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1. Introduction 

 

Uncertainties always exist in engineering systems such 

as material properties, load, and so on. The traditional 

reliability analysis methods based on classical probability 

theory has been widely adopted in engineering fields (Acar 

et al. 2005). This methods include the Monte Carlo 

Simulation method (MCS), important sampling method 

(Melchers 1989), the Monte Carlo Markov Chain (Lu 

2009), First Order Second Moment (Cornell 1969) and so 

on. However, due to the lack of data, incomplete 

information and other factors, the precise probability 

distribution of uncertain parameters is not entirely obtained. 

Under this situation, the uncertain variables may be 

modeled by fuzzy theory (Chakraborty et al. 2009, Fang et 

al. 2015, Zhang 2015), ET (Suo 2013), convex set theory 

(Bi 2014) or other non-probability theories (Li 2011). ET, 

for instance, an imprecise probability theory based on belief 

function and plausibility functions has been widely applied 

in in engineering practices (Oberkampf et al. 2001, Bai et 

al. 2012). However, due to the discontinuous nature of 

uncertainty quantification in ET, the computational cost of 

reliability analysis based on ET is high (Du 2006), which is 

still a challenging problem for reliability analysis. 

Therefore, some scholars have focused on this problem. For  
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example, Jiang et al. (2013) presented a novel method to 

deal with the epistemic uncertainty. In this method, a 

uniformity approach is used to deal with the evidence 

variables, through which the original reliability problem can 

be transformed to a traditional reliability problem with only 

random uncertainty. Du et al. (2006) developed a unified 

uncertainty analysis framework using probability and ET, 

and a first order reliability method to conduct the hybrid 

uncertainty problems. However, the parameters processing 

is much computationally expensive. Xiao et al. (2012) 

proposed an unified uncertainty analysis method based on 

the maximum entropy approach and simulation. The 

method avoids the most probability point (MPP) searching 

and non-normal to normal transformation by directly 

sampling in random and interval variables. Tao (2014) 

proposed a novel method for safety analysis of structures 

based on probability and ET. In this method, the probability 

density function of the epistemic variables is assumed 

piecewise uniform distribution. Although the methods 

discussed above have many advantages in reliability 

analysis, the uniformity approach or piecewise uniform 

distribution may not fully represent the judgments of 

experts on the epistemic uncertainty. Therefore, it is urgent 

to investigate a novel ET model to flexibly represent 

epistemic uncertainty. For example, the fuzzy distribution 

may be adopted in focal elements to represent epistemic 

uncertainty. 

Fuzzy set theory is suited to the situations where 

sufficient information is not available for defining a 

probability distribution and represents the available data 
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with fuzzy variables. Zadeh (1965) introduced the concept 

of fuzzy subset Ã of X  by extending the characteristic 

function. The core concept in fuzzy theory is fuzzy subset 

Ã of X which is defined by its membership function uA 

:X → ,0：1-. The value uA(a) represents the membership 

degree of a point a in the set “A”. Conventional fuzzy 

structural analysis is oriented to estimate the membership 

function of an output structural variable given the 

membership functions of the input ones, which are 

discretized in so-called α-cut levels. Li et al. (2015) 

explained the traditional failure possibility of the structures 

with fuzzy variables from the probability perspective and 

proposed to analyze the reliability of the structure with 

fuzzy variables based on the Kriging surrogate model 

method. Aghili et al. (2014) addressed the issues of both 

symmetric and asymmetric uncertainty distributions in 

fuzzy failure rates and that how a fuzzy result can 

profoundly come under the influence of them. Purba et al. 

(2014) proposed a fuzzy-based reliability approach to 

evaluate basic events of system fault trees whose failure 

precise probability distributions of lifetime are not 

available. Kumar et al. (2012) addressed the fuzzy system 

reliability analysis using different types of intuitionistic 

fuzzy numbers, by which membership functions and non-

membership functions of fuzzy reliability of both series and 

parallel system could be constructed. In fuzzy structural 

analysis, Hurtado et al. (2012) suggested that the reliability 

analysis with conventional α-cut levels could be replaced by 

the first-order reliability analysis. Although fuzzy set is 

widely applied in reliability analysis, how to synthesize the 

judgments of experts on fuzzy variables is still a problem. 

For example, two experts independently give different 

membership functions on the same fuzzy variable, there is 

no appropriate ways to synthesize the two membership 

functions. Recent years, some researchers have investigated 

hybrid reliability method, such as Fuzzy Set and Monte 

Carlo Simulation (Canizes et al. 2012), randomness, 

fuzziness and non-probabilistic method (Ni et al. 2010), 

fuzzy and random (Li et al. 2014), intervals and fuzzy (Fuh 

et al. 2014), probability and fuzzy set theory (Chakraborty 

et al. 2007, Xiao et al. 2012), probability and ET (Bae 

2004), interval and probability (Jiang et al. 2015), fuzzy 

probability (Purba et al. 2015). 

