
Structural Engineering and Mechanics, Vol. 62, No. 2 (2017) 247-258 

DOI: https://doi.org/10.12989/sem.2017.62.2.247                                                                 247 

Copyright ©  2017 Techno-Press, Ltd. 
http://www.techno-press.org/?journal=sem&subpage=8                                     ISSN: 1225-4568 (Print), 1598-6217 (Online) 

 
1. Introduction 
 

Beam-like structures or structural members are often 

excited by the motions at supports or connections, e.g., 

piping system in nuclear power plants subjected to support 

motions at their connections to containment buildings and 

heavy equipment, long and slender structures such as 

chimneys, towers, long bridges and oil pipeline subjected to 

ground motions. They can be modeled as Euler-Bernoulli 

beam subjected to multi-support motions if the foundation 

or ground soil is assumed to be rigid. However, a flexible 

connecting rod, some robotic manipulators, and some pipes 

in nuclear power plants are not slender beams but rather 

stocky ones. They are often excited by the motions 

transmitted from connections or supports in main structures 

or foundation. Thus, it is necessary to employ Timoshenko 

beam that can represent both of slender one and stocky one. 

Therefore, the vibration associated with Timoshenko beam 

subjected to support motions is to be considered in this 

investigation.  

The vibration of the aforementioned beams is 

characterized as the problem of flexural vibration with time-

dependent boundary conditions. Mindlin and Goodman 

(1950) developed the quasi-static decomposition method for 

Euler-Bernoulli beam and applied it to obtain a solution of 

the problem. Many researchers have applied it to the 
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analysis of structures subjected to multiple support 

excitations by using various approaches such as time history 

analysis, response spectrum method of analysis or 

frequency domain spectral analysis (Masri 1976, Abel-

Ghaffar and Rood 1982, Clough et al. 1993, Chopra 1995, 

Yau et al. 2007, Frýba et al. 2009, Yau 2009, Zhang et al. 

2009, Datta, 2010, Liu et al. 2011, and Kim et al. 2013, 

2015, 2016).  

As for Timoshenko beam subjected to support motions, 

there are not so many papers compared with those on Euler-

Bernoulli beam. Lee and Lin (1998) presented a solution 

procedure for elastically restrained non-uniform 

Timoshenko beams by generalizing the quasi-static 

decomposition method. But there is a remark that such a 

description concerns only for elastically restrained 

Timoshenko beams and they did not treat the Timoshenko 

beam subjected to support motions. Kim (2016) proposed a 

solution procedure for responses of simply-supported 

Timoshenko beams subjected to support motions using 

eigenfunction expansion method. He applied the quasi-

static decomposition method to the system of the second 

order differential equations of the beams to resolve the 

difficulties of time-dependent boundary conditions. 

The eigenvalues of Timoshenko beam and the beam 

vibrations have been studied over the years by many 

investigators (Han et al. 1999, Stephen et al. 2006, 

Rensburg et al. 2006, Majkut 2009, Díaz-de-Anda et al. 

2012, and Li et al. 2014). Han et al. (1999) presented 

systematic analysis of four models such as Euler-Bernoulli, 

Rayleigh, shear and Timoshenko beams. They presented the 

orthogonal conditions of the eigenfunctions and the  
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(a) Bending of a beam 

 
(b) Free-body diagram of a beam element 

Fig. 1 Beam in flexure 

 

 

procedure to obtain the forced response using the method of 

eigenfunction expansion. Recently, Rensburg et al. (2006) 

presented a mathematically systematic approach to solving 

the eigenvalue problems associated with the uniform 

Timoshenko beam model, of which the results are identical 

to those of Han et al. (1999).  

Though the method of eigenfunction expansion is valid 

for the beams with typical or classical boundary conditions, 

a fixed-fixed beam is chosen for analysis in this paper 

because such a beam is frequently used in nuclear power 

plants. For example, the pipes connecting between reactor 

pressure vessel and steam generators or between reactor 

pressure vessel and reactor coolant pumps are considered as 

a thick beam. Since the bending moment and shear force are 

main concerns in structural design, dynamic analysis 

focusing on the structural loads is carried out by using the 

proposed method. To check the correctness of the proposed 

method, the dynamic responses of Timoshenko beam are 

compared with those obtained by Euler-Bernoulli beam 

theory. The comparison shows that their solutions match 

well. The dynamic analysis for the fixed-fixed beam 

subjected to support motions gives useful information to 

develop an understanding of the structural behavior of the 

beam. The information or findings are reported in this 

paper. 

