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1. Introduction 
 

The properties of metal-matrix composites (MMCs) 

exceptionally good stiffness-to-weight and strength-to-

weight ratio and high temperature resistance make it 

attractive in many structural applications especially in 

weight-sensitive components at high temperature 

applications, such as applications in aerospace, gas turbine 

engines and other structural components. Unidirectional 

metal matrix composites have their best performance in the 

direction of the fibers, but in the most applications these 

materials are subjected to loads that are not in the fiber or 

normal to the fiber direction. This type of loading is usually 

called off-axis loading. In addition, due to mismatch in the 

thermo-mechanical properties of fibers and matrix thermal 

residual stresses arise in the manufacturing process of metal 

matrix composite and the presence, the sign, and the 

magnitude of the residual stresses significantly affect the 

yield strength, and the fracture toughness of the resulting 

MMCs. 

Off-axis loading of composite materials has been 

studied theoretically at both macro- and micro-mechanical 

view. At a macro-mechanical view the composite is 

presumed to be a material which is macroscopically 

homogeneous and has orthotropic properties. A number of 

continuum models have been proposed to predict the 

behavior of composite materials subjected to off-axis 

loading. Among the earliest efforts to study the off-axis 
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behavior of composite materials are the analytical and 

experimental studies carried out by Jackson and Cratchley 

(1996), Cooper (1996), Pipes and Cole (1973). 

At the micromechanical view, the composite is treated 

as a heterogeneous material consisting of fibers embedded 

in the matrix. Many attempts have been made to develop 

micromechanical models to predict the behavior of 

composite subjected to various types of loading. Most of 

these studies are limited to the application of normal 

loading in the transverse and axial directions (Adams 1970, 

Dvorak et al. 1973, Nimmer 1990, Wisnom 1990, Zahl et 

al. 1994, Li and Wisnom 1996, Nimmer et al. 1991, 

Aghdam et al. 2000). Some other studies have considered 

shear loading in the micromechanical modeling of the 

composites (Adams and Doner 1967, Adams and Crane 

1984a, b, Brockenbrough et al. 1991, Naik and Crews 1993, 

Sun and Vaidya 1996, Dang and Sankar 2008, Ahmadi and 

Aghdam 2010a). Adams and Crane (1984a, b) modified the 

classic generalized plane strain assumption introduced by 

Lekhnitskii (1963) to include axial shear and used a 2-D 

finite element method to analysis axial shear in their 

problem. Sun and Vaidya (1996) used a 3D finite element 

method to study the normal, transverse shear and axial shear 

loading of unidirectional (UD) composites. Inclusion of the 

thermal residual stress in shear analysis of composite is 

much more difficult, since the boundary conditions for 

shear loading are asymmetric, while dose for the prediction 

of thermal residual stress are symmetric. Nedele and 

Wisnom (1994) developed a 3-D finite element model using 

ABAQUS that includes an approximate boundary condition 

for combination of thermal and shear loading conditions.  

Micromechanical modeling of the off-axis loading in 

practical has received relatively little attention. Aboudi 
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(1988, 1989) used his analytical micromechanical model to 

predict the strength of a unidirectional composite under 

complex loading. Foye (1973) developed a finite element 

micromechanical model for composite laminate subjected to 

a general combination of normal and shear stresses. 

However, details of the boundary conditions which are used 

for combination of shear and normal loading were not 

provided in his work. Aghdam et al. (2001) developed a 3D 

finite element micromechanical model using ANSYS to 

predict the behavior of unidirectional metal matrix 

composite subjected to off-axis loading. Zhu and Sun 

(2003) studied the behavior of AS4/PEEK composite under 

off-axis loading using a 3D finite element-based 

micromechanical approach. Zhu et al. (1998) used a 3D 

finite element micromechanical model to analysis biaxial 

loading and off-axis loading of composite materials and to 

predict the strength of a unidirectional composite under 

complex loading conditions. Carvelli and Corigliano (2004) 

studied the transverse strength of long-fiber composites and 

considering perfect bonded and perfect de-bonded fiber-

matrix interface. Totry et al. (2008) studied the failure of 

C/PEEK composites in transverse comparison and axial 

shear loading using computational micromechanics. 