Although researchers have proposed many methods to 

deal with hybrid uncertainty, how to represent the epistemic 

uncertainty flexibly and improve the computational 

efficiency and precise is still a challenging for reliability 

analysis. In this paper, a novel ET model based on fuzzy 

distribution and the corresponding combination rules are 

suggested, then, this model is adopted in reliability analysis. 

The authors provide a brief overview of ET and fuzzy set 

theory in Section 1. The ET model based on fuzzy 

distribution is developed in Section 2. Then, the 

combination rules for the novel ET model are provided in 

Section 3, and the reliability analysis procedure is given in 

Section 4. Numerical examples are provided in Section 5 to 

support the proposed method. Finally, the conclusion is 

presented in Section 6. 

  

2. Basic concept of ET and fuzzy set 
 

2.1 Basic concept of ET 
 

ET is developed by Dempster and Shafer (Shafer 1976). 

It can be also regarded as an extension of the classical 

probability theory. Instead of one measure in traditional 

probability theory, ET employs belief 𝑩𝒆𝒍 and plausibility 

𝒑𝒍 to characterize the confidence interval of real reliability 

probability. Under different circumstances, ET can be 

equivalent to the classical probability theory, possibility 

theory, etc. It contains the following important concepts. 

(1) Θ is defined to denote discernment frame. If set 

function m: 2Θ → ,0,1-(2Θ is the power set of Θ) should 

satisfy the following two axioms 

m(ϕ) = 0 

(1) 
∑m(A)

A⊂Θ

= 1 

where m is expressed as the Basic Probability Assignment 

(BPA), and ∀A ⊂ Θ, 𝒎(𝑨) is the basic probability of  𝑨. 

(2) The belief  𝑩𝒆𝒍(𝑨), plausibility  𝑷𝒍(𝑨) and a subset 

𝑨 of 𝑪  are defined by 𝑩𝒆𝒍(𝑨) = ∑ 𝒎(𝑪)𝑪⋂𝑨  

𝑃𝑙(𝐴) = ∑ 𝑚(𝐶)

𝐶∩𝐴≠∅

 (2) 

(3) Combination rules: while the information comes 

from multiple sources, such as two condition monitoring 

schemes or multiple experts, the multiple BPA structures 

can be aggregated by so-called rules of combination. The 

joint BPA is calculated by 

m(A) = {

0                                      ,                     A = ∅

∑ m1(Bi)m2(Cj)         A1∩⋯∩An=A
A1,⋯An⊂Θ

K
, A ≠ ∅

 (3) 

Where K = ∑ m1(A1)⋯mn(An)A1∩⋯∩An≠∅
A1,⋯An⊂Θ

is the 

conflict factor. 

The above rule is called Dempster’s rule, which has 

been applied widely in combining belief functions. 

However, some researchers have provided examples of 

counter-intuitive results produced by Dempster’s rule for 

combining belief functions. For example, Murphy (2000) 

proposed a combination rule to balance multiple evidences. 

The core of this rule includes the following steps. 

(1) Allow mass in the null set, which means to eliminate 

the need for normalization 𝜣. This can eliminate division by 

𝟏 − 𝑲 from Eq. (2), Dempster’s rule; 

(2) Assign the mass in the null set to the base set 𝜣. 

Since the correct destination of the conflicting evidence is 

unknown, it should be distributed among all the elements, 

rather than just the elements which happen to be 

intersections of the combining masses; 

(3) Average the masses assigned to a subset 𝒁  to 

determine its belief function  𝑩𝒆𝒍. Eq. (4) covers the case 

where two rules are combined. 
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Fig. 1 Membership function of fuzzy set [33] 

 

 

𝐵𝑒𝑙 =
1

2
,∑𝑚1

𝑋⊂𝑍

(𝑋) +∑𝑚2(𝑌)

𝑌⊂𝑍

- (4) 

where 𝑿 and 𝒀 represent uncertain variables.  

 

2.2 Basic concept of fuzzy set 
 

A fuzzy input variable 𝑿can be characterized by its 

normalized membership function 𝒖𝒙(𝒙)  as Eq. (5) (Li 

2005) 

0 ≤ μx(x) ≤ 1 (5) 

Considering a triangle fuzzy variable, it’s membership 

function is shown in Fig. 1, 𝑳𝑿(𝒙)  and 𝑹𝑿(𝒙) are the left 

branch and right branch of the membership 

function   𝒖𝒙(𝒙), which are linear increasing and decreasing 

monotonic functions with respect to the variable 

𝑿  respectively. The membership function of the fuzzy 

variable 𝑿 can be expressed as 

μx(x) =

{
 
 

 
 LX(x) =

x − c1
c − c1

               c1 ≤ x ≤ c  

1                                    x = c

RX(x) =
c2 − x

c2 − c
               c ≤ x ≤ c2

 (6) 

According to the λ level sets of the fuzzy variables, the 

convex fuzzy variable 𝑿 can be characterized by a family 

of λ level sets  𝑿(𝝀), which is shown in Eq. (7) [34] 

𝑋(𝜆)={[𝑥𝑙(𝜆), 𝑥𝑢(𝜆)],𝜆 ∈ ,0,1-} (7) 

Based on the treatment of different level cut, the 

uncertainty under each cut level can be regarded as an 

interval. This cut subset method is always applied in 

conventional reliability analysis based on fuzzy set.  

