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Influence of imperfectly bonded piezoelectric layer with irregularity on
propagation of Love-type wave in a reinforced composite structure
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Abstract.  The present paper investigates the propagation of Love-type wave in a composite structure comprised of imperfectly
bonded piezoelectric layer with lower fiber-reinforced half-space with rectangular shaped irregularity at the common interface.
Closed-form expression of phase velocity of Love-type wave propagating in the composite structure has been deduced
analytically for electrically open and short conditions. Some special cases of the problem have also been studied. It has been
found that the obtained results are in well-agreement to the Classical Love wave equation. Significant effects of various
parameters viz. irregularity parameter, flexibility imperfectness parameter and viscoelastic imperfectness parameter associated
with complex common interface, dielectric constant and piezoelectric coefficient on phase velocity of Love-type wave has been
reported. Numerical computations and graphical illustrations have been carried out to demonstrate the deduced results for
various cases. Moreover, comparative study has been performed to unravel the effects of the presence of reinforcement and
piezoelectricity in the composite structure and also to analyze the existence of irregularity and imperfectness at the common
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interface of composite structure in context of the present problem which serves as a salient feature of the present study.
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1. Introduction

Electroelastic materials which exhibit electromechanical
coupling experience mechanical deformations when placed
in an electric field, become electrically polarized under
mechanical loads. Piezoelectricity is a linear interaction
between electrical and mechanical systems. By virtue of the
intrinsic coupling effects between the electrical and the
mechanical fields, piezoelectric materials have found
extensive applications in smart devices such as electro-
mechanical sensors, actuators and transducers. The
brittleness in mechanical behavior is the inherent weakness
of piezoelectric ceramics. In most of their applications,
piezoelectric crystals, ceramics and composites are exposed
to severe mechanical and electrical loading conditions,
which may result in structural fracture or failure. The
piezoelectric effect was discovered by Curie and Curie
(1880). In dynamic applications involving production and
detection of sound, generation of high voltages, electronic
frequency generation, vibration suppression, microbalances,
sensing, sonar, audio buzzers and air ultrasonic transducers
these materials are found to be very effective. For the
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piezoelectric elements in the form of a thin plate, i.e. when
the thickness of the piezoelectric material is much smaller
than the wavelength of the elastic waves, the governing
equations for the general three-dimension are given by Auld
(1990), Tiersten (1969). Jakoby and Vellekoop (1969)
discussed the basic properties of Love waves and their
utilization in sensor devices.

Liu et al. (2001) investigated the effect of initial stress
on the propagation behavior of Love waves in a layered
piezoelectric structure. Li et al. (2004), Du et al. (2007)
discussed Love wave propagation in FGPM layer. Qian et
al. (2007) analyzed the propagation of transverse surface
waves on a piezoelectric material carrying a functionally
graded layer of finite thickness. Eskandari and Shojda
(2008) elaborated Love wave propagation in functionally
graded piezoelectric materials with quadratic variation.

Du et al. (2008) have discussed on propagation of Love
waves in pre-stressed piezoelectric layered structures loaded
with viscous liquid whereas Liu et al. (2008) analyzed Love
wave propagation in layered piezoelectric/piezomagnetic
structures. Pang et al. (2008) traced out reflection and
refraction of plane waves at the interface between
piezoelectric and piezomagnetic media. Piliposian and
Danoyan (2009) examined the surface electro-elastic Love
waves in a layered structure with a piezoelectric substrate
and two isotropic layers. Later on, Liu and He (2010)
studied the properties of Love waves in layered
piezoelectric structures.

The study of the mechanical behavior of a fiber-
reinforced material is of great importance in geomechanics
and geo-engineering. Fiber-reinforced materials are a family
of composite materials, where the polymer fibers are
reinforced by highly oriented polymer fibers, derived from
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the same fiber. Alumina or concrete is an example of fiber-
reinforced material. Belfield et al. (1983) studied the stress
in elastic plates reinforced with fibers lying in concentric
circles. Hashin and Rosen (1964) investigated on the elastic
moduli for fiber-reinforced materials. Singh (2006)
analyzed the wave propagation in thermally conducting
linear fiber-reinforced composite materials with one
relaxation time

The above studies are based on the assumption that the
layer is perfectly bonded to the substrate. However, due to
aging of glue applied to two conjunct solids, microdefects,
diffusion impurities, and other forms of damages, imperfect
bonding often occurs in surface acoustic wave (SAW)
devices. Schoenberg (1980) discussed the elastic wave
behavior across linear slip interface. Termonia (1990)
experimented on fibre coating as a means to compensate for
poor adhesion in fibre-reinforced materials. Nagy (1992)
gave the ultrasonic classification of imperfect interfaces. In
the design and application of piezoelectric sensors,
considering a possible imperfect interface is necessary.
Chen and Lee (2004) discussed the exact solution of angle-
ply piezoelectric laminates in cylindrical bending with
interfacial imperfections. Otero (2012) studied the
interfacial waves between two piezoelectric half-spaces
with electro-mechanical imperfect interface.

Irregular boundaries on the elastic wave propagation
have gained much in importance due to their closeness to
natural environmental conditions. A lot of works has been
discussed regarding the propagation of seismic waves
concerning irregularity at an interface. Bhattacharya (1962)
considered the irregularity in the thickness of the
transversely isotropic crustal layer. Chattopadhyay et al.
(2008) investigated propagation of SH waves in an irregular
monoclinic crustal layer. Later on, Chattopadhyay et al.
(2012) studied dispersion of horizontally polarized shear
waves in an irregular non-homogeneous self-reinforced
crustal layer over a semi-infinite self-reinforced medium.
The propagation of magnetoelastic shear waves in an
irregular  self-reinforced layer was calibrated by
Chattopadhyay and Singh (2012). Kaur et al. (2014)
analyzed dynamic response of normal moving load on an
irregular fiber-reinforced half-space. Lately, Singh et al.
(2015) discussed the Love-type wave propagation in a
piezoelectric structure with irregularity.