 

 

2. Timoshenko beam subjected to support motions 
 

The motion of Timoshenko beam with uniform cross 

section is described by 
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where y(x,
 
t) is the transverse displacement at a point x and 

time t, θ(x,
 
t) is the angle of the rotation of a cross section, 

 

Fig. 2 A fixed-fixed beam subjected to the support 

displacements, a(t) at the left end and b(t) at the right end 

 

 

and q(x,
 
t) is the transverse force per unit length as shown in 

Fig. 1(a). A superimposed dot denotes a time derivative and 

a superscript prime stands for a spatial differentiation. EI, 

ρA, L and κ denote the flexural rigidity, mass per unit 

length, the length of the beam and the shear correction 

factor, respectively. For simplicity, but without loss of 

generality, assume the load q(x,
 
t) be zero during support 

motions. The following constitutive equations for the 

moment M(x,
 
t) and the shear force Q(x,

 
t) shown in Fig. 

1(b) are used to derive the governing equations. 
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Consider a fixed-fixed beam in Fig. 2 for illustration. 

The boundary conditions of the fixed-fixed beam are 

0),(,0),(),(),(),(),(  tltltbtlytatly   (3) 

where a(t) and b(t) are support displacements prescribed by 

records of support motion.  

Assuming that the motion starts from rest, the initial 

conditions are 

0)0,(,0)0,(,0)0,(,0)0,(  xxxyxy    (4) 

 

2.1 Quasi-static displacements 
 

By the quasi-static decomposition method, the total 

displacements of y(x,
 
t) and θ(x,

 
t) are decomposed into two 

parts 
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where ys(x,
 
t) and θs(x,

 
t) are quasi-static linear displacement 

and quasi-static angular displacement, respectively, w(x,
 
t) 

and ϕ(x,
 
t) are dynamic contributions. The quasi-static parts 

should satisfy the following partial differential equations 
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and the boundary conditions including non-homogeneous 

ones 
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Solving Eq. (6) directly by using the boundary 

conditions, we obtain following solutions. 
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In the above equation (9), K is defined as 
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2.2 Dynamic displacements 

 

For free vibration, the equation of motion in Eq. (1) can 

be rewritten in terms of the dynamic displacements 

 

 







s

s

IwGAEII

yAwGAwA








 (11) 

or, in matrix form 
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The boundary conditions corresponding to Eq. (7) are 

rewritten in terms of dynamic components as follows 
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The initial conditions of Eq. (11) are also written as 

follows 
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2.2.1 General form of solutions 
Using the method of eigenfunction expansion method, 

we can obtain the solutions of Eq. (11), i.e., w(x,
 
t) and ϕ(x,

 

t) that satisfy relevant boundary conditions and initial 

conditions. 

At first, consider the eigenvalue problem of Eq. (12) 
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The solutions of Eq. (16) are separable in space and 

time. Thus, assume w(x,
 
t) and ϕ(x,

 
t) as follows. 
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With such an assumption, Eq. (16) can be written as 
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where ω is the frequency of T(t), and {V}
T
={W(x) Φ(x)}. 

Assuming the form of {V} as 
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where Y1 and Y2 are arbitrary constants.  

Han et al. (1999) and Rensburg et al. (2006) obtained 

the following solutions of Eq. (16). 
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In Eq. (21), d and ∆ are defined as follows 
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Using Eq. (20), we obtain the solutions of Eq. (18) after 

several manipulations, as follows: 
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where A, B, C, and D are arbitrary constants and r1 and r2 

are 
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• When ω
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 > κGA/ρI 
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where E, F, G, and H are arbitrary constants and p1 and p2 

are 
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2.2.2 Frequency equations and normalized modes 
Using the boundary conditions in Eq. (14), we can 

obtain the following two frequency equations, i.e., one for 

ω
2
 < κGA/ρI and the other for ω

2
 < κGA/ρI. 

