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1. Introduction 
 

The design or optimization of a large-scale structure 

often involves numerous modifications, and each 

modification requires a fresh analysis for stresses and 

displacements. Large amounts of time will be spent in these 

numerous repeated analyses. This results in extensive 

studies on structural static reanalysis. Static reanalysis is to 

calculate structural responses after modifications by 

utilizing the original information as much as possible so 

that the computational cost can be greatly reduced (Abu 

Kassim and Topping 1987). Static reanalysis techniques are 

significant for designing large structures, especially for the 

case in which only a small part of the structure is modified 

step by step (Hassan et al. 2010, Terdalkar and Rencis 

2006). 

Many static reanalysis methods have already been 

proposed. These methods can be roughly divided into the 

following two categories: direct methods and approximate 

methods. Direct methods present exact closed-form 

solutions of the response of the modified structure. The 

computational costs of these methods are closely related to 

the number of the modified elements, and are unrelated to 

the extent of the change. Thus, this kind of methods is 

efficient for the cases in which the changes in design 

variables are large in magnitude, yet only affect a relative 

small part of the structure. Approximate methods provide 

approximate solutions, and the computational costs of these 

methods depend on the number of the modified elements 
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and the extent of the change. Generally speaking, 

approximate methods can further be classified into the 

following four classes: local approximations, global 

approximations, combined approximations (CA), and 

preconditioned conjugate gradient (PCG) approximations. 

For the detailed derivation of these methods, we refer the 

readers to Kirsch (2008). 

Generally, the design variables used in structural design 

or optimization can be classified as follows (Olhoff and 

Taylor 1983): cross-sectional design variables, material 

design variables, geometrical design variables, topological 

design variables, shape design variables, and support design 

variables. The structural modifications corresponding to the 

modification of the above design variables are named cross-

sectional  modifications,  geometrical  modifications, 

topological modifications, layout modifications and 

supporting modifications, respectively. Among these design 

variables, support design variables become increasingly 

widely used (Takezawa et al. 2006, Zhu and Zhang 2010, 

Kozikowska 2011, Xia et al. 2014, Gao et al. 2015, Xia and 

Shi 2016) and several static reanalysis methods were 

presented for this kind of modifications in recent years. Liu 

et al. (2012), Liu and Yue (2014) studied the cases of 

adding and deleting some support constraints whose 

orientations are the same as that of some axes of the global 

coordinate system, respectively. Liu et al. (2014) proposed 

a unified method that can deal with adding and deleting of 

supports with arbitrary orientation. The method is based on 

the rank-one decomposition of the element stiffness matrix 

and the computational cost is closely related to the number 

and the types of the involved elements. This paper is a 

follow up to Liu et al. (2012), Liu and Yue (2014). A unified 

method that can deal with adding and deleting of supports 

whose orientations are the same as that of some axes of the 

global coordinate system is presented. The Cholesky rank-

one update/downdate algorithm is utilized. The algorithm 

 
 
 

The Cholesky rank-one update/downdate algorithm for static reanalysis 
with modifications of support constraints 

 

Haifeng Liu
1, Jihua Zhu2a and Mingming Li3b 

 
1School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, 710049, P.R. China 

2School of Software Engineering, Xi’an Jiaotong University, Xi’an, 710049, P.R. China 
3Network Center, Jilin University, Changchun 130025, P.R. China 

 
(Received April 22, 2016, Revised December 22, 2016, Accepted December 22, 2016) 

 
Abstract.  Structural reanalysis is frequently utilized to reduce the computational cost so that the process of design or 

optimization can be accelerated. The supports can be regarded as the design variables and may be modified in various types of 

structural optimization problems. The location, number, and type of supports can make a great impact on the performance of the 

structure. This paper presents a unified method for structural static reanalysis with imposition or relaxation of some support 

constraints. The information from the initial analysis has been fully utilized and the computational time can be significantly 

reduced. Numerical examples are used to validate the effectiveness of the proposed method. 
 

Keywords:  structural reanalysis; stiffness matrix; support constraints; Cholesky factorization; computational cost 

 

mailto:lhflkcc@mail.xjtu.edu.cn


 

Haifeng Liu, Jihua Zhu and Mingming Li 

 

 

 
can update the Cholesky factorization for a matrix 

following a low rank modification with little cost. It has 

been used in many fields such as power systems, statistics 

and optimization (Davis 2006). The remainder of the paper 

is organized as follows. The considered problem is 

formulated in Section 2 and our method is derived in 

Section 3. Numerical examples are employed to validate the 

effectiveness of the proposed method in Section 4. Finally, 

some conclusions are drawn in Section 5. 