 
2.3 Basic concept of entropy 
 

Entropy is always used to represent the uncertainty of 

variables. The larger entropy ,the greater uncertainty is. The 

computational method of entropy of fuzzy variable can be 

found in reference [33]. The entropy of continuous fuzzy 

variable can be solved by Eq. (8) 

𝐻(𝑥) = ∫ 𝑆(𝑐(𝑥))𝑑𝑥
+∞

−∞

 (8) 

In Eq. (8), 𝒄(𝒙) = 𝟎. 𝟓𝒖(𝒙) and u(x) is the 

membership function of fuzzy variable. The integrand 𝑺 is 

defined as Eq. (9) 

S(t) = −t ln t − (1 − t) ln(1 − t) (9) 

 
 
3. The novel ET model based on fuzzy distribution 

 

Based on the discussion of ET and fuzzy set, it may be a 

good idea to combine ET with fuzzy set to represent 

epistemic uncertainty. Although both fuzzy set and ET are 

adopted to represent epistemic uncertainty, the emphasis of 

the two models is different. In the conventional fuzzy sets 

model, shown in Fig. 1, the membership functions are 

defined in focal elements without BPA. Conversely, in the 

conventional ET model, the BPA are assigned to focal 

elements, and there is no distribution function defined in 

focal elements. Intuitively, the combination of the two 

models may represent epistemic uncertainty flexibly. Based 

on this idea, the authors suggest a novel model named as ET 

model based on fuzzy distribution. In this model, both the 

BPAs and the membership functions are assigned on all 

focal elements. Moreover, the height of the membership 

function is proportional to the BPA. An example of this 

novel model is shown in Fig. 2, in which all focal elements 

are assigned BPA and the sum of BPAs is equal to 1. In this 

example, the BPA in focal element [𝐜𝟏, 𝐜𝟐], [𝐜𝟐, 𝐜𝟑] and 

[𝐜𝟑, 𝐜𝟒 ] is 0.2, 0.6 and 0.2 respectively. Moreover, the 

membership functions are assigned on the focal elements, 

such as triangle fuzzy number in interval [𝐜𝟏, 𝐜𝟐], trapezoid 

fuzzy number in interval and [𝐜𝟐, 𝐜𝟑] linear fuzzy number in 

interval [𝐜𝟑, 𝐜𝟒]. The normalized method presented in Ref 

(Rao et al. 2009) is adopted to normalize the membership 

function. In this method, the height of membership function 

is normalized by the maximum BPA. In this example, the 

maximum BPA is 0.6, which is in. [𝐜𝟐, 𝐜𝟑] Therefore, the 

height of the membership function in the interval [𝐜𝟏, 𝐜𝟐], 

[ 𝐜𝟐, 𝐜𝟑 ] and [ 𝐜𝟑, 𝐜𝟒 ] is 0.2/0.6, 0.6/0.6 and 0.2/0.6 

respectively, i.e., 1/3, 1 and 1/3, which are show in Eq. (10). 

Compared with the conventional fuzzy model, the BPA 

in this novel model may express expert’s judgments on 

uncertain variables more effectively. Certainly, this model 

can be degenerated to conventional fuzzy model when the 

BPAs in all focal elements are identical. Compared with the 

conventional ET, the membership functions in the novel 

model are better for expressing expert’s judgments on 

uncertain variables. In a word, the novel model possesses 

the advantages of conventional ET model and fuzzy model 

in representing epistemic uncertainty. Therefore, the 

computational efficiency of reliability analysis may be 

improved by the novel model 

 

 

 
Fig. 2 The novel ET model based on fuzzy distribution 
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μx(x) =

{
 
 
 
 
 

 
 
 
 
 

x − c1
c11 − c1

×
1

3
        c1 ≤ x ≤ c11

c2 − x

c2 − c11
 ×
1

3
          c11 ≤ x ≤ c2

x − c2
c21 − c2

                 c2 ≤ x ≤ c21

1                             c21 ≤ x ≤ c22
c3 − x

c3 − c22
                c22 ≤ x ≤ c3

x − c3
c4 − c3

×
1

3
          c3 ≤ x ≤ c4

 (10) 

 
 
4. Combination rules for the novel ET model 

 

In engineering practice, sometimes more than one expert 

give their judgments on the same epistemic uncertain 

variable, and the decider must take their judgments into 

account synthetically. Therefore, the uncertain information 

need be combined. With no doubt, a novel combination 

rules must be developed for this novel model. In other 

words, both the BPAs and the membership function of the 

novel ET model must be combined. To illustrate the 

suggested combination rules, an epistemic variable 

represented by the novel ET model is listed in Table 1. Two 

experts gave their judgments on  𝑿 , including the intervals 

and BPAs. The membership functions of   𝑿 are assumed as 

triangle fuzzy number. The novel combination rules include 

three steps.  
Step (1), combining BPA by the Murphy’s combination 

rule presented in Section1.1. For this example, the 

combined BPAs are shown in Table.1, which indicates there 

are three focal elements in the combined evidence body, 

i.e., focal element [2,6], [6,7] and [7,9] with the BPA 

0.5455, 0.3636 and 0.0909 respectively.  