For ω
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 < κGA/ρI, the frequency equation is 
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For ω
2
 > κGA/ρI, the frequency equation is  
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Since the geometry and the boundary conditions of the 

beam are symmetric with respect to x=0, we can separate 

the natural modes of the beam into symmetric ones and 

anti-symmetric ones. Thus, we will derive them when ω
2
 < 

κGA/ρI and when ω
2
 > κGA/ρI, one by one. 
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If the boundary condition of Φ(l)=0 satisfies „{the factor 

(A) in Eq. (27)}=0‟, the constant C in Eq. (29) vanishes. 

Thus, Eq. (29) can be written as follows 
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(30) 

Since W(x) in Eq. (30) is symmetric with respect to x=0, 

the corresponding natural mode is called symmetric mode 

in this paper though Φ(x) is anti-symmetric. The 

corresponding normalized modes are expressed as 
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where      
l

l
rrrrr dxDxIDxWAm

22
/)(/)(   and 

r=1, 3, 5,…, n. Since symmetric modes regularly occur 

before an anti-symmetric modes as natural frequency 

increases, the mode number of the symmetric modes, r is 

numbered as r=1, 3, 5, ∙∙∙, n, where n is an odd number. 

If the boundary condition of Φ(l)=0 satisfies „{the factor 

(B) in Eq. (27)}=0‟, the constant D in Eq. (29) vanishes. 

Therefore, Eq. (29) can be written as follows 









 )sinh(

)sinh(

)sin(
)sin()( 1

1

2
2 xr

lr

lr
xrCxW  

250



 

Analytic solution of Timoshenko beam excited by real seismic support motions 

 




























)cosh(
)sinh(

)sin()(

)cos(
)(

)(

1

1

2

1

2

1

2

2

2

2

2

2

xr
lr

lr

r

r

xr
r

r

Cx




 (32) 

Note that W(x) in Eq. (32) is anti-symmetric with 

respect to x=0. The corresponding normalized anti-

symmetric modes are 
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where      
l

l
rrrrr dxCxICxWAm

22
/)(/)(   and 

r=2, 4, 6,…, m. The mode number, m is an even number 

and m can be greater or less than n depending on a beam in 

hand. 

 

• When ω
2
 > κGA/ρI 

Using the similar manner, we can obtain symmetric and 

anti-symmetric eigenfunctions. 

For the natural frequencies satisfying „{the factor (C) in 

Eq. (28)}=0‟, we obtain the symmetric modes 
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(34) 

The corresponding normalized modes are 




























































)sin(
)cos(

)cos()()(

)sin(
)()(

)cos(
)cos(

)cos(
)cos(

1

)(

)(

1

1

2

1

2

1

2

2

2

2

2

2

1

1

2
2

*

*

xp
lp

lp

p

p

xp
p

p

xp
lp

lp
xp

m
x

xW

r

r

r

r

rr

r

r

rr

r

r

r
r

r
r

r



  (35) 

where      
l

l
rrrrr dxHxIHxWAm

22
/)(/)(  . The 

mode number, r cannot be specified because there does not 

exist a fixed regular pattern that symmetric or anti-

symmetric mode appears as natural frequency increases. 

For the natural frequencies satisfying „{the factor (D) in 

Eq. (28)}=0‟, we obtain the anti-symmetric modes as 

follows 
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The corresponding anti-symmetric normalized modes 

are 
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where      
l

l
rrrrr dxGxIGxWAm

22
/)(/)(  . 

 

2.2.3 Solution of dynamic displacements  
Using the eigenvalues and the normalized modes, we 

can rewrite Eq. (18) as 

    ,0][][ *2
 rr VML    ,3,2,1r  (38) 

where ωr is the r-th natural frequency and the vector {Vr
*
} 

is the r-th normalized mode. The orthogonal conditions are 

(Lee and Lin 1998) 
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(39) 

where δrs is the Kronecker delta. The orthogonal conditions 

in Eq. (39) hold for the classical boundary conditions such 

as hinged end, fixed end and free end. 