 

 

2. Problem formulation 
 

The static reanalysis problem with added support 

constraints where some node displacements along axes of 

the global coordinate system are specified can be stated as 

follows. Given an initial design, the corresponding stiffness 

matrix is K0R
m×m

. The displacements vector x0 can be 

obtained by solving the following equilibrium equations 

000 RxK                 (1) 

where R0 denotes the load vector. The matrix K0 is 

symmetric and positive definite (SPD). From the initial 

analysis, the Cholesky factorization of K0 has already been 

known 

T

0000 LDLK                (2) 

where L0 is a unit lower triangular matrix, D0 is a diagonal 

matrix and 
T

0L  denotes the transpose of L0. 

Suppose the structure is modified by increasing some 

support constraints so that k node displacements along axes 

of the global coordinate system are specified. The truss 

structures shown in Fig. 1 are employed to illustrate the 

scope of the proposed method. The initial structure is in Fig. 

1(a), case of adding support constraint like Fig. 1(b) is 

studied in this paper, while case of adding skew support 

constraint like Fig. 1(c) is out of our scope. 

The equilibrium equation corresponding to the modified 

structure is 

RKx                   (3) 

where K0R
(m-k)×(m-k)

 is the modified stiffness matrix and is 

also SPD, x denotes the displacements vector and R 

 

 

represents the load vector of the modified structure. In most 

cases, the number of the changed support constraints is very 

small compared with the number of the original degrees of 

freedom (DOFs), i.e., k<<m. The purpose is to calculate the 

displacements vector x by utilizing the original information 

as much as possible so that the computational cost can be 

significantly reduced. 

In order to illustrate our method, the relationship 

between K0 and K is presented. Let 
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(4) 

Assume that the support constraints are imposed so that 

displacements of the i1th,…,ikth DOFs are specified. The 

stiffness matrix K for the modified structure can be 

obtained by deleting the i1th,…ik rows and columns from 

K0. Therefore, 

)()(
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(5) 

At first glance, Eqs. (4) and (5) may mislead one that 

only the i1th and ikth 
 rows and columns are deleted from 

K0. In fact, k rows and k columns are deleted from K0, i.e, 

the i1th, i2th…,ik-1th, ik th rows and columns. Let 

   

(a) (b) (c) 

Fig. 1 The truss structures. (a) initial design, (b) modified design with added one support along vertical axis of the global 

coordinate system, (c) modified design with added one skew support 
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and 

  m
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where the i1th,…,ikth, components of R
~