Recently, Peng and Feng (2015) studied the excitation
and propagation of shear horizontal waves in a piezoelectric
layer imperfectly bonded to a metal or elastic substrate.
Kaur et al. (2016) discussed the influence of imperfectly
bonded micropolar elastic half-space  with  non-
homogeneous viscoelastic layer on propagation behavior of
shear wave. To date, no study has been done on the
propagation of Love waves in an imperfectly bonded
piezoelectric layer lying over a fiber-reinforced half-space
with an irregularity at the common interface.

In the present study, the dispersion relation for the Love-
type wave propagating in a composite structure comprised
of imperfectly bonded piezoelectric layer with lower fiber-
reinforced half-space with rectangular shaped irregularity at
the common interface has been obtained in closed-form for
both electrically open and short conditions. Some special

v

Imperfect B :2’1

Fiber-reinforced
. ‘half-space

Fig. 1 Geometry of the problem

cases of the problem have also been studied and the
obtained results are found to be in well-agreement to the
Classical Love wave equation. To unravel the effects of
various parameters viz. irregularity parameter, flexibility
imperfectness parameter and viscoelastic imperfectness
parameter associated with complex common interface,
dielectric constant and piezoelectric coefficient on phase
velocity of Love-type propagating in the composite
structure, numerical computation and graphical illustration
have been carried out. Moreover, comparative study has
been performed to demonstrate the effects of irregularity
and imperfectness at the common interface and the presence
of reinforcement and piezoelectricity in the composite
structure which leads to some significant results.

2. Formulation of the problem

We consider a composite structure constituted by
imperfectly bonded piezoelectric layer of finite thickness H
with a lower fiber-reinforced half space containing an
irregularity at the common interface. Let us consider the co-
ordinate system in such a way that y-axis is in direction of
Love-type wave propagating along the interface between
the layer and the lower semi-infinite medium and x-axis is
pointing vertically downwards. We assume irregularity in
the form of rectangle with span s and maximum depth H".
The origin is placed at the middle point of the span of the
irreqularity as shown in Fig. 1. The source of the
disturbance is placed on positive-axis at a distance d(>H’)
from the origin.

The equation of the common interface containing
rectangular irregularity is defined as

x = ¢h(y), @)
where
0 for |y|>§,
h(y) = ¢ for [<S
>’

where ¢=H'/s<<1 is a small positive number called
perturbation parameter. Assumption ¢<<1 finds its practical
implication in those fabricated composite structure where
the depth H’ of the irregularity is too small with respect to
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the span s of the irregularity. The mechanical displacement
components for the upper piezoelectric layer and lower
fiber-reinforced half space in x,y and z directions are
assumed to be (uy,v;,wq) and (u,,v,,W,) respectively. For the
Love-type wave propagating in the y-direction and causing
displacement in z-direction only, we take

u =0, v, =0, W1=W1(X,y,t),}

2
u,=0, v,=0, w,=w,(X,Y,t).

Let us assume the electric potential function for the
upper imperfectly bonded irregular piezoelectric layer as

¢ = (X, y.1). ©)

3. Governing equation of motion for upper irregular
imperfectly bonded piezoelectric layer

The equation of motion for upper imperfectly bonded
irregular piezoelectric layer is given by

0 O 0 O-XY 0 Oy 0 ? ul
+ + =P 3
OX oy oz ot
0o, . oo, . do,, —p %, @)
x oy oz ot
602)( ao_ly aGzz azwl
+ P77
OX oy oz ot
with
D, =0, (5)

where i,j=1,2,3; p; is the mass density of upper piezoelectric
layer; D; denote the electric displacement in the i th-
direction respectively; and gj; is the stress tensor.

The constitutive equations for a transversely isotropic
piezoelectric medium with z-axis being the symmetric axis
of the material is given by

Oy =Cyy S, +C;,S, +C3S, —eyE,,
o, =¢,S, +¢,S, +¢,,S, —e,E,,
0, =C;3S, +C3S, +C53S, —€5,E,,
o, =CuS,, —esE,,

On = CMS —-esE,, (6)

1
Oy = E (cy—¢y,)S

xy !
Dx = elSSzx +QIEX'
D, =esS,, +9,E,,

D, =¢,5, + e3lsy +e5,5, +&5,E,,
where €11,C12,C13,C33 and Cy4 are elastic constant; e;s, €3; and
€33 are piezoelectric constants; and e1; and ¢33 are dielectric
constants of the upper irregular imperfectly bonded
piezoelectric layer.

The mechanical displacement components together with
the strain components gives the relations as

5= Mg Mg MM O g O OW
T x oyt e’ ey o ¥ oz ox
and S, _ M % (7

OX

The relation between electric intensity and the electrical
potential is given by

E = a¢ = aqﬁandE _—a¢

8
o &= oy oz ®
In view of Eq.(2), Egs.(7) and (8) result in
5,=0,5,=0,5,=05,=05, =2 s M (q
oy OX
and
Exz—%, E, =- % ,E, =0 (10)
X oy
Using Egs. (9) and (10), Eq. (6) yields
o, :0,ay =0,0, =0, Oy =0,
ow, 0 0
O-yz_c44_1+e15_¢'o-zx_c44 : e15_¢'
oy oy 0 ox
o¢ 11)
D,=0,D, =¢; - 511&
andD, =¢; %—811 o9
oy oy
Now, using Eq.(2) in Egs.(4) and (5),we obtain
a 2
00 L0n_ p T 12)
ox oy ot
and
oD
D, +—2L=0. (13)
ox oy

With the help of Eq. (11) in Egs. (12) and (13), we have
the governing equations for propagation of Love- type wave
in the upper imperfectly bonded piezoelectric layer with
irregularity as

Cu VW, +85V2 = p W, (14)
esV'W —¢,V’¢=0,

where VZ is two dimensional Laplacian operator.
Now the above equation can be rewritten as

Vza)l—iz =
C,

15
(els j (15)
11

where ¢ = CM,Q_[CMJFel_J; c; and c, are the bulk
Pr &

11
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shear wave velocity in the upper irregular imperfectly
bonded piezoelectric layer.
Then, Eq. (15) can be written as

ow, w1 o%w,

+ =
ox? 8y2 s at2
¢, %% 1e 0w

&M,
oy ey o

(16)

4. Governing equation of motion for the lower fiber-
reinforced half space

The constitutive equation for fiber-reinforced elastic
medium (Belfield et al. 1983) is

Ty = A8y 0y + 21465 + (3,8,8,,0; +€,83;) +2(1 — pr)

(a8, +a;3,6)+ faa.e,aa;, (i, j,k,m=123)
7

where z;; are components of stress, e, (zl(u. +u..)) are
Il 2 Ll I

components of infinitesimal strain, ¢; is kronecker delta,
d=(a,a,,a,) is the direction of reinforcement such that

a’+a’+a2=1 and4, g, ur, a and g are elastic constants;

ur is the transverse shear modulus across the preferred
direction whereas z is the longitudinal shear modulus
across the preferred direction.