The solutions w(x,
 
t) and ϕ(x,

 
t) can be expressed in the 

following eigenfunction expansion form 
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so that, inserting Eq. (40) into Eq. (12), we obtain 
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Multiplying through by )}()({ ** xxW rr  , integrating 

over the domain, and considering the orthogonal conditions, 

we obtain the independent set of ordinary differential 

equations 

 ,3,2,1),()()(
2

 rtQtt rrrr   (42) 

where 
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The response of Eq. (42) can be written as in the general 

form 

t

tdtQt

r

r

r

rro

t

rr

r

r











sin

cos)(sin)(
1

)(

0

0




 
 (44) 

where 

   dx
x

xw
MxxW

l

l

rrr









 


)0,(

)0,(
)()( **

0


  

),3,2,1( r  

(45) 

and 

   dx
x

xw
MxxW

l

l

rrr









 


)0,(

)0,(
)()( **

0


 


  

),3,2,1( r  

(46) 

Inserting Eq. (44) into Eq. (40), we obtain the general 

response of the dynamic components 

















































1 0

0
*

*

sincos

)(sin)(
1

)(

)(

),(

),(

r

r

r

r
rro

t

rr

r

r

r

tt

dtQ

x

xW

tx

txw










 
 (47) 

 
2.3 Total responses 
 

2.3.1 Total displacements 
Inserting Eq. (47) into Eq. (5), we obtain the total 

displacements 
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Using the quasi-static displacements in Eq. (8), )(tQr  

in Eq. (43) is expressed as follows 

 ,3,2,1),(
~

)(
~

)(  rtbBtaAtQ rrr  (49) 

where 































 

 

 

 

l

l

l

l

rrr

l

l

l

l

rrr

dxxRxIdxxLxWAB

dxxRxIdxxLxWAA

)()()()(
~

)()()()(
~

2

*

2

*

1

*

1

*





 (50) 

 

Fig. 3 Time history of support acceleration given in   the 

form of a set of piecewise linear functions 

 

 

By using Eq. (49), the term of  
t
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contained in Eq. (44) is expressed as 
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which requires the time histories of support accelerations, 

)(ta  and )(tb .  

Suppose the seismic waves or the support motions are 

recorded in terms of acceleration at discrete time points and 

thus the time histories of acceleration can be described by a 

set of piecewise linear functions as shown in Fig. 3. Then 

the support motions in the (k)-th time interval can be 

expressed as follows 
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(53) 

The coefficients of )1(

iC  and )1(

iD  (i=1, 2) are 

determined by the initial conditions in Eq. (4), and )(k

iC  

and )(k

iD  (i=1, 2; k=2, 3, 4, ···) are determined 

successively by following relations 
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Using the support displacements )()( ta k  and )()( tb k  

in Eq. (52), we can calculate the quasi-static displacements 

in Eq. (8). Using )()( ta k  and )()( tb k  in Eq. (52), we can 

also express Eq. (51) as fol1ows when the current time t is 

within the (k)-th time interval, i.e. 1 kk ttt  
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(55) 

Finally, we can calculate the total displacement in Eq. 

(48) for a set of time histories of seismic accelerations or 

support motions. 

 

2.3.2 Bending moment and shear force 
Using Eq. (8) and Eq. (48), we can rewrite the bending 

moment and the shear force in Eq. (2) as 
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where Mstatic and Qstatic denote static component of bending 

moment and static part of shear force, respectively, and 

Mdynamic and Qdynamic denote dynamic components. They are 

expressed as follows 
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3. Application examples and discussions 
 

To illustrate the vibration of Timoshenko beam excited 

by different support motions at ends, the first 10 sec of the 

1940 El Centro Earthquake accelerogram (E-W component) 

have been used as input support motions. To model 

asynchronous or different support excitations as shown in 

Fig. 4, it is assumed that the earthquake travelling waves 

originate from the left and propagate longitudinally to the 

right at the speed of 100 m/s. The wave velocity is quite 

low compared with an actual one but the computed results 

 

 

 
(a) Prescribed time history of acceleration at the left support 

 
(b) Prescribed time history of acceleration at the right 

support 

Fig. 4 The fixed-fixed beam in Fig. 2 is subjected to the 

accelerations, d
2
{a(t)}/dt

2
 and d

2
{b(t)}/dt

2
 at the left end 

and the right end, respectively 
 

0 2 4 6 8 10
-2

0

2

Time [sec]