 are set to 

kkk iiiiii uk,uk , 
111
 , respectively, the remaining components 

are the same as the components of R and the order is also 

kept unchanged. Where the parameters 
iki u,,u   1   are 

imposed node displacements. In this way, Eq. (3) can be 

rewritten as follows 

RxK
~~~

                   (8) 

For the modification of deleting support constraints 

where some node displacements along axes of the global 

coordinate system are relaxed, the modified stiffness matrix 

is obtained by inserting some rows and columns into the 

initial stiffness matrix symmetrically and the locations of 

the added rows and columns are only related to the numbers 

of the involved nodes. For the details, we refer the readers 

to Liu and Yue (2014). 

 

 

3. The proposed method 
 

In this section, the Cholesky rank-one update/downdate 

algorithm is first reviewed, then the proposed method is 

derived, finally the efficiency of the method is studied. 

 

3.1 The Cholesky rank-one update/downdate algorithm 
 

In 1974, the Cholesky rank-one update/downdate 

algorithm was presented (Gill et al. 1974). Suppose 

AR
m×m

 is a SPD matrix, and the Cholesky factorization of 

A has already been known 

T

AAA LDLA                 (9) 

Let A  be a symmetric rank-one modification of A, i.e. 

 0     T   ,RwwAA       (10) 

where wR
m

 is a column vector. The following algorithm 

can be utilized to calculate the Cholesky factorization of 

A  

T 
LDLA                 (11) 

by using the factorization of A instead of directly factoring 

A . 

 

Algorithm 1. 

1. Define  1
, 

 
ww 1

. 

2. For m   j ,,2,1  , compute 
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j
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      end 

   end 

 

When η>0, A  is always SPD and the algorithm is 

called a rank-one update. When η<0, the algorithm is called 

a rank-one downdate (Davis 2006). Note that in this case 

A  may not be SPD and it is require to be SPD, otherwise 

the algorithm above is numerically unstable, even if the 

factorization of A  exists. The number of operations of 

Algorithm 1 is roughly 2 m
2
 floating point operations 

(flops), and is equal to the cost of a matrix-vector product 

when m is large enough. If the width of A  is considered, 

the computational cost of the algorithm can be further 

decreased. For the details and progresses of the above 

algorithm, we refer the readers to Davis (2006). 

 

3.2 The proposed method 
 

Assume BR
m×m

 is a SPD matrix and the Cholesky 

factorization of B has already been known 

T

BBB LDLB                 (12) 

Partitioning B into 
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   imimR 22B , 1

1

 iRb , 

imR 2b ,  mii 1   is an arbitrary positive integer. 
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where 0 denotes the corresponding zero vector. It can be 

easily proven that B
~

 is SPD and its Cholesky 

factorization can be calculated by using the factorization of 

B and Algorithm 1. The details are given as follows (Sun 

and Yuan 2006): 

Using Eqs. (13) and (14) yields 

TT
bebeBB ii

~
             (15) 

where  

 TT

2

T

1 0 bbb              (16) 

is a m-dimensional vector, ei is the thi  column of the 

identity matrix of order m. Let 

2
    

2

ii ,
eb

z
eb

y





           (17) 

Substituting Eq. (17) into (15) yields 

TT
zzyyBB 

~
           (18) 

The above equation can be rewritten as 

TT
yyzzBB 

~
           (19) 

Eq. (19) shows that the factorization of B
~

 can be 

calculated by using Algorithm 1 twice, which results in 

T
LDLB 

~
               (20) 

Implementing the above procedure for K
~

 and K0 one 

after another, yields 

 



k

l

iiii llll

~

1

TT

0 yyzzKK        (21) 

Based on the factorization of K0 in Eq. (2), the Cholesky 

factorization of K
~

 can be obtained by carrying out 2k 

times Algorithm 1. In fact, the number of Algorithm 1 

required is equal to two times of the number of the modified 

supports. If a free node with s DOFs is constrained in all 

directions, the number of the modified supports is s  and 

Algorithm 1 will be required 2s times. Since k is usually 

very small compared with m, the computational cost is 

inexpensive. Using the Cholesky factorization of K
~

 and 

solving Eq. (8) by the forward and backward substitutions 

yield the displacements vector of the modified structure. 

For the case of deleting support constraints where some 

node displacements along axes of the global coordinate 

system are relaxed, the above process can also be used. In 

order to avoid duplication, the details are omitted. 

 

3.3 The efficiency of the proposed method 
 

The computational cost of above method can be 

quantified by the number of flops. Suppose the number of 

DOFs of the original structure is m, and k is the number of 

the changed support constraints. Assume the half-band 

widths of the initial stiffness matrix and the modified 

stiffness matrix are the same, and b represents the half-band 

width. The case of b<<m is considered. The computational 

cost of using Algorithm 1 one time is roughly 2mb flops 

since the entries of L  outside the width are all zeros. 

Solving one linear system of order m−k (for the case of 

adding k support constraints) or m+k (for the case of 

deleting k support constraints) with half-band width b by 

utilizing the forward and backward substitutions requires 

4(m−k)b or 4(m+k)b
 

flops (Golub and Van Loan 2013). 

Thus, the total computational cost of the proposed method 

is 4(m−k)b+4kmb or 4(m+k)b+4kmb
 
flops since Algorithm 

1 is employed 2k times. It is roughly equal to 4mb+4kmb 

flops due to k<<m. Direct analysis costs (m−k)(b
2+8b+1) or 

(m+k)(b
2+8b+1) flops (Golub and Van Loan 2013) since the 

Cholesky factorization of the modified stiffness matrix is 

involved, and is roughly equal to m(b
2+8b+1) flops. The 

theoretical speed up St is defined as the ratio of the flops 

using the direct analysis method to that using the proposed 

method (Leu and Tsou 2000), that is 

kmbmb

bbm
S t

44

)18( 2




              (22) 

Eq. (22) can be approximated by 

k

b

kmbmb

bbm
S t

44

8