Sirivedin et al. (2007) used the micromechanical model and 

Elasto-plastic finite element (FE) analysis to study the 

effects of thermal residual stress in the damage of cross-ply 

carbon fiber/epoxy composite. Vaughan and McCarthy 

(2011) studied the micromechanics of fibrous composite 

and found out that in case of a strong fiber-matrix interface, 

thermal residual stresses improve the transverse tensile 

strength. Melro et al. (2013) developed micromechanical 

damage model suitable for epoxy matrix material which 

accounts for different behavior under transverse tension, 

transverse compression, and longitudinal and transverse 

shear. 

Moncada et al. (2012) used the generalized method of 

cells to study progressive damage in composites. 

Sayyidmousavi et al. (2014) used a micromechanical 

approach to study the fatigue failure of unidirectional 

polymer matrix composites subject to off-axis loading. 

Erfani and Akrami (2016) used the micromechanical fatigue 

model to evaluate the cyclic fracture in perforated beams. 

Hassanzadeh-Aghdam et al. (2015) developed a 3D 

micromechanics-based analytical model to investigate the 

influence of interphase on the thermo-mechanical properties 

of three-phase composites. Rohwer (2015) studied the 

different models on failure and damage of composite 

materials employing different failure theories. Aghayei et 

al. (2015) studied the different failure criteria to predict the 

damage in glass/polyester composite materials. 

As mentioned before, researchers used analytical 

approaches and FE modeling to predict the behavior of 

composite material in off-axis loading and to predict the 

failure behavior of composites in micromechanical points of 

view. Recently, meshless methods have become very 

attractive and efficient for solving boundary value 

problems. In the meshless methods, nodes can be easily 

added and removed without need for re-meshing of 

elements. Various meshless methods are developed by 

different authors in two last decades. For example one can 

refer to diffuse element method (Nayroles et al. 1992), 

Element Free Galerkin (EFG) method (Belytschko et al. 

1994), reproducing kernel particle method (Liu et al. 1996), 

meshless local Petrov-Galerkin (MLPG) method (Atluri and 

Zhu 1998) and meshless finite mixture (MFM) method 

(Cheng et al. 2004). Some applications of the meshless 

methods in the literature include the solution of elasto-

static/dynamic problems (Atluri and Zhu (2000), Long et al. 

2006), plate bending (Gu and Liu 2001, Belinha and Dinis 

2006, Sladek et al. 2007, Kanok-Nukulchai et al. 2001), 

fracture mechanics (Belytschco and Gu 1995, Ching and 

Batra 2001), Navier-Stokes flow (Atluri and Shen 2002) 

and micromechanics of composite materials (Dang and 

Sankar 2008, Ahmadi and Aghdam 2010 a,b). 

To the knowledge of authors, the analysis of off-axis 

loading of composite materials using 2D-generalized plane 

strain method, which reduces the computational cost, is not 

found in the literature. On the other hand, the available 

papers in open literature used 3D finite element modeling to 

model the RVE of UD composite subjected to off-axis, 

axial-transverse and thermal loading conditions. In this 

study, a modified generalized plane strain micromechanical 

model is developed to study the combination of transverse 

and axial normal, shear and thermal loading of fibrous 

composites in order to model the off-axis and biaxial 

loading of the composite. This model is employed to study 

the biaxial and off-axis loading of SiC/Ti and Kevlar/Epoxy 

composite in the presence of the effects of the thermal 

residual stresses. A truly meshless method is developed to 

solve the governing equation of the problem over the RVE. 

The RVE includes a fiber surrounded in the matrix as 

repeating element of square array packing of fiber. A 

perfect connection is considered between fiber and matrix, 

and displacement continuity and traction reciprocity 

conditions satisfied in the fiber matrix interface. A failure 

criterion is considered for the fiber-matrix interface failure. 

The transverse-transverse, axial-transverse and off-axis 

loading of SiC/Ti and Kevlar/Epoxy composite are 

investigated. Quadratic (Von Misses) and Maximum stress 

failure criteria are considered for prediction the failure in 

the fiber and matrix. The failure envelopes of the composite 

are investigated with Direct Micromechanical Model 

(DMM) and compared with those of phenomenological 

criteria, such as Tsai-Hill criteria. 