Step (2), normalizing fuzzy membership functions by 

the maximum BPA (Rao et al. 2009). In this example, the 

normalized fuzzy membership functions are shown in Fig. 

2. The membership function 1 and 2 are depicted by red 

lines and black lines respectively.  

Step (3), defining 𝑩𝒆𝒍 and 𝒑𝒍 membership functions. 

Fig. 2 shows that the two membership functions are 

intersected and the overlapped area is filled by yellow 

dotted lines. Intuitively, the overlapped area is believed by 

the two experts. Inspired by the concepts of 𝑩𝒆𝒍 in ET, the 

overlapped area is named as 𝑩𝒆𝒍  area and the enveloping 

lines of this area are defined as  𝑩𝒆𝒍  membership 

functions. The area filled by light blue lines is believed by 

only one of the experts. Similarly, this area is named as 𝒑𝒍 
area and the enveloping lines of this area are defined as 𝒑𝒍 
membership functions. Moreover, the area exceeding the 

𝒑𝒍 area is named as against area, where no expert gives his 

confidence. For example, when  𝑿 is equal to 3, the three 

intervals, namely, the 𝑩𝒆𝒍  interval, 𝒑𝒍  interval and 

against interval are shown in Fig. 2.  

Unlike the probability theory, ET measures uncertainty 

with two measures - 𝑩𝒆𝒍  and  𝒑𝒍, which are regarded as 

lower and upper bounds of probability respectively. 

Similarly, for example, the 𝑩𝒆𝒍  and  𝒑𝒍  membership 

functions of  𝑿 shown in Fig. 3 and Fig. 4 may be viewed 

as the lower and upper bounds of the original membership 

function of  𝑿  respectively. Therefore, the 𝑩𝒆𝒍  and 𝒑𝒍 
membership functions define a confidence interval for the 

original membership function, which can be verified by 

entropy. Solved by Eq. (6), the entropy of  𝑿 before and 

after combination is listed in 2. The entropy of membership 

function 1 and membership function 2 are 0.6594 and 

0.7483 respectively. The entropy of 𝑩𝒆𝒍  membership 

function and  𝒑𝒍  membership function are 0.4116 and 

0.7499 respectively. It is evident that the entropy of original 

membership functions (both membership function 1 and 2) 

is less than that of 𝒑𝒍 membership function and is more 

than that of 𝑩𝒆𝒍  membership function. According the 

definition of entropy, the larger entropy, the greater 

uncertainty is. Therefore, it can be concluded that the 

uncertainty represented by 𝑩𝒆𝒍  membership function is 

less than that represented by original membership functions, 

and it is rational that the 𝑩𝒆𝒍  membership function is 

viewed as lower bounds of membership functions. 

Similarly, the 𝒑𝒍 membership function may be viewed as 

upper bounds of membership functions. It is noted, shown 

in le.1, Fig. 3 and Fig. 4, the number and the interval of 

focal elements and the BPAs are same in the 𝑩𝒆𝒍 
membership function and 𝒑𝒍 membership function. 

 

 

 
Fig. 3 The 𝑩𝒆𝒍 and 𝒑𝒍 area in the novel model 

 

 
Fig. 4 the  𝒑𝒍 membership function of x 
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Fig. 5 the 𝑩𝒆𝒍 membership function of x 

 

Table 1 Epistemic variable x 

Expert 1 Expert 2 The combined BPA 

Interval BPA Interval BPA Interval BPA 

[2,7] 0.8 [2,6] 0.6 [2,6] 0.5455 

[7,9] 0.2 [6,9] 0.4 [6,7] 0.3636 

    [7,9] 0.0909 

 

Table 2 The entropy of x before and after combination 

The entropy before 

combination 
The entropy 

after combination 

membership 

function1 

membership 

function 2 

𝒑𝒍 
membership 

function 

𝑩𝒆𝒍 
membership 

function 

0.6594 0.7483 0.7499 0.4116 

 

 