A
c
c
e

le
ra

ti
o

n
, 
d 2

a
(t

)/
 d

t 2
 [
g

]

0 2 4 6 8 10
-2

0

2

Time [sec]

A
c
c
e

le
rt

io
n

, 
d 2

 b
(t

)/
d

t 
2
 [
g

]

Time Delay (TD)

0 2 4 6 8 10
-2

0

2

Time [sec]

A
c
c
e

le
ra

ti
o

n
, 
d 2

a
(t

)/
 d

t 2
 [
g

]

0 2 4 6 8 10
-2

0

2

Time [sec]

A
c
c
e

le
rt

io
n

, 
d 2

 b
(t

)/
d

t 
2
 [
g

]

Time Delay (TD)

253



 

Yong-Woo Kim 

 

 
  (a) Bending moment at x=−30 m 

 
(b) Bending moment at x=30 m 

Fig. 5 Comparison of time histories of bending moment of 

the slender beam (TD=0.60 sec) 

 

 

are useful to develop an understanding of the structural 

behavior. The time delay, TD, is computed from TD=(span 

length)/(wave velocity). 

The input data for the beams with the section of hollow 

circle are as follows: E=200
 
GPa, ρ=7860 kg/m

3
, ν=0.3, 

outer diameter do=0.32 m, inner diameter di=0.22 m, and 

shear correction factor κ={6(1+ν)(1+f
2
)

2
}∕{(7+6ν)(1+f

2
)

2 

+(20+12ν)f
2
} where f=di/do (Blevins, 1979). The lengths 

are: L=60 m for a slender beam and L=2 m for a stocky 

beam, respectively. The time delay for the 60 m long beam 

is 0.60 sec and that for the 2 m long beam is 0.02 sec. 

All the responses are calculated by using the first ten 

modes of each beam throughout this paper because they 

yield sufficiently converged solutions. The natural 

frequencies used in the sender beam are much lower than 

the critical frequency of ωc=(κGA/ρI)
0.5

 while the first seven 

frequencies of the stocky beam are lower than ωc and the 

rest of them are higher than ωc. 

 

3.1 Numerical simulation for the slender beam 
 

To check the correctness of the proposed method, the 

calculations for the slender beam of length 60 m are carried 

out by using Euler-Bernoulli beam theory (EBT) (Chen et 

al. 1996) as well as Timoshenko beam theory (TBT) and the 

results are to be compared. It is expected that the two 

 
 (a) Shear force at x=−30 m 

 
(b) Shear force at x=30 m 

Fig. 6 Comparison of time histories of shear forces of the 

slender beam (TD=0.60 sec) 

 

 

responses of the slender beam are nearly identical because 

the effects of rotary inertia and shear deformation of the 

slender beam are so small that they can be neglected.  

Since the bending moment and the shear force are main 

concerns in structural design, their time histories due to the 

support motions are plotted in Fig. 5 and Fig. 6, 

respectively. The reason that the time histories at the ends 

are presented in Fig. 5 and Fig. 6 is that the maximal 

structural loads may occur at ends in the fixed-fixed beam. 

Fig. 5 and Fig. 6 show when the maximums of the structural 

loads occur at ends. They also show that the results based 

on TBT agree with those based on EBT well. 

Decomposing the bending moment ((Mtotal)TBT) and the 

shear force ((Qtotal)TBT) at x=±30 m into their static 

components ((Mstatic)TBT and (Qstatic)TBT) and dynamic 

components ((Mdynamic)TBT and (Qdynamic)TBT), we plotted 

them in Fig. 7 and Fig. 8, respectively. Fig. 7 and Fig. 8 

show that the magnitudes of static components are small 

compared with the corresponding dynamic components, i.e., 

the magnitudes of Mtotal and Qtotal are governed by their 

dynamic components. Such kind of beams are called 

„dynamic component-dominated beam (DCD beam)‟ in this 

paper. According to author‟s experience, the lower the 

fundamental frequency is and the larger the slenderness 

ratio of s (=L/r, where r is radius of gyration) is, the more 

dominant the dynamic components become. In this  
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(c) Bending moment at x= 30 m
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(c) Bending moment at x= 30 m
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(b) Shear force at x= -30 m
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Analytic solution of Timoshenko beam excited by real seismic support motions 

 

 
  (a) Bending moment at x=−30 m 

 

 
(b) Bending moment at x=30 m 

Fig. 7 Mtotal, Mstatic and Mdynamic in the slender beam when 

TD=0.60 sec 

 

 

 

example, the fundamental frequency is 3.0425 [rad/s] and 

the slenderness ratio is 618.03. 