In view of Eq. (2), the governing equation of motion for
small elastic disturbance in the lower fiber-reinforced half
space is given by

az-zx aTyZ aZWZ
+ = pz 2 !
ox oy ot

(18)

where p, is the material density of the fiber-reinforced
half-space,and

T. = %4_( — ) %_{_a%
X :UT 8X /uL IuTa’.l alax 2 ay '

(19)
- %4.( — )a %+a %
Hr oy Ho— )8, | & ox 2 oy .
Now using Eq.(19), Eq.(18) leads to
2 2 2
P5W2+Q8W2 Raw2 16w 20)

ox? oy? " xoy B oot
2

where

P=1+(*t-Da}, Q=1+ (*- —1jal, R=28,2,(*-1)
Hy Hr Hy

and g, = )
2

5. Boundary conditions

For the propagation of Love-type wave in composite

structure comprised of piezoelectric layer imperfectly
bonded to a lower fiber-reinforced half-space containing
irregularity at the common interface, two types of electrical
boundary conditions, i.e., electrically open and electrically
short conditions, have been considered in this study. The
boundary conditions (mechanical and electrical) are as
follows:

(i) The electrical boundary conditions at free surface i.e.,

at x=—H are as follows:

(a) The electrical open condition at x=—H is

D, (-H.y)=0, (1)
(b) The electrical short condition at x=—H is
¢(-H.,y) =0, 22)
(ii) The mechanical traction free condition at x=—H is
o, (-H,y) =0, (23)

(iii) Conditions at the imperfectly bonded irregular
interface i.e., at x=¢h(y) are

(a) T —Sh’(y)‘[yz
(b) ¢=0, (25)
(26)

=o(w-w,), (24)

(C) Ox _gh'(y)ayz =Tx —€h'(y)T

yz?

where o is imperfectness parameter of the common
interface.

Egs. (16), (20) and (21)-(26) presents the complete
mathematical model for the problem.

6. Solution of the problem

We assume the solutions of the Egs.(16) and (20) as
w, =W, (x,y)e' and g, = ¢ (x,y)e'";(r=12) (27)

where w(= ke, with k being the wave number and c being

the phase velocity) is circular frequency of Love-type wave.
In light of (27), Egs. (16) and (20) reduce to

o'W, 62\Na)

v ayz =W, =0,
- ¢ (28)
P9, 09,9 8y g,
o' oyt ¢ gy
and
2 2 2 2
GBS T
OX oy ooy PP

Defining the Fourier transforms W, (x,7) and @(x,7)
of W.(x,y) and ¢(x,y) respectively (r=12)as

W, () = [ W, (x, y)e dy,

p0xn) = p(x y)edy,

with the inverse Fourier Transforms as
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1 © = _j
W, (x,y) = [ W (x e d,

1 © — —in
o y) == @(xme™dn,
279

where 7 is a transform parameter.
Taking Fourier transforms of Egs. (28) and (29), we get

-
S+ -0
_ 30
d’p Z%w_zeﬂvv_o 0
a2 ¢t e
and
W, . W, [ —
P—2%-inR—2 +[——Q772JW =0, (31)
ox ox 2 :

2
where P, = 60_2_772 .
c

The solution of Eq. (30) may be expressed as

Vvl(x,n) = AcosP,x + BsinPx,

— —nX 723 e15 H (32)
@(x,n) =Ce™™ + De™ + —=(AcosP,x + BsinP,x)
én
and the solution of Eq. (31) may be expressed as
W, (x,7) = Ee”™, (33)
inR ss R® , o
where P, =——+n,/—=— and s, = -——.
>=p TP ap? 2 =\
Therefore, mechanical displacement and electric

potential function in upper piezoelectric layer are
W, (x,y) = ij‘w (AcosP,x + BsinP.x)e dy
2>

o(%y) = Zifi{Ce"x + De™ +el—5(AcosP1x + BsinPlx)}e"’ydn
T &y

(34)

and the mechanical displacement in lower fiber-reinforced
half space is

W, = L {Eepzx JrEeF’ZXe’F’Zd }e“’ydn, (35)
27 4 R,
where the second term in the integrand of W, is introduced
due to the presence of source in the lower fiber-reinforced
half-space.

Since boundary is not uniform, the terms A,B,C,D and E
appearing in Egs. (34) and (35) are also functions of e.
These terms can be expanded in ascending powers of e.
Since ¢ is small, therefore retaining the terms up to the first
order of ¢, we can approximate A,B,C,D and E as follows:

A=A +AgB=B,+B¢&C=C,+Cpe,
D=D,+De¢,E=E;+Ege.

For the small ¢, we may further use the following
approximations:

e™" =1+ veh, cos(veh) =1, sin(veh) = veh,

where v is any quantity.
From boundary condition (21), (22) and (23), we have

&u[ (Co +Cie)ne™ —(D, + Dye)pe ™ =0,  (36)

(C, +C,e)e™ — (D, + D,g)e™

37
+§1—5[(Ab +Ag)cosRH — (B, + B.&)sinRH | =0, (37)
11
and
Cul(A +Ae)PSINP, + (B, + Bg)PcosPH]
+e[-(C, +Ce)pe™ — (D, + Dye)pe ™ (38)

+ 85 (A + A£)PSInRH + (B, + B,e)PcosPH] =0.