5. The procedure for reliability analysis 
 

The suggested novel ET model may be applied to 

represent epistemic uncertain variables flexiblyand provides 

the basis for reliability analysis. However, it is difficult to 

directly apply the novel ET model in conventional 

reliability analysis method based on probability theory such 

as the first order second moment (FOSM). The cause lies in 

that only the 𝑩𝒆𝒍  membership function and 𝒑𝒍 
membership function are defined in the novel ET model, 

not the probability density function (𝒑𝒅𝒇) which is the 

basis for conventional reliability analysis. Therefore, the 

𝑩𝒆𝒍 membership function and  𝒑𝒍 membership function 

need be transformed to the  𝒑𝒅𝒇.  Lu et al. (2004) 

advocated that the membership function of fuzzy set may be 

transformed to 𝒑𝒅𝒇 with a normalization factor, which is 

shown in Eq. (11) 

fi
(e)(xi) =

fi(xi)

∫ fi (xi)dxi
 (11) 

Where 𝒇𝒊
(𝒂)(𝒙𝒊)  is equivalent probability density 

function, 𝒇𝒊(𝒙𝒊)   represents 𝒊 − 𝒕𝒉 membership function.  

In this paper, the transformation method shown in Eq. 

(11) is adopted to transform  𝒑𝒍  and 𝑩𝒆𝒍  membership 

function to 𝒑𝒅𝒇 . It is noted that the 𝒑𝒍  and 𝑩𝒆𝒍 
membership function are piecewise continuous functions, 

which means the  𝒑𝒍  and 𝑩𝒆𝒍  membership function 

differs in focal elements. Based on the definition of 

cumulative distribution function (𝒄𝒇𝒅) (Lu et al. 2009), the 

𝒄𝒇𝒅 𝑭(𝒖) of the novel model is calculated by Eq. (12) 

𝐹(𝑢) =∑𝑚𝑖

𝑝−1

𝑖=1

+∫ 𝑓𝑝
(𝑒)
𝑑𝑥

𝑥

𝑥𝑝

 (12) 

Where the MPP is located in the 𝒑 − 𝒕𝒉 focal element, 

∑ 𝒎𝒊 
𝒑−𝟏
𝒊=𝟏  represents the sum of BPA from the first focal 

element to the 𝒑 − 𝟏 − 𝒕𝒉  focal element, ∫ 𝒇𝒑
(𝒆)𝒙

𝒙𝒑
𝒅𝒙 

represents the BPA of the 𝒑 − 𝒕𝒉 focal element.  

The conventional equivalent normalization method (Lu 

et al. 2009) (belongs to FOSM) always be applied in 

reliability analysis for structures with aleatory uncertainties. 

Moreover, the 𝒑𝒅𝒇  and 𝒄𝒅𝒇  of epistemic uncertain 

variables represented by the novel ET model can be 

calculated by Eq. (11) and Eq. (12). Therefore, the FOSM 

may be adopted in reliability analysis for structures with the 

mixture of epistemic and aleatory uncertainties. Based on 

the conventional equivalent normalization method, the 

suggested reliability analysis procedure is shown as follows 

and the corresponding flow chart is shown in Fig. 6. 

(1) Calculate the mean value and variance of uncertain 

variable modeled by the novel ET model through Eq. 

(13)~Eq. (15) (Tao et al. 2014) 

𝜇(𝑥) = ∫ 𝑥𝑓(𝑥)𝑑𝑥
+∞

−∞

 (13) 

𝜇(𝑥2) = ∫ 𝑥2
+∞

−∞

𝑓(𝑥)𝑑𝑥 (14) 

σ = μ(x2) − (μ(x))2 (15) 

Where f(x) represents the combined membership 

function (the 𝒑𝒍 or 𝑩𝒆𝒍 membership function), μ is mean 

value and σ is variance of uncertain variables. 

(2) Initialize MPP 𝒙∗  (for both the epistemic and 

aleatory uncertain variables), typically, the initial checking 

point may be assumed to be at the mean value of uncertain 

variables, 

(3) Solve 𝒄𝒇𝒅 of uncertain variable by Eq. (12) and 

select 𝒑𝒅𝒇 (denoted by Eq. (11))according to the focal 

element where the uncertain variable located (this step is 

only for uncertain variables which denoted by novel ET 

model),  

(4) Normalize non-normal variable by Eq. (16) and Eq. 

(17), 𝝁𝒙𝒊  and 𝝈𝒙𝒊  is replaced by 𝝁𝒙𝒊
′  and 𝝈𝒙𝒊

′ 

μXi
′ = xi

∗ −Ф−1,Fxi(x2
∗）-σxi

′ (16) 
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αxi
 ′=

φ*Φ−1[FXI(XI
∗)]+

fxi(xi
∗)

 (17) 

where 𝒙𝒊 is non-normal random variable, 𝒙𝒊
′ is equivalent 

normal random variable, 𝒙∗  is checking point or MPP. 𝑭 

and 𝒇  are 𝒄𝒅𝒇  and 𝒑𝒅𝒇  of no-normal variables 

respectively. Ф is 𝒄𝒅𝒇 and 𝝋 is 𝒑𝒅𝒇 of standard normal 

variables, Ф−1 denotes the inverse function of Φ. Φ is 

solved by Eq. (18) 

Φ(y) = ∫ φ(y)dy
y

−∞

 (18) 

(5) Calculate sensitivity coefficient  𝜶𝒙𝒊  

αxi = cosθxi = −

∂gx(x
∗)

∂Xi
σxi

√∑ ,
∂gx(x∗)
∂Xi

-2σxi
2n

i=1

 (19) 

where g is performance function. 