 

3.2 Numerical simulation for the stocky beam 
 
Consider the fixed-fixed stocky beam of span length 2 m, 

which belongs to an extreme case of a thick beam. The time 

 
  (a) Shear force at x=−30 m 

 

 
(b) Shear force at x=30 m 

Fig. 8 Qtotal, Qstatic and Qdynamic in the slender beam when 

TD=0.60 sec 

 

 

 

histories of bending moment and shear force at x=±1 m 

caused by the support motions are plotted in Fig. 9 and Fig. 

10, respectively. Fig. 9 and Fig. 10 show that the results 

based on TBT do not agree with those based on EBT. This 

is because the Euler-Bernoulli beam theory does not take 

account of the effect of rotary inertia and shear deformation. 

Decomposing (Mtotal)TBT and (Qtotal)TBT at x=±1 m into  
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(b) Bending moment at x= 30 m
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(a) Bending moment at x= -30 m
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(b) Bending moment at x= 30 m
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(a) Bending moment at x= -30 m
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(b) Bending moment at x= 30 m
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(a) Bending moment at x= -30 m

Time [sec]

B
e

n
d

in
g

  
M

o
m

e
n

t 
 [
N

m
]

 

 

0 2 4 6 8 10
-3

-2

-1

0

1

2
x 10

5

(b) Bending moment at x= 30 m
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(a) Shear force at x= -30 m
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(b) Shear force at x= 30 m
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(a) Shear force at x= -30 m
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(b) Shear force at x= 30 m
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(a) Shear force at x= -30 m
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(b) Shear force at x= 30 m
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(a) Shear force at x= -30 m
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(b) Shear force at x= 30 m
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(a) Bending moment at x=−1 m (b) Bending moment at x=1 m 

Fig. 9 Comparison of time histories of bending moments of the stocky beam (TD=0.02 sec) 

0 2 4 6 8 10
-5

0

5

10

15
x 10

5

(b) Bending moment at x= -1 m
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(c) Bending moment at x= 1 m
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(b) Bending moment at x= -1 m
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(c) Bending moment at x= 1 m
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  (a) Shear force at x=−1 m 

 
(b) Shear force at x=1 m 

Fig. 10 Comparison of time histories of shear forces of the 

stocky beam (TD=0.02 sec) 

 

 
   (a) Bending moment at x=−1 m 

 

 
(b) Bending moment at x=1 m 

Fig. 11 Mtotal, Mstatic and Mdynamic in the stocky beam 

(TD=0.02 sec) 

 

 
  (a) Shear force at x=−1 m 

 

 
(b) Shear force at x=1 m 

Fig. 12 Qtotal, Qstatic and Qdynamic in the stocky beam 

(TD=0.02 sec) 

 

 

static components and dynamic components, respectively, 

we plotted them in Fig. 11 and Fig. 12. Fig. 11 and Fig. 12 

show that the magnitudes of Mtotal and Qtotal are governed by 

their static components, that is, the static components are 

very large compared with the dynamic components and thus 

the dynamic components can be neglected. This contrasts 

with the behavior of the slender beam considered in the 

previous section. This kind of beams are called „static 

component-dominated beam (SCD beam)‟ in this paper. 

According to author‟s experience, the higher the 

fundamental frequency of a beam is and the smaller the 

slenderness ratio is, the more dominant the static 

components become. In this example, the fundamental 

frequency is 2189.4 [rad/s] and the slenderness ratio is 

20.601. 
 