11

Using boundary conditions (24), we get

[“{u[-P. (B, + Eie)a—Poeh(y)) + 20+ Peh(y))e ™ ]

+(u— )2 (& [P, (E, + E6)(L- Pgh(y))
+2(1+ Peh(y))e ™ | -ina,[(E, + E,£)1- P,eh(y))

+P32<1+ Pen(ye ™ 1) Jedy e[ [ [(E, + Ec)

(- Pueh() + = (Lt Pueh(ye ™ Jin) + (- ),
x(a[-P,(E, + EI;)(l— P,ch(y)) + 2(L+ P,eh(y))e ™ ]
—ina,[(E, + E,)(L- Peh(y)) + P%(u p,eh(y)e ™ ])]
Xn'(y)e dn=o[" [(E,+E£)d-Pen(y)) +%(1+ P,eh(y))

xe ™ —{(A +Ag)- (B, +Be)(Peh(y)) }e " dn.
(39)

Now, defining the Fourier transform of h(y) as
()= h(y)edy, (40)

with the inverse Fourier transform as
h(y) == [~ A(Re™da (41)
2 Y
Therefore, we have
h(y)=——[" ih(2)e da, (42)
27 d e

With the help of the Egs. (41) and (42), Eq. (39)
becomes

8 ” * —
E -w[-[—w[’LLrEOPZZ +2/UT Pze Pl +(/u|_ _IUT)(aj_ZPQZEO)

+(, = 1 )22 P ™) + (p — ) (=) (~2,3,E 0P,

- g2 .
+2a,a,e F’2“)+|/1{Tﬂre P (i) + (1, — 117 )22, (~P,E,

2
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+2e7 %) —ina, (E, + ée*’zd )]+ 4 E, (—in) }
2
+o{P,E, - 2¢ " + B,R}N(1)e " dn]dA (43)
- {4, PE, + 14, P,Ee — 21,67

—(u =1 )al[_a1P2 E,-aPREe+ zaie_PZd

Pieﬂd]

2

+(-in)a, (E, + Ej&)—ina,

+o-[E +Elg+ P

~(A+A)]Je ™ dn.

Putting #+A=k for the inner integral in the left-hand side
of Eqg. (43), so that A may be treated as a constant. Therefore
dn=dk and finally replacing # by k in the right hand side of
Eq. (43) and using Eq. (40), we get

—o(E, +E¢) —Piae")zd + Ao+ Aoce— 1 E R,

2
+(u, — )ai[_alEO P,—aEeR, (44)

2
e P ] = &R (k)

2

~E,eP, i + 267

—P,d

+2e *"a —ika,E, —ika,E ¢ —ika,

where
R, (k) =2if°° [-PEc+2e 6 -BPo— 1, E,P? — 2P, 0™
Py S
~ (4, - 14 )a] & E,P? + 28,6 %P, +ika,E,P, — 2ika,e ™ |

. 2 . .
i (i By e ™))+ (1~ )a [, (PE, + 26 ™)
2

ika, (E, + Pie—w MRy
(45)

Proceeding in the similar manner which is adopted to
result in Eq. (44), from the boundary conditions (25) and
(26) with the help of Egs. (40) and (41), respectively yields

C,+Ce+ D, + D+ (A +Ae) B =¢R,(K),  (46)

11
and

—¢,,B,P, —C,,B,¢P, — e, [-kC, —KC,& + Dk + D,k

= (B,R, +B,Pe)+ ity (~P.E, ~ P,E,s +2¢ )
11
. (47)
+ _/uT)al[a:l (_Pon -P Elg+ 2e7™ )
~ika, (E, +Elg+ e )] = &R, (K),

where the newly introduced symbols appearing in Eqgs. (46)
and (47) are as

Rz(k)ziji{cok—Dok—g—(B P)} h(1)dA, (48)

11

1
Rs(k) = g_’lw[_cquPlz €5 [kzco + Dok2 +&(_'Abplz)j

11

—Hy Pzon — M 2e " P, - (,UL — M )a1[a1(P22E0 +2e" Pz)
—ika, (—P,E, + 2¢7™ )]+ i{ (c, A )(-ik)

+%m+D+;%(m1ﬂanE+PMe)

11 2

(49)

+(u, — )3, [a (-PE, + 2" )
—ina, (E, + %e*’zd N hda

7. Dispersion equation for electrically open case

Egs. (21) and (23)-(26) together constitute the required
boundary conditions for electrically open case.

Equating the absolute terms (i.e., terms not containing ¢)
and the coefficient of ¢ from Egs. (36), (38), (44), (46) and
(47), we obtain the following:

CO K _po% ™ —(
0 — Y
Cle —-Dle™ =0,
C,[ARSinPH +BP,cosPH] =0,
C,[ARSinPH +BPcosPH] =0,
=N —Piae’Pzd + Ao — 1 EJP, + 24,87

2

+(u, ~ 1 )a[(-a,E0P, + 2

~Rd

,pz] 0,

a,) —ika,EJ —

—0E} + Ao — i EP,
+ (/uL —Hr )a1[(_a1E10 Pz

€,
Co+D+A 2 =0,
1

~ika,E%] = R°(K),

Co+D + A 35— RI(K),

11

—CMBgPl—el{ kC? + Dk + 5 (B P)},JT[ RE;+2¢™]

11

+ (4 —M)a{%(—PzES +2e)-ika, (E‘) +P3e'F’z H =0,

2

and

-C,,BP —e { kC) + D/ ke > (B P)}+/¢T( P,E)

+ (u — )2y | & (-P,EP) —ika, (Ef) | = RS (K).

On solving the above equations, we may obtain the
expressions of ten unknowns viz.

A, B, C, DY, ES, A’,BY,C), DY and E; which are
referred in appendix A where the superscript “ 0 ”
corresponds to the electrically open case.

