSDT(a) 19.27655 20.2483 21.00993 21.54429 21.82352 21.87961 21.88463 

TSDT(a) 19.26915 20.24234 21.00447 21.53734 21.81141 21.85652 21.85429 

FSDT(a) 19.25957 20.12913 20.79943 21.25144 21.44811 21.40709 21.36153 

CPT(a) 23.6382 24.29255 24.66557 24.76464 24.59556 24.25535 24.13098 

0.5 

Present 19.27088 20.13367 20.80829 21.28753 21.54826 21.58945 21.55912 

Ref(a) 19.27322 20.13209 20.80394 21.28287 21.54783 21.60059 21.57856 

SSDT(a) 19.27655 20.13435 20.80531 21.2838 21.54921 21.60389 21.58333 

TSDT(a) 19.26915 20.13019 20.80375 21.2833 21.54679 21.59462 21.56887 

FSDT(a) 19.25957 20.03597 20.63466 21.04804 21.24818 21.22586 21.16437 

CPT(a) 23.6382 24.21722 24.54686 24.64006 24.49836 24.1638 23.99263 

0.6 

Present 19.27088 20.00566 20.58022 20.99952 21.25335 21.33412 21.32073 

Ref(a) 19.27322 20.00176 20.57076 20.98623 21.23955 21.32555 21.31715 

SSDT(a) 19.27655 20.00362 20.57125 20.98565 21.23856 21.32526 21.31771 

TSDT(a) 19.26915 20.00087 20.5728 20.99045 21.24446 21.32848 21.31794 

FSDT(a) 19.25957 19.92815 20.44424 20.81202 21.01752 21.04701 21.00808 

CPT(a) 23.6382 24.1352 24.421 24.51562 24.42463 24.16529 24.01085 

0.8 

Present 19.27087 19.68648 20.00895 20.25624 20.43697 20.55455 20.58763 

Ref(a) 19.27322 19.6821 19.99784 20.23872 20.41383 20.5274 20.55953 

SSDT(a) 19.27655 19.684 19.99828 20.23774 20.41159 20.5242 20.55608 

TSDT(a) 19.26915 19.68124 20.00022 20.24422 20.42213 20.5378 20.5705 

FSDT(a) 19.25957 19.65105 19.95177 20.17887 20.33926 20.43371 20.45455 

CPT(a) 23.6382 23.9319 24.10594 24.18546 24.18431 24.11121 24.05679 

1 

Present 19.27087 19.27087 19.27087 19.27087 19.27087 19.27087 19.27087 

Ref(a) 19.27322 19.27322 19.27322 19.27322 19.27322 19.27322 19.27322 

SSDT(a) 19.27655 19.27655 19.27655 19.27655 19.27655 19.27655 19.27655 

TSDT(a) 19.26915 19.26915 19.26915 19.26915 19.26915 19.26915 19.26915 

FSDT(a) 19.25957 19.25957 19.25957 19.25957 19.25957 19.25957 19.25957 

CPT(a) 23.63820 23.63820 23.63820 23.63820 23.63820 23.63820 23.63820 

(a) Kettaf et al. (2013) 
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Fig. 5 Critical stability temperature difference Tcr of FGM 1 

versus the plate aspect ratio b/a for FG sandwich square 

plate with k=1 and tc=0.8h 

 

 

While Tcr for the plates subjected to a linear temperature 

variation is intermediate to the two previous thermal 

loading cases.  

Fig. 4 shows the variation of critical temperatures Tcr of 

FG sandwich square plates under to various thermal loading 

cases with respect to the thickness ratio a/h. It can be 

remarked that with increasing a/h, the critical temperature 

Tcr decreases monotonically. Note that in the case of the 

uniform temperature rise, the critical temperatures Tcr of the 

FG sandwich plate take the smaller values than that of the 

plate under linear temperature rise and the latter is smaller 

than that of the plate under non-linear temperature rise. 

Also, it is observed that Tcr increases as the nonlinearity 

parameter γ increases. 

Fig. 5 represents the influences of the aspect ratio b/a on 

the critical stability temperature Tcr of FG sandwich 

subjected to different types of thermal loads. It can be 

observed that, the critical temperature Tcr reduces gradually 

with increasing the plate aspect ratio b/a wherever the 

thermal loading type. It is also remarked from Fig. 5 that 

the Tcr increases with increasing of the nonlinearity 

parameter γ. 

Fig. 6 demonstrates the effect of thickness of the core tc 

on the thermal stability behavior for the FG sandwich 

square plates under the uniform, linear and nonlinear types 

of temperature variation within the thickness, respectively. 