3.3 Bending moment and shear force affected by the 

time delay 
 

Since Mdynamic and Qdynamic of the stocky beam or SCD 

beam are so small compared with the static components 

(Mstatic and Qstatic), Mtotal and Qtotal can be calculated easily 

only by static components, without dynamic analysis. Thus, 

from Eqs. (8)-(10), Eq. (57) and Eq. (59), we have 
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(b) Shear force at x= -1 m
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(c) Shear force at x= 1 m
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(b) Shear force at x= -1 m
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(c) Shear force at x= 1 m
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(a) Bending moment at x= -1 m
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(b) Bending moment at x= 1 m
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(a) Bending moment at x= -1 m
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(b) Bending moment at x= 1 m
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(a) Bending moment at x= -1 m
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(b) Bending moment at x= 1 m
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(a) Bending moment at x= -1 m
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Fig. 13 Time history of a(t)-b(t) affected by time delay (TD) 

 

 

and 
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 (62) 

The above equations state that the magnitudes of 

bending moment and shear force are propotional to the 

difference between support displacements, a(t)-b(t). We 

plotted a(t)-b(t) in Fig. 13 for differnt time delays, which 

shows that different TD produces different time history of 

a(t)-b(t) and the magnitude of |a(t)-b(t)| increases as the 

time delay(TD) increases. This implies that the magnitudes 

of bending moment and shear force increase as the wave 

velocity decreases. 

For the stocky beam, the time histories of total bending 

moment and total shear force at x=1 m are plotted in Fig. 

14(a) and Fig. 14(b) for four different TD‟s, which show 

that the maginitudes of bending moment and shear force 

increase as the TD increases. The maximal maginitudes are 

(Mtotal)max≈3×10
6
 Nm and (Qtotal)max≈3×10

6
 N, respectively 

when TD=0.06 sec. But the maximal magnitudes of 

dynamic components in the corresponding time histories at 

the same location are (Mdynamic)max≈200 Nm and 

(Qdynamic)max≈500 N, respectively. 

Fig. 13 and Fig. 14 show the following facts: (i) There is 

a similarity between the pattern of the time history of a(t)-

b(t) in Fig 13 and the pattern of the time histories of Mtotal 

and Qtotal in Fig. 14 for each TD. (ii) The maximal 

magnitudes of |Mtotal| and |Qtotal| occur at the time that the 

maximal maginitude of |a(t)-b(t)| occurs. (iii) |Mtotal| and 

|Qtotal| are minimal when TD=0.0. These facts are closely 

related to the facts that Mtotal and Qtotal are governed by 

Mstatic and Qstatic, respectively and that their magnitudes are 

proportional to |a(t)-b(t)| as explained in Eqs. (61) and (62). 

 

 

4. Conclusions 
 

This study proposes an analytic method based on 

Timoshenko beam theory to predict the bending moment 

and the shear force of the beam subjected to support 

motions. The analytic responses of a fixed-fixed beam 

subjected to a real seismic support motions are illustrated to 

 
(a) Bending moment at x=1 m 

 
(b) Shear force at x= 1 m 

Fig. 14 Time histories of bending moment and shear force 

of the stocky beam affected by time delay (TD) 

 

 

show the principled approach to the proposed method since 

fixed-fixed thick beams are frequently used in nuclear 

power plants. The results of the dynamic analysis are useful 

to develop an understanding of the structural behavior of 

the beam, and they are as follows:  

• In the DCD (dynamic component-dominated) beam 

such as the slender beam considered in this paper, the 

total moment and the total shear force are governed by 

the dynamic components, that is, the static components 

of the structural load are small compared with the 

dynamic components. 

• In the SCD (static component-dominated) beam such 

as the stocky beam considered in this paper, the total 

moment and the total shear force are governed by the 

static components, that is, the static components of the 

structural load are very large compared with the 

dynamic components. Thus, the dynamic components 

can be neglected. Therefore, it is possible to estimate 

bending moment and shear force without dynamic 

analysis in SCD beam. 

• In the SCD beam, the magnitudes of bending moment 

and shear force are propotional to the difference 

between support displacements. For this reason, the 

maximal magnitudes of bending moment and shear 

force vary as the TD changes. In other words, the maxial 

magnitudes of structural loads vary depending on the 

wave velocity. In this paper, we omitted mentioning the 
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following fact with an appropriate parameter in detail: 

The higher the fundamental frequency of a beam is and 

the smaller the slenderness ratio is, the more dominant 

the static components become. Further researches on an 

appropriate parameter to define SCD beam are required 

to utilize the feature in a structural design without 

dynamic analysis. 
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