Therefore, in light of above obtained values, the
mechanical displacement in the upper irregular imperfectly
bonded piezoelectric layer for electrically open case may be
written with the help of Eq. (34) as
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W10 _ ij’ _497P2d‘7€11(1+92K:)(ﬂT +(u -t )af)
274 E” (k)
[R (K)o +8)- [ jkelsR K)o +&)-RI(K)S |e
1-—

Ay + (1, — 1y )al Io

x (cos Px —tan P H sin Px)e ™ dk,
(50)

where E°(k) and & are provided in Appendix A.
Now, using Eq. (1) and Eq. (40), we get

25 i As
h(1) = - [ > J (51)
Using Egs. (45), (48), (49) and (51),we get

RO (K)(o +&) - [1 e jkelsR (K)o +&) -ROK)E
(52)

=2 [ 'k —z)+w°(k+/1)]lsin(ﬁJd,1,
Y/ A 2

where
pok—2)=[A+A+A]™,
where, the value of A, Az and A, are defined in appendix A.
The argument of y°(k—1) is due to 7+i=k.
Now, using asymptotic formulas indicated by willis
(1948) and Tranter (1966), we have
j [w°(k—A)+y°(k +/1)]—sm[ )dz :Ezw (k) = myp° (k).
(53)
Now, using Eq.(53) in Eq.(52), we obtain

RY(K)(o+ &) ( Z jkelsR (K)(o+&) - RO(K)E

~ S ) = s (0 = )
T &
(54)

With the help of Eq. (54), Eq. (50) gives the required
mechanical displacement of the irregular imperfectly
bonded piezoelectric layer as

we ot J‘w —de ™ oey, (L+e™ ) (pr + (g — 1))
1 _2_ —o0 1.0
My + (= pr)aJo
x (cos P,x —tan P,H sin P,x)e " dk.
(55)

The value of this integral depends upon the contribution
of poles of the integrand. In order to find the pole, we
calculate the roots of the following equation

H'y° (k) }:O. (56)
gy + (1, - 117 )a 1o

E°(k){1+

Now, since T = kﬁ is a non-dimensional number that

(o2

describes how effectively the sensitive layer and the half-
space are bonded and I'=0 corresponding to the perfect
bonding of layer with half-space. To take viscoelasticity of
the imperfect interface into account, we use a complex
interface stiffness i.e., o=0,+io,, where both o; and o, are
real. we may write

rr,-ir, - K _ sk

—io,), 57
o,+io, |of 2) ®7)

where o7 and o, are real. o1 corresponds to the flexibility of
the common imperfect interface, whereas o, associated to
the viscoelastic parameter of the common imperfect
interface. Hence, I';=I'»=0 corresponds to the perfect
(wielded) interface.

Introducing " in the obtained frequency equation Eq.
(56), we result in

0
Mt + (= e )2 ke
After simplification of Eq.(58), we obtain
tanPH = X—1+|l—3 (59)
Zz 7(2

where (i =1,2,3) is provided in Appendix B.
The real part of Eq. (59) gives the following dispersion
equation for electrically open case

2 0
tankH [ -1 =4 (60)
G P

with ¢, being the phase velocity of Love-type wave for
electrically open case.

8. Dispersion equation for electrically short case

Boundary conditions for electrically short case are
composed of Egs. (22)-(26).

Equating the absolute terms (i.e., terms are containing &)
and the coefficient of ¢ from Eqgs. (37), (38), (44), (46) and
(47), we obtain the following:

[eﬁ cosPHJAé [eﬁ smPH]Bl+C1 e +Dle ™™ =0,

€1 11

(815 cosPH)A1 (eisin F’lH)BHCl 1 De™ =0,
‘911 811

.. [A'Psin P,H +B.P cos PLH]+e,[-Clke + Dle™*#]1=0,
¢, [A'RsinP,H +B'P, cos P,H]+e,[-Cike" + Dle ™1 =0,

_ . 2
oA~ (0 +E)E = o0 ™ —2ue ™ wik(u — ur)as, oo™

2 2

A:io-'k[_o-_ﬂsz - (/UL —IuT)afPZ _(,UL _/‘T)ikaiaz]Ell = R1l(k)1

CleDl+ 35 Al

11

Cll+D11+$

11

A =Ry (K),
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—CPBY + (ke )CL — (egk) D2 + [~ P, — (11, — 117 )aZP,
— (4, — )23, iK]EL = —2p, €% — (u1, — )22 26"
—Pyd

. 2
ik, — )z, e,

2
~C,uPB} + (ke )Ci — (8isk)D} +[~44: P, = (44, = 41 )a; P,
= (= e )aya ik ]E; = Ry (K).
On solving above equations, we get distinct expressions
of A, B C; D, E, A, B, Cl, D and E/ which are
provided in Appendix A along with R'(k) fori=1,2,3,

where the superscript “1” corresponds to the electrically
short case.

Therefore, the mechanical displacement in the upper
irreqular imperfectly bonded piezoelectric layer for
electrically short case is given by

wi= L[ ZSNRX] Y g, (61)
27 =" ENK) X

where X,Y and E'(k) are provided in Appendix A.
Now, we calculate

V=2l [V (k=) +* (k+ D) =sin| 2> |d2,  (62)
Ve A 2
where y'(k—A1)=[B, +B,+B,]"** ,
and B,, B, and B, are defined in appendix A.

Using asymptotic formula of willis (1948) and Tranter
(1966), we result in

j°° [ (k- 2)+yt(k +ﬂ)]isin(%)dl = %Zy/l(k) =yt (K).
- v
(63)
Now, using Eq. (63) in Eq. (62), we obtain

Y= miw st =i, 69
T &

With the help of Eq. (64), Eq. (61) gives the required
mechanical displacement of the irregular imperfectly
bonded piezoelectric layer as

_ 1= X'sin Bx
2 —0 r 1
4 El(k){l_H‘/;((k)}

The value of this integral depends upon the contribution
of poles of the integrand. In order to find the pole, we
calculate the roots of the following equation

edk.  (65)

E(K) {1—“"/’71(")} 0. (66)

Eq. (66) may further be expressed as in the form
11
El(k){l—HV/T(k)r} —0. (67)

After simplification of Eq. (66), we obtain

1 1
tanRH = £ (68)
X2 X

where /(i =1,2,3) is provided in Appendix B.

The real part of Eq. (68) gives the following dispersion
equation for electrically short case

c;
=
Cl

1
tan kH 1=4 (69)
2

with ¢s being the phase velocity of Love-type wave for
electrically short case.

9. Particular cases and validation

In this section, discussion is made for four particular
cases of the considered problem.

9.1 Case-l

When the composite structure consists of imperfectly
bonded piezoelectric layer with a lower fiber-reinforced
half-space having no irregularity at the common interface
(i.e., H=0), the dispersion equations for electrically open
and short case respectively takes the following form.

9.1.1 For electrically open case

The dispersion relation (60) in absence of an irregularity
at the common interface reduces to

2 0~0 0~ 0
tan || %1 |kH = 282 T GG (70)
(G +(Gy)

where G/ (i =1,2,3)is provided in Appendix B.