(6) Solve reliability index 𝛽 

β =
μzz
σzz

=
gx(x

∗) + ∑
∂gx(x

∗)
∂Xi

(μxi − x
∗)n

i=1

√∑ ,
∂gx(x

∗)
∂Xi

-2σxi
2n

i=1

 (20) 

(7)Compute the new MPP 𝑥∗ by Eq. (21) 

𝑥∗ = 𝜇𝑥𝑖 + 𝛽𝜎𝑥𝑖𝑐𝑜𝑠𝜗𝑥𝑖 (21) 

(8)If the difference of adjacent ||𝑥∗|| is less than ε (ε  is 

convergence criteria defined by researchers), end, else go to 

step (3). 

The procedure is the same as the conventional 

equivalent normalization method except the solution of 𝝁, 

𝝈 , 𝒑𝒅𝒇  and 𝒄𝒅𝒇 of epistemic uncertain variables 

represented by the novel ET model. More details of the 

conventional equivalent normalization method can be found 

in Ref (Lu et al. 2009). 

 

 

5. Examples 

 

5.1 Numerical example 
  

A numerical example is selected to validate the 

effectiveness of the presented procedure. The performance 

function is shown as Eq. (22), which is strong non-linear 

function. In this performance function,  𝒙𝟏, 𝒙𝟑, 𝒙𝟒, 𝒙𝟓 and 

 𝒙𝟔 are random variables which obey normal distribution. 

Their mean value and variance are shown in Table 3. 𝒙𝟐  
and 𝒙𝟕 are represented by the novel ET model and their 

BPAs are shown in Table 4. The membership functions of 

𝒙𝟐 and 𝒙𝟕 is assumed as triangle fuzzy number. 

Combined the BPA of 𝒙𝟐 and 𝒙𝟕 through Eq. (4), the 

results are shown in Table 2, in which there are 5 focal 

elements and 4 focal elements for 𝒙𝟐  and  𝒙𝟕 respectively. 

Normalized by the normalization method (Rao et al. 2009), 

the membership functions of 𝒙𝟐  and 𝒙𝟕 are shown in Fig. 

7(a) and Fig. 7(b) respectively, in which the membership 

 
Fig. 6 Flow chart of reliability analysis 

 

Table 3 Mean value and variance of uncertain variables 

Uncertain 

variable 
𝑥1 𝑥3 𝑥4 𝑥5 𝑥6 

Mean value 0.01 360 226e-6 0.5 0.12 

Variance 0.003 54 1.13e-005 0.05 0.006 

 

Table 4 BPA of 𝒙𝟐 and 𝒙𝟕 

Uncertain 

variable 

Expert 1 Expert 2 Combination results 

Interval BPA Interval BPA Interval 
Combined 

BPA 

𝒙𝟐 

[0.26,0.29] 0.2 [0.26,0.28] 0.2 [0.26,0.28] 31/180 

[0.29,0.31] 0.6 [0.28,0.32] 0.7 [0.28,0.29] 515/7200 

[0.31,0.33] 0.2 [0.32,0.33] 0.1 [0.29,0.31] 45/80 

    [031,0.32] 75/800 

    [0.32,0.33] 0.1 

𝒙𝟕 

[0,0.5] 0.3 [0 0.6] 0.4 [0,0.5] 61/180 

[0.5,1] 0.3 [0.6 1] 0.2 [0.5 0.6] 
158/250/

18 

[1,1.5] 0.4 [1 1.5] 0.4 [0.6 1] 113/500 

 

 

functions given by expert 1 and expert 2 are denoted by 

black and red line respectively. The combination method for 

membership functions presented in Section 3 is adopted to 

solve the 𝑩𝒆𝒍 and 𝒑𝒍 membership functions, which are 

shown in Fig. 8 and Fig. 9 respectively 

𝑔(𝑥) = 50 −
(𝑥1𝑥2𝑥3 − 𝑥3

2𝑥4
2𝑥5)

𝑥6𝑥7
− 𝑥1 (22) 
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(a) The normalized membership function of 𝒙𝟐 

 
(b) The normalized membership functi on of 𝒙𝟕 

Fig. 7 The normalized membership function of 𝒙𝟐 and 𝒙𝟕 

 

 
(a) 𝒑𝒍 membership function 

Fig. 8 𝑩𝒆𝒍 and 𝒑𝒍 membership function of 𝒙𝟐 

 
(b) 𝑩𝒆𝒍 membership function 

Fig. 8 Continued 

 