 

 

2. Modeling 
 

2.1 Off-axis loading 
 
Consider a unidirectional fiber reinforced composite 

with parallel aligned fibers in the x1 direction as shown in 

Fig. 1. The tension load is applied to the composite in Z 

direction so that the fibers are aligned at angle  with 

respect to the loading direction, Z. The spatial coordinate 

system XYZ as shown in Fig. 1 is defined so that Z-axis 

aligned in the loading direction and Y-axis shows the 

thickness direction of the specimen and fibers are aligned in 

the XZ plane. The material principle coordinate system 

x1x2x3, is defined so that x3 aligned in the fiber direction and  
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Fig. 1 Off-axis loading of composite material, and stress 

components in principle coordinates of the composite 

 

 

x2 axis coincides with the Y-axis. The composite is 

subjected to known off-axis tension load in the Z direction 

and the average stress in the loading direction is 
z . The 

symbol   indicates the average macro-stress which is 

applied to a sufficiently large volume of the composite. 

In the case of off-axis loading as shown in Fig. 1, the 

stress state within the specimen in the material principle 

coordinate x1x2x3, consists of three stress components and 

can be obtained as 

1
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      (1) 

in which 
3  is the macro normal stress in the fiber 

direction, 
1  is the transverse macro stress and 

13  is the 

axial shear stress and  is the angle between the fiber 

direction and the loading direction as indicated in Fig. 1. So 

the micromechanical model for analysis of the off-axis 

loading of UD composite must be able to consider 

combined axial and transverse normal loading and axial 

shear loading of the composite.  

 
2.2 Micromechanical modeling of composites 
 
In the micromechanical modeling of unidirectional 

fibrous composites, in order to simplify the model and 

reduce the computational cost,  usually the actual 

distribution of the fibers within the cross-section of the 

composite is simplified to regular and periodic array of 

fibers in the matrix. In the present study, fibers are assumed 

to have circular cross section and arranged in the square 

array fiber packing. In this case, the smallest repeating area 

of the composite is chosen as the Representative Volume 

Element (RVE) or unit cell. In general, modeling the off- 

 

Fig. 2 Selected Representative Volume Element (RVE) and 

the coordinate system 
 

 

axis loading conditions which includes combination of axial 

and transverse normal load and axial shear load requires a 

3-D representative volume element. Modeling and analysis 

of such RVE computationally is expensive. In this study, in 

order to reduce the computational cost, the generalized 

plane strain (GPS) model of Lekhnitskii (1963) is used for 

modeling of the problem. In GPS assumption of the RVE, 

the strain field is invariant along the fiber axis, x3, i.e., 

=(x1, x2) and the normal strain in the fiber, x3 direction is 

constant as . This treatment allows displacements to 

occur in all three coordinate directions, but each 

displacement is dependent upon the x1- and x2-coordinate, 

i.e., u1=u1(x1,x2), u2=u2(x1,x2) and the displacement in the x3-

direction has an added linear dependence on the x3-

coordinate, i.e., u3=0x3+w3(x1,x2) where u1, u2 and u3 are 

the displacements in the x1, x2 and x3 directions, respectively 

and  is unknown constant stain in the fiber, x3, direction. 

In this case, a 2-dimentional RVE as shown in Fig. 2 can be 

chosen which reduces the computational cost of the 

solution. It is clear that the employed GPS model 

considered all six components of strain, but the strain field 

is invariant along the fiber, x3-axis, so the stress field in the 

RVE is independent from the x3 coordinate. 

 

2.3 Boundary and Interface conditions 
 

In the micromechanical analysis of the RVE, proper 

consideration must be given to the periodicity and 

symmetry of the model in arriving at the correct boundary 

conditions for different loading situations. Under 

longitudinal and transverse normal loading, a typical RVE 

deforms in such a way that it remains a right parallelepiped, 

i.e., plane sections remain plane. In general, because the 

composite materials can be envisaged as a periodical array 

of the RVEs, therefore, the periodic boundary conditions 

must be applied to the RVE. This implies that each RVE in 

the composite has the same deformation mode and there is 

no separation or overlap between the neighboring RVEs. 