9.1.2 For electrically short case
Dispersion relation (69) for electrically short case in
absence of an irregularity at the common interface reduces

to
2
tan {C—; —1JkH
C,

where G/ (i =1,2,3)is provided in Appendix B.

GiG! +GiG!

i 71
Gy +@) ()

9.2 Case-ll

When the composite structure constituted by perfectly
bonded (i.e., I'=I";—il,=0) piezoelectric layer with lower
fiber-reinforced half-space having an rectangular shaped
irregularity at the common interface, the dispersion
equation for electrically open and short case transforms in
the following way

9.2.1 For electrically open case

In electrically open case with perfect bonding between
the layer and the half-space, the dispersion relation Eq. (60)
transform to
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2 0
tan [C—;—l]k 7Yy (72)
c; P%

where 7’ (i = 4,5)is provided in Appendix C.

9.2.2 For electrically short case

In electrically open case with perfect bonding between
the layer and the half-space, the dispersion relation Eq.(69)
transform to

2 1
tan [C%—l]kH =2 (73)
G 5

where /(i = 4,5) is provided in Appendix C.
9.3 Case-lll

When the composite structure is comprised of an
isotropic layer (i.e., e;5=0) perfectly bonded (i.e., I'=0) with
an isotropic half-space (i.e., z =g =jf,) and having a
rectangular shaped irregularity at the common interface, the
obtained dispersion relations for open and short case i.e.,
Egs. (60) and (69) may be obtained as follows

tanPH =
HolgP. S, + H'TAgK(s,)° — g (B))° 1= (H") Lo ks, (R)*]
Ho (P +2H 1Pk iy, + (H') (K g;)*

(74)

*\2 *\2
where ¢, =c, =c and P" =k ((Cz -1,s,=k 1_(c~2 ;
\" 4 By
By = fﬂ and g, = /@ ; M, and f, being Lamé
Po Po

paramaters and p, and p, are the material density of the
isotropic layer and isotropic elastic half-space respectively.

9.4 Case-lV

When the isotropic layer (i.e., e;5=0) is perfectly bonded
(i.e., T'=0) with isotropic elastic half-space (i.e.,
M, = i = [1,) in a composite structure without having any

irregularity (i.e., H=0) at the common interface, the real
part of the obtained dispersion relations for open and short
case i.e., Egs. (60) and (69) is found in well-agreement to
the following Classical Love wave equation

. [1,S,
tan B H = 02 (75)
MR

10. Numerical calculation and discussion

In order to illustrate the theoretical results for the
deduced closed-form of dispersion equation for the
propagation of Love-type wave in a composite structure
comprised of an imperfectly bonded piezoelectric layer
lying over a fiber-reinforced half-space with rectangular

irregularity at the common interface Figs. 2-8 have been
plotted. In these figures, variation of non-dimensional phase
velocity against non-dimensional wave number has been
studied to reveal the influence of various affecting
parameters on dispersion curve in reinforced and
reinforced-free composite structure for both electrically
open and short cases. Through referential figures, the
influence of reinforcement in composite structure,
irregularity parameter (H'/H) associated with irregularity at
the common interface, flexibility imperfectness parameter
(I'y) and viscoelastic imperfectness parameter (')
associated with the complex common interface,
piezoelectric coefficient (ejs) and dielectric constant (eq;)
has been shown. For the purpose of numerical
computations, we consider the following data:
(i) For the wupper imperfectly bonded
piezoelectric layer (Tiersten 1969):
e =2.6C/m°, &, =3.63x107°C/ Nm?,

C =9.4x10°N /m?, p, = 7450Kg / m’.

(if) For the lower fiber-reinforced half-space (Gilis
1984) (Pierson 2012):
4, =0.23x10°N /m?, 4 =44.5x10° N / m?,

0, =2260Kg /m®.

irregular

038 10 12 14 16 [ 20 0.8 1.0 12

() (b)
Fig. 2 The variation of non-dimensional phase velocity
against non-dimensional wave number for different values
of irregularity parameter (H'/H) in composite structure (a)
with reinforcement and (b) without reinforcement for both
electrically open and short case

14 16 [ 20

3

o 12 14 Ls 18 20 22 14 10 12 14 18 18 20 22 24

(@) (b)

Fig. 3 The variation of non-dimensional phase velocity
against non-dimensional wave number for different values
of flexibility imperfectness parameter (I';) at complex
common irregular interface of the composite structure (a)
with reinforcement and (b) without reinforcement for both
electrically open and short case
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Fig. 4 The variation of non-dimensional phase velocity
against non-dimensional wave number for different values
of viscoelastic imperfectness parameter (I';) at complex
common irregular interface of the composite structure ()
with reinforcement and (b) without reinforcement for both
electrically open and short case

30 v 3o
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(a) (b)
Fig. 5 The variation of non-dimensional phase velocity
against non-dimensional wave number for different values
of dielectric constant (e11) in composite structure (a) with
reinforcement and (b) without reinforcement for both
electrically open and short case

12 14 15 18 20 22 24 126 12 14 16 18 20 22 24

(@) (b)
Fig. 6 The variation of non-dimensional phase velocity
against non-dimensional wave number for different values
of piezoelectric coefficient (e;s) in composite structure (a)
with reinforcement and (b) without reinforcement for both
electrically open and short case

Moreover, we consider (Hool and Kinne 1924):
a, =0.00316227

In these figures, it is revealed that phase velocity of
Love-type wave decreases with the increase in wave
number in reinforced and reinforced-free composite
structure for both electrically open and short cases

(@) (b)
Fig. 7 The variation of non-dimensional phase velocity
against non-dimensional wave number in distinct cases
associated with irregularity and imperfectness in reinforced
and reinforced-free composite structure for (a) electrically
open case, and (b) electrically short case

Fig. 8 The variation of non-dimensional phase velocity
against non-dimensional wave number in distinct cases
associated with presence and absence of piezoelectricity in
reinforced and reinforced-free composite structure with
imperfect and perfect common interface for electrically
open and short case

irrespective of presence or absence of irregularity,
imperfectness of common interface and piezoelectricity
associated with layer. Solid line curves in all the figures
correspond to electrically open case whereas dashed line
curves correspond to electrically short case. Figs. 2(a), 3(a),
4(a), 5(a) and 6(a) are associated with the case when Love-
type wave is propagating in a reinforced composite
structure for both electrically open and short cases whereas
Figs. 2(b), 3(b), 4(b), 5(b) and 6(b) are associated with the
case when Love-type wave is propagating in a reinforced-
free composite structure for both electrically open and short
cases.