44

)8( 2









         (23) 

From Eq. (23), it can be observed that the smaller k is, 

the larger St is. Using Eq. (23) yields St≥1, if 

)4(
4

1
 bk                (24) 

i.e., if the number of the changed support constraints k 

satisfies the inequality (24), the computational cost of the 

proposed method will be equal to or less than that of the 

direct analysis method. 

 

 

4. Numerical examples 
 

In this section, two examples are given to illustrate the 

effectiveness of the proposed method. All the computations 

are completed on a PC: Pentium 4, quad-core CPU with 

2.66 GHz, 2 GB RAM. Compaq Visual Fortran 6.5 is used. 

 
Example 1 
A ceiling structure shown in Fig. 2 is studied for case of 

adding support constraints. The length and width of the 

structure are 36 m and 24 m, respectively. The modulus of 

elasticity of the material is E=2.07×10
11

 Pa, and the 

Poisson‟s ratios is υ=0.3. The structure has 2652 pipe 

elements and 925 nodes. The outer radius of every pipe 

element is 0.06 m, and the thickness is 0.01 m. Every node 

has 6 DOFs except the 52 constrained nodes and the total 

number of DOFs of the structure is 5238. The top view of 

the structure is shown in Fig. 3 where „○‟ denotes the nodes 

of support constraints. In order to reinforce the structure, 

two free nodes as shown in Fig. 3 with „□‟ are constrained, 

and 12 displacement constraints are imposed. The number 

of DOFs of the modified structure is 5226. Every free node 

of the modified structure is subjected to a vertical load  
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Fig. 2 The ceiling structure 

 

 

Fig. 3 The top view of the ceiling structure 

 

Table 1 The maximum vertical displacements calculated by 

the proposed method, the direct analysis method and the 

reanalysis methods presented in Liu et al. (2012) and Liu et 

al. (2014) for the modified ceiling structure 

 
Proposed 

method 

Direct 

analysis 

Liu et al. 

(2012) 

Liu et al. 

(2014) 

The maximum 

vertical 

displacements 

−0.0394 m −0.0394 m −0.0394 m −0.0394 m 

 
Table 2 The computational times for the modified ceiling 

structure 

 
Proposed 

method 

Direct 

analysis 

Liu et al. 

(2012) 

Liu et al. 

(2014) 

The computational 

times 
0.4188 s 6.4547 s 0.5632 s 2.6215 s 

 

 

P=200 N. 
Table 1 gives the maximum vertical displacement of the 

modified structure calculated by the proposed method, the 

direct analysis method and the reanalysis methods presented 

in Liu et al. (2012), Liu et al. (2014). It can be observed 

that, all the results are the same. The computational times 

are listed in Table 2. It shows that the computational time of 

the proposed method is the shortest among all the methods. 

 

Example 2 
Consider the framework of the building shown in Fig. 4, 

the case of deleting support constraints is studied. The 

length, width and height of the framework are 36 m, 18 m 

and 20 m, respectively. The height of each floor is 5 m. The 

material modulus of elasticity and the Poisson‟s ratio are 

E=3×10
10

 Pa and υ=0.2, respectively. A finite element 

model is employed to simulate the framework under a given 

load. The model has 672 elements (288 plate elements and 

 

Fig. 4 The framework of building 

 

 

Fig. 5 The constrained nodes of the initial framework 

 

 

Fig. 6 The constrained nodes of the modified framework 

 

 

384 beam elements) and 439 nodes. Every node has 6 DOFs 

except the 15 constrained nodes and the total number of 

DOFs of the structure is 2544. All the constrained nodes are 

at the bottom of the structure, as showed in Fig. 5, where „‟ 

denotes the support constraint nodes. The thickness and the 

size of all the plates are 0.2 m and 3 m×3 m, respectively. 

The beams have two cross-section sizes, those 

perpendicular to the ground have the square 0.5 m×0.5 m 
cross-sections, others have the rectangular 0.3 m×0.6 m 
cross-sections. Each free node of the framework are 

subjected to a vertical load P=2×10
4
 N. The modification is 

made by deleting the rotation constraints of two nodes 

denoted by „△‟ in Fig. 6. Thus, the total number of DOFs 

of the modified structure is 2550. 

Table 3 gives the maximum vertical displacement of the 

modified structure calculated by the proposed method, the 

direct analysis method and the reanalysis methods presented 

in Liu and Yue (2014) and Liu et al. (2014). The 

computational times are listed in Table 4. It can be seen 

from Tables 3 and 4 that, the maximum vertical 

displacement calculated by the four methods are the same, 

while the computational time of the proposed method is the 

shortest. 
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Table 3 The maximum vertical displacements calculated by 

the proposed method, the direct analysis method and the 

methods presented in Liu and Yue (2014) and Liu et al. 

(2014) for the modified framework 

 
Proposed 

method 

Direct 

analysis 

Liu and Yue 

(2014) 

Liu et al. 

(2014) 

The maximum 

vertical 

displacements 

−0.048 m −0.048 m −0.048 m −0.048 m 

 
Table 4 The computational times for the modified 

framework structure 

 
Proposed 

method 

Direct 

analysis 

Liu and Yue 

(2014) 

Liu et al. 

(2014) 

The maximum 

vertical 

displacements 

0.3048 s 11.4328 s 0.4182 s 0.6527 s 

 

 

5. Conclusions 
 

A unified method for structural static reanalysis with 

imposition or relaxation of some support constraints along 

axes of the global coordinate system has been presented. 

The Cholesky rank-one update/downdate algorithm is 

employed. The proposed method is easy to implement and 

the computational time can be significantly reduced. 

Although the scope of the method is less than that of the 

method based on the rank-one decomposition of the element 

stiffness matrix, the computational cost is less expensive. In 

addition, the Cholesky factorization of the modified 

stiffness matrix is obtained, it can be used as the initial 

information when the structure is further modified. 

Numerical examples have demonstrated the effectiveness of 

the proposed approach. 
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