 
(a) 𝒑𝒍 membership function 

 
(b) 𝑩𝒆𝒍 membership function 

Fig. 9 𝒑𝒍 and 𝑩𝒆𝒍 membership function of 𝒙𝟕 
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Solved by Eq. (8), the entropy of 𝒙𝟐 and 𝒙𝟕 is shown 

in Table 5. The results indicate that the entropy of 𝒙𝟐 and 

𝒙𝟕 before combination is less than that of 𝒑𝒍 membership 

function and is more than that of 𝑩𝒆𝒍  membership 

function. For example, the entropy of 𝒙𝟐  before 

combination is 0.4838 and 0.5425 for membership function 

1 and membership function 2 respectively. This entropy is 

less than that of 𝒑𝒍 membership function 0.6279 and is 

more than the entropy of 𝑩𝒆𝒍  membership function 

0.3983. Compared with the original membership function, 

the 𝒑𝒍 membership function expands the uncertainty and 

the 𝑩𝒆𝒍  membership function shrinks the uncertainty. 

Therefore, it is rational to view the 𝒑𝒍  and 𝑩𝒆𝒍 
membership function as upper and lower bounds of original 

membership functions respectively. 

Solved this example by the presented reliability analysis 

procedure, the results are shown in Table 6. The lower band 

of reliability, solved from the 𝒑𝒍 membership function, is 

0.8986, which is named as 𝒑𝒍 reliability. Similarly, the 

reliability 0.9352 calculated form the 𝑩𝒆𝒍  membership 

function is viewed as the upper band of reliability and is 

named as 𝑩𝒆𝒍 reliability. Therefore, the interval of 

reliability of this example is [0.8986, 0.9352], which is the 

reliability estimation of the numerical example with the 

mixture of epistemic and aleatory uncertainties. 

To validate this results, the conventional cut subset 

method denoted by Eq. (7) and the MCS are adopted to 

calculate the reliability, which may be viewed as real 

reliability. The levels in cut subset method are 30 and the 

sample numbers in MCS is 1e6. The interval of reliability 

solved by the conventional method is [0.9172, 0.9269], 

which is almost identical to the interval [0.8986, 0.9352] 

solved by the suggested procedure. The maximum 

difference between the two reliability intervals is only 

2.02%. Therefore, the suggested procedure poses high 

computational accuracy. The other advantage of this 

suggested procedure is the low computational cost. Due to 

the suggested method is based on FORM, there is only 15  

 

 

Table 5 The entropy of 𝒙𝟐 and 𝒙𝟕 

Uncertain 

variable 

The entropy before 

combination 

The entropy  

after combination 

membership 

function 1 

membership 

function 2 

𝒑𝒍 
membership 

function 

𝑩𝒆𝒍  
membership 

function 

𝒙𝟐 0.4838 0.5425 0.6279 0.3983 

𝒙𝟕 0.6628 0.6635 0.7249 0.6014 

 

Table 6 Reliability of example 1 

Membership 

function 

Reliability 

solved by 

the presented 

method 

Reliability 

solved by 

MCS 

Difference 

𝒑𝒍 
membership 

function 

0.8986 0.9172 2.02% 

𝑩𝒆𝒍 
Membership 

function 

0.9352 0.9269 0.89% 

cycles to calculate the reliability for this example. 

Compared with the sample numbers 1e6 in MCS, the 

computational cost in the suggested procedure is much less 

than that in conventional method.  

 

5.2 Example 2-crank-slider mechanism 
 

Engineering example 2 is derived from Du’s paper (Du 

2006). This example is a crank-slider mechanism, and its 

schematic diagram is shown in Fig. 8. Eq. (22) is the 

performance function. It is the safety margins for strength 

requirements of the coupler, which are defined by the 

difference between the material strength and the maximum 

stress 

𝐺1 = 𝑔1(𝑋, 𝑌)

= 𝑆 −
4𝑃(𝑙 + 𝑚)

𝜋 .√(𝑙 + 𝑚)2 − 𝑒2 − 𝑘𝑒/ (𝑑2
2 − 𝑑1

2)
 (23) 

The failure events are defined by Eq. (24) 

s1 = *𝑋, 𝑌|𝑔1(𝑋, 𝑌) < 0+ (24) 

In this mechanism, the parameters d = ,d1, d2- =
,15.5,26.5-. 

Random variables include the length of the crank  𝒍 , the 

length of the coupler 𝒎, the external force 𝒑, and the yield 

strength of the coupler  𝒔 . The distributions of this random 

variables are given in Table 7. To validate the reliability 

analysis procedure suggested in this paper, the coefficient of 

friction 𝒌 and the offset 𝒆 are modeled by the novel ET 

model. Their intervals and BPAs are shown in Table 8, and 

their membership function is assumed as triangle fuzzy 

number. Combined by Murphy’s average combination rule, 

the combined BPAs are also shown in Table 8.  