In Figs. 2(a) and 2(b), the effect of irregularity
parameter (H/H) associated with the rectangular
irregularity at the common interface on phase velocity of
Love-type wave propagating in  reinforced and reinforced-
free composite structure has been shown for both
electrically open and short cases. In these figures, curves 1
and 4 depict the case when the composite structure doesn't
contains irregularity at the common interface of layer and
half-space whereas curves 2, 3, 5 and 6 manifest the case of
composite  structure  containing  irregularity. More
specifically, curves 1 and 4 in Fig. 2(a) correspond to Case-I
whereas curves 1 and 4 in Fig. 2(b) correspond to Case-I
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but without reinforcement. It is revealed from these figures
that phase velocity of Love-type wave decreases with the
increase of depth of irregularity for both electrically open
and short cases irrespective of the situation that composite
structure is reinforced or reinforced-free.

The influence of flexibility imperfectness parameter (I';)
associated with the complex common irregular interface on
phase velocity of Love-type wave propagating in the
composite structure with reinforcement and without
reinforcement has been shown in Figs. 3(a) and 3(b)
respectively each with electrically open and short cases.
These figures reveal that the phase velocity of Love-type
wave propagating in the composite structure decreases with
the increase in flexibility imperfectness parameter for both
electrically open and short cases irrespective of the presence
or absence of reinforcement in the composite structure.

In Figs. 4(a) and 4(b) the effect of viscoelastic
imperfectness parameter (I',) associated with the complex
common irregular interface on phase velocity of Love-
type wave propagating in the reinforced and reinforced-free
composite structure has been displayed respectively each
with electrically open and short cases. These figures
illustrate that the phase velocity of Love-type wave
decreases with the increase in viscoelastic imperfectness
parameter for both electrically open and short cases
irrespective of the situation that composite structure is
reinforced or reinforced-free.

The figures 3(a), 3(b), 4(a) and 4(b) depict that
imperfectness of the common irregular interface between
the layer and half-space of reinforced and reinforced-free
composite structure disfavours the phase velocity of Love-
type wave for both electrically open and short cases.

The effect of dielectric constant (e;) associated with
piezoelectric layer in composite structure on phase velocity
of Love-type wave has been demonstrated in Figs. 5(a) and
5(b) for the case of composite structure with reinforcement
and without reinforcement respectively in both electrically
open and short conditions. These figures portray that the
phase velocity of Love-type wave increases with the
increase in dielectric constant for both electrically open and
short cases in reinforced or reinforced-free composite
structure.

In Figs. 6(a) and 6(b), the influence of piezoelectric
coefficient (ey1)associated with piezoelectric layer in
composite structure on phase velocity of Love-type wave
has been elucidated for the composite structure with
reinforcement and without reinforcement respectively each
with electrically open and short cases. In Fig. 6(a), curves 1
and 4 manifest the case when the Love-type wave is
propagating in the composite structure comprised of
imperfectly bonded isotropic layer with lower fiber-
reinforced half-space with irregular common interface
whereas as curves 1 and 4 in Fig. 6(b) depict the case of
propagation of Love-type wave through the composite
structure comprised of imperfectly bonded isotropic layer
with lower isotropic elastic half-space with irregular
common interface. These figures portray that the phase
velocity of Love-type wave decreases with the increase in
piezoelectric coefficient for both electrically open and short
conditions irrespective of the presence and absence of

reinforcement in the composite structure. It can be
concluded from the figures 5(a), 5(b), 6(a) and 6(b) that
piezoelectricity associated with layer disfavours the phase
velocity of Love-type wave propagating in both reinforced
and reinforced-free composite structure. Meticulous
examination of Figs. 2(a) to 6(b) in a comparative approach,
it can be traced out that reinforcement in the composite
structure favours the phase velocity of Love-type wave.

To unravel the effect of irregularity, imperfectness
associated with the common interface and reinforcement of
the composite structure on phase velocity of Love-type
wave, Figs. 7(a) and 7(b) have been illustrated. Curve 1 in
Figs. 7(a) and 7(b) represents the phase velocity of Love-
type wave propagating in composite structure comprised of
imperfectly bonded piezoelectric layer with lower fiber-
reinforced half-space with rectangular shaped irregularity at
the common interface for electrically open and short case
respectively whereas curve 2 illustrates the case when the
considered composite structure is having no irregularity at
the common interface (i.e., Case-I) for electrically open and
short case respectively. Curve 3 in Figs. 7(a) and 7(b)
manifests the dispersion of Love-type wave propagating in
the composite structure comprised of perfectly bonded
piezoelectric layer with lower fiber-reinforced half-space
with rectangular shaped irregularity at the common
interface (i.e., Case-1I) for the open and short case
respectively whereas curve 4 in Figs. 7(a) and 7(b)
portrays the case when the composite structure is having no
irreqularity and contains perfectly bonded common
interface for electrically open and short case respectively.
Curve 5 shows the case when the considered composite
structure is reinforced-free for electrically open and short
case. The comparative study of these curves in both the
figures reveals that imperfectness at the common interface
disfavours phase velocity of Love-type wave more as
compared to the irregularity at the common interface in the
composite structure in both electrically open and short
conditions. It has been found that the phase velocity of
Love-type wave is more in absence of imperfectness and
irregularity at the common interface of the composite
structure for both electrically open and short cases. It has
also been reported that the phase velocity is least in absence
of reinforcement in the composite structure for electrically
open and short conditions irrespective of the absence or
presence of irregularity and imperfectness at the common
interface of the composite structure.