It can be deduced from Figs. 6(a) and (b) (uniform and 

linear temperature), that the thermal stability temperatures 

are reduced with increasing the gradient index k. A small 

values of the gradient index k indicates that the ceramic is 

the dominant constituent in the FG plate. In addition, it is 

remarked that the thermal temperatures increase when 

tc≥0.4 which means that the ceramic is also the dominant 

constituent in the FG plate. As expected, the thermal 

temperature becomes maximum for the fully ceramic plate 

(tc/h=1) in the cases of uniform and linear thermal loads. 

However, in case of nonlinear thermal load (Fig. 6(c)), the 

thermal temperature becomes minimum for the fully 

ceramic plate and the thermal temperatures increase with 

increasing the gradient index k. 

The variation of the critical temperature versus the 

gradient index k is plotted in Fig. 7(a)-(c) for three different 

0,0 0,2 0,4 0,6 0,8 1,0

2,2

2,4

2,6

2,8

3,0

3,2

3,4

C
ri

tic
a

l t
e

m
p

e
ra

tu
re

 (
T

cr
)

t
c
/h

k=0,2

k=1

k=5

(a) Case of uniform temperature

 

0,0 0,2 0,4 0,6 0,8 1,0

4,4

4,8

5,2

5,6

6,0

6,4

(b) Case of linear temperature

k=5

k=1

C
ri

tic
a

l t
e

m
p

e
ra

tu
re

 (
T

cr
)

t
c
/h

k=0,2

 

0,0 0,2 0,4 0,6 0,8 1,0

19

20

21

22

23

24
(c) Case of nonlinear temperature

t
c
/h

k=0,2

k=1

C
ri

tic
a

l t
e

m
p

e
ra

tu
re

 (
T

cr
) k=5

 
Fig. 6 Critical stability temperature difference Tcr of 

FGM 1 sandwich square plate versus the gradient index k 

and tc/h: (a) Uniform temperature; (b) Linear 

temperature; (c) Nonlinear temperature (γ=5) 

 

 

FG plates exposed to uniform, linear and nonlinear thermal 

loads, respectively. It can be concluded from Fig. 7 that the 

bending stiffness of plates decreases with increase in  k  

values wherever the thermal loading type. This reduction in 

thermal buckling temperature of FG sandwich plates could 

be attributed to the metal property. In all considered cases 

of thermal loading, the stiffness exhibited by FGM 2 

sandwich plate is the highest. 

The critical buckling temperature versus the thickness of 

the core layer ratio (tc/h) plots in non-dimensional Tcr-tc/h 

plane is presented in Fig. 8(a)-(c). In each of the figures, 

thermal buckling behavior is shown for FGM 1, FGM 2 
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Fig. 7 Critical stability temperature difference Tcr of 

FGM 1, FGM 2 and FGM 3 sandwich square plates 

versus the gradient index k with tc/h=0.6: (a) Uniform 

temperature; (b) Linear temperature; (c) Nonlinear 

temperature (γ=2) 

 

 

and FGM 3 plates. In general, the critical buckling 

temperature is shown to be increasing with increased the 

thickness (tc/h) level as a result of enhanced stiffening 

effect. However, when tc/h<0.4, the thermal buckling 

behavior is reversed for FGM 1. Again, in all considered 

cases of thermal loading, the stiffness exhibited by FGM 2 

sandwich plate is the highest. 
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Fig. 8 Critical stability temperature difference Tcr of 

FGM 1, FGM 2 and FGM 3 sandwich square plates 

versus tc/h with k=2 and a/h=5: (a) Uniform 

temperature; (b) Linear temperature; (c) Nonlinear 

temperature (γ=2) 

 

 

5. Conclusions 

 

In this article, a new HSDT is developed to examine the 

thermal stability behaviors of FG sandwich plates subjected 

to uniform, linear and nonlinear temperature distributions 

across the thickness. By considering further simplifying 

suppositions to the existing HSDTs and with the 

introduction of an undetermined integral term, the number 

of variables and governing equations of the proposed HSDT 

are reduced by one, and thus, make this theory simple and 
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efficient to use. The material properties of the sandwich 

plate faces are assumed to vary according to power law 

distribution of the volume fraction of the constituents. The 

governing equations are obtained by using the energy based 

variational principle and then are solved using Navier's 

procedure. The accuracy of the proposed theory has been 

checked for the thermal buckling analysis of FG sandwich 

plates. All comparison studies demonstrate that the thermal 

buckling loads obtained by the proposed theory with four 

unknowns are almost identical with those predicted by other 

shear deformation theories containing five unknowns. The 

practical utilities of this theory are: (1) there is no need to 

use a shear correction factor; (2) the finite element model 

based on this model will be free from shear locking since 

the classical plate theory comes out as a special case of the 

proposed theory; and (3) the theory is simple and time 

efficient due to involving only four unknowns. In 

conclusion, it can be said that the proposed model is 

accurate and efficient in predicting the thermal buckling 

response of FG sandwich plates. 
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