 

 

 

Fig. 9 A crank-slider mechanism 

 

Table 7 Random variables 𝒙 

Variable 
Symbols 

in Fig. 8 

Mean 

value 

Standard 

deviation 
Distribution 

𝒙𝟏 l 100 mm 0.01 mm normal 

𝒙𝟐 m 300 mm 0.01 mm normal 

𝒙𝟑 p 250 KN 25 KN normal 

𝒙𝟒 s 990 MPa 39 MPa normal 
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Table 8 Epistemic variable 𝒆 and 𝝁 

Uncertain 

variable 

Expert 1 Expert 2 Combination results 

interval BPA interval BPA interval 
Combined 

BPA 

𝒆 [100,120] 0.2 [100,130] 0.4 [100,120] 0.2 

 

[120,140] 0.4 [130,150] 0.6 [120,130] 0.2 

[140,150] 0.4   [130,140] 0.25 

    [140,150] 0.35 

k 

[0.15,0.17] 0.2 [0.15,0.19] 0.4 [0.15,0.17] 0.2 

[0.17,0.23] 0.4 [0.19,0.21] 0.2 [0.17,0.19] 0.2 

[0.23,0.25] 0.4 [0.21,0.25] 0.4 [0.19,0.21] 0.15 

    [0.21,0.23] 0.15 

    [0.23,0.25] 0.3 

 

 
(a)The normalized membership functions of k 

 
(b) The normalized membership functions of  e 

Fig. 10 The normalized membership function of k and e 

 

 
(a) 𝑩𝒆𝒍 membership function 

 
(b)  𝒑𝒍 membership function 

Fig.11 The combined membership function of  k 

 

 
(a) 𝑩𝒆𝒍 membership function 

Fig. 12 The combined membership function of e 
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(b) 𝒑𝒍 membership function 

Fig. 12 Continued 

 

Table 8 The entropy of e and k 

Uncertain 

variable 

The entropy before 

combination 

The entropy after 

combination 

Membership 

function1 

Membership 

function 2 

𝒑 

membership 

function 

𝑩𝒆𝒍 
membership 

function 

e 0.6346 0.6459 0.7924 0.4880 

k 0.6780 0.7213 0.98597 0.4963 

 

Table 9 Reliability of example 

Membership 

function 

Reliability 

solved by the 

presented 

method 

Reliability 

solved by MCS 
Difference 

𝒑𝒍 membership 

function 
0.9842 0.9869 0.27% 

𝑩𝒆𝒍 membership 

function 
0.9919 0.9908 0.09% 

 

 

Fig. 10(a) and Fig. 10(b) show the normalized 

membership functions of 𝝁  and 𝒆  respectively. The 

combined membership functions of 𝒌 and 𝒆 are exhibited 

in Fig. 11, including the 𝑩𝒆𝒍  and 𝒑𝒍  membership 

function. The entropy of 𝒆 and 𝒌 is listed in Table 8, 

which indicates that the entropy of original membership 

functions is less than that of 𝒑𝒍 membership function and 

more than that of 𝑩𝒆𝒍 membership function. Therefore, it 

is rational to the 𝒑𝒍 and 𝑩𝒆𝒍 membership function are 

viewed as upper and lower bounds of original membership 

functions respectively. 

Solved by the suggested procedure and conventional 

method, the results of example 2 are shown in Table 9. The 

𝒑𝒍 reliability is 0.9842 and the 𝑩𝒆𝒍 reliability is 0.9919, 

namely, the reliability interval is [0.9842, 0.9919], which is 

almost the same as the interval [0.9869, 0.9908] solved by 

the suggested procedure. Therefore, the reliability interval 

calculated by the suggested method may be considered as 

the estimation of the real reliability. Moreover, there is only 

12 cycles to calculate the reliability of this example. 

Compared with the sample numbers 1e6 in MCS, the 

computational cost in the suggested procedure is much less 

than that in conventional method. Therefore, the suggested 

procedure can be adopted to calculate the reliability interval 

efficiently. 

 
 
7. Conclusions 

 

To solve the hybrid reliability for engineering structures, 

a novel ET model based on fuzzy distribution is suggested. 

Inspired by the concept of belief and plausible in ET, the 

intersection and union of membership functions are defined 

as the belief and plausible membership functions 

respectively. The Murfhy’s average combination rule is 

adopted to combine the basic probability assignment for 

focal elements. Then the combined membership function is 

transformed to the equivalent probability density function 

by means of a normalizing factor, and the equivalent 

normalization method is used to solve the reliability of 

structure with the evidence variables and random variables. 

A numerical example and an engineering example are given 

to demonstrate the advantages of the proposed method. The 

results show that the reliability interval calculated by the 

suggested method is almost identical to that solved by MCS 

and cut subset method. Moreover, the results also indicate 

that the computational cost of the suggested procedure is 

much less than that of conventional method. The suggested 

ET model provides a new way to flexibly represent 

epistemic uncertainty, and the suggested procedure provides 

an efficiency method to estimate the reliability of structures 

with the mixture of epistemic and aleatory uncertainties. 
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