The comparative study between the particular cases
(Case I, I, 11l and IV) has been demonstrated in Fig. 8.
Curve 1 in this figure illustrates the dispersion of Love-type
wave propagating in composite structure comprised of
imperfectly bonded piezoelectric layer lying over a fiber-
reinforced half-space with rectangular shaped irregularity at
the common interface whereas curve 2 represents the case
of absence of piezoelectricity in the composite structure. In
Fig. 8, curve 3 shows the dispersion of Love-type wave
propagating in the composite structure comprised of
perfectly bonded isotropic layer with lower fiber-reinforced
half-space with rectangular irregularity at the common
interface whereas curve 4 portrays the case when the
composite structure is comprised of imperfectly bonded
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isotropic layer with lower isotropic elastic half-space with
rectangular irregular common interface. In this figure, curve
5 demonstrates the case when the composite structure is
comprised of perfectly bonded isotropic layer with lower
isotropic elastic half-space with irregular common interface
(Case-111) whereas Curve 7 represents the case when the
composite structure is comprised of perfectly bonded
isotropic layer and half-space without irregularity at the
common interface (Case-1V) which is the model for the
Classical Love wave equation. The curves in this figure
reveal that when the composite structure is considered to be
free from piezoelectricity, imperfectness associated with the
irregular common interface disfavours the phase velocity of
Love-type wave irrespective of the presence or absence of
reinforcement in the composite structure. The effect of
imperfectness associated with the irregular common
interface on phase velocity of Love-type wave is found to
be more in case of composite structure without
piezoelectricity and reinforcement as compared to the case
when the composite structure is only without
piezoelectricity. It has also been also reported that the phase
velocity increase more when the composite structure is
comprised of isotropic layer and half-space without
irregularity and imperfectness at the common interface (i.e.,
Case-1V). The comparative study of the particular cases
reveals that the phase velocity of Love type wave in the
composite structure is more in Case-111 as compared to the
Case-ll. The study also reveals that the phase velocity of
Love type wave in the composite structure is maximum for
Case-1V whereas it is found to be minimum for Case-I.

10. Conclusions

The present study articulates the propagation of Love-
type wave in a composite structure comprised of an
imperfectly bonded piezoelectric layer and a lower fiber-
reinforced half-space with rectangular shaped irregularity at
the common interface. Dispersion relation has been deduced
analytically in closed-form for electrically open and short
conditions and further as a special case it is found in well-
agreement to the classical Love-wave equation. It has been
established  through the study that wave-length,
reinforcement in the composite structure, irregularity
parameter (H'/H), flexibility imperfectness parameter (I';)
and viscoelastic imperfectness parameter (I',) associated
with the complex common interface, piezoelectric
coefficient (e;5) and dielectric constant (e1;) have significant
effects on the phase velocity in the composite structure in
all the studied cases. Numerical computation and graphical
demonstration have been carried out to show the effects of
these parameters on the phase velocity of Love-type wave
in the composite structure in all the distinct cases. The
outcome of the present study can be encapsulated as
follows:

(i) The phase velocity of Love-type wave decrease with

the increase in wave number in the composite structure

in all the studied cases.

(if) Phase velocity of Love-type wave for both

electrically open and short cases decreases with the

increase in irregularity parameter irrespective of the
presence or absence of imperfectness associated with the
common interface, piezoelectricity and reinforcement in
the composite structure.
(iii) The presence of imperfectness at the irregular
common interface decrease the phase velocity of Love-
type wave irrespective of the presence or absence of
irregularity associated with the common interface,
piezoelectricity and reinforcement in the composite
structure in both electrically open and short cases.
(iv) The phase velocity of Love-type wave decrease
with the increase in piezoelectric coefficient whereas
the presence of dielectric constant increase the phase
velocity of Love-type wave in the reinforced and
reinforced-free composite structure in all the studied
cases. In a way, piezoelectricity disfavours phase
velocity of Love-type wave in the considered reinforced
and reinforced-free composite structure in all the distinct
cases.
(v) Phase velocity of Love-type wave for the electrically
short case is found to be more as compared to the
electrically open case for the reinforced and reinforced-
free composite structure in all the studied cases.
(vi) Phase velocity of Love-type wave is found to be
more for the reinforced composite structure as compared
to the case when composite structure is without
reinforcement. In a conclusive way, reinforcement in
composite structure favours phase velocity of Love-type
wave.
(vii) The effect of irregularity and imperfectness
associated with the common interface of the composite
structure on phase velocity of Love-type wave is found
to be more when the composite structure is without
piezoelectricity as compared to the case when the
composite structure is without reinforcement.

The present study may have its possible applications in
the sphere of civil engineering, earth science engineering
and seismology.

The consequences of the theoretical study in the
framework of the considered model can be employed in the
field of acoustics, civil engineering, earth science
engineering and seismology. The results of the above study
may also find its possible application in several devices like
acoustic devices, Love wave sensor, transducers, actuators
or any other sensor devices to enhance the performance.
Acoustic emissions in a stressed structure are detected by an
array of highly sensitive piezoelectric transducers that
measure the surface displacements caused by stress waves
originated from defect sites. It is well-known that signal
attenuation in fiber-reinforced polymers is high. Low
frequency waves (typically 20-111 kHz) attenuate less and
therefore they travel longer distances than high-frequency
waves. As a result transducers prefer fiber-reinforced
composite structures along with piezoelectric composites.
In Love wave sensor, in particular, mass density, elastic
stiffness, and dielectric properties increase the sensing
response. Any change in these properties leads to the
changes in phase velocity of the acoustic wave. The
outcome of the present study unlocks the possibility of the
implementation of piezoelectric layer (guiding layer)
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mounted on a fiber-reinforced semi-infinite medium in
Love wave sensor or in any new type of devices for the
propagation of Love-type wave. It is reported from the
above study that the presence of reinforcement in the
medium increase the phase velocity of Love-type wave and
hence it is favourable for the confinement of the wave
propagating at the interface of the guiding layer and
reinforced half-space. Sensitivity increase with the increase
in confinement of the wave in the guiding layer. Thus, the
presence of irregularity and its effect on phase velocity of
Love-type wave considered in the present study. The
irregularity appreciate the delay of the confinement of the
wave for a longer period in the guiding layer. The mounting
may not be perfectly welded. The above study also
discussed the influence of imperfectness parameter in the
present model which is close to the real life scenario. Thus
the results achieved in the present study may be considered
for the proper design of these devices.
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