The periodicity conditions of displacements on the 

boundary of the RVE can be expressed as 

         (2) 

In which d is the micro-structural scale of the RVE, 

( ) ( )i i ij ju u d  x d x
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which defines the distance from a point x on the boundary 

of the RVE to its mirror point on the opposite boundary and 

ij is the average macroscopic strains. It can be seen that 

although the difference of the displacements for the 

corresponding points on the two opposite boundary surfaces 

are specified, the individual displacement component is still 

a function of the coordinates, i.e., a plane does not 

necessarily remain a plane after the deformation. For 

example, according to (3), the periodic boundary conditions 

for u1 and w component of displacements can be written as 
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In which 2a and 2b are the length and the width of the 

RVE, respectively. The traction boundary conditions on the 

faces of the RVE must be considered as 
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On the other hand, the following relation can be written 

between the applied macro-stresses which are applied to the 

TVE and the micro-stresses 
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In which  denotes the external macro-stress applied to 

the RVE and can be obtained in (1). For fully bonded fiber-

matrix interface, the continuity of displacement and 

reciprocity of traction in the fiber-matrix interface must be 

satisfied. 

 

 

3. Meshless formulation 
 

In this study a meshless formulation based on the 

MLPG method (Atluri and Shen 2002) is employed for 

solution of the problem. For a continuum body with the 

domain  which is in the static equilibrium, all of the sub-

particles 

s that are located inside the body is in the 

equilibrium conditions. Ignoring the body force, the 

equilibrium equation in the weak form for a sub-particle 

(sub-domain) 

s inside  can be written as 

, , ,( ) 0, 1,2,3
I I I
s s s

ij j ij j ij jwdV w dV w dV i  
  

      (6) 

where w is the weight function in the Petrov-Galerkin 

method. Using the divergence theorem, the above equation 

can be written as 

, 0, 1,2,3
I I
s s

i ij jt wdV w dV i
 

         (7) 

where ti=ijnj is the traction vector on the boundary of the 

sub-domain and ∂s
I
 is the boundary of the local sub-

domain. Generally, ∂s
I
 contain three parts, L

I
s is the part 

which is located totally inside the global domain and 
I
st 

and 
I
su are parts of ∂s

I
 that coincide with the global 

traction and the global essential boundary, respectively. In 

the Petrov-Galerkin method, w is an arbitrary function and 

can be chosen so that it vanishes on L
I
s. By this integration 

on L
I
s vanishes and Eq. (7) can be written as 

, , 1,2,3
I I I
s su st

ij j i iw dV t wd t wd i
  

         (8) 

The second and third terms of Eq. (8) vanish for the 

subdomains that totally are located inside the global 

domain.  

 

 

4. Solution of problem 
 

According to (1), the off-axis loading of the RVE 

consists of combination of axial and transverse normal 

loading, and axial shear loading of the RVE. In isotropic 

fiber and matrix, the shear stresses are not coupled with 

normal strains and with transverse normal and shear 

stresses. The axial shear component of the loading i.e., 
13  

causes only axial shear strains in the x3 direction i.e., 13 in 

the RVE. 

 

4.1 Governing equations 
 
According to the displacement field of GPS, it is clear 

that the strains and stresses are uniform in the x3 direction 

and so it is clear that ij,3=0. In this case the equilibrium 

equations in the x1, x2 and x3 direction can be written as 
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      (9) 

As seen, the x3 coordinate is eliminated. For isotropic 

materials, the first and second equations of (9) are coupled 

differential equations on u1(x1,x2) and u2(x1, x2) and the third 

equation is  a differential equation on w3(x1,x2). Using (8), 

the weak form of Eq. (9) in the matrix form can be written 

as 

I I I
s su st

dA d d
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in which B  and W are defined as 
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in which w(x1,x2) are weight function and  and t are 

defined as  
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t
     (12) 

The axial strain 0 is unknown constant and must be 

obtained in the problem solution. 0 is written separately in 

the matrix form of stress-strain relations, and the stress-

strain relation for each constituent in the RVE in the 

presence of temperature change ∆T can be written as 

0 0 T T   σ Cε C C       (13) 

where  is defined in (12) and according to the 

displacement field, can be written as 
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where the matrix C, C0 and CT are defined as 
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The subdomains are located in the x1x2 plane and the 

outward normal to the surface of the subdomains is n=(n1, 

n2, 0), so the traction on the boundary of the subdomains 

can be obtained as 

1 2 3{ }Tt t t t Nσ        (16) 
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1 2

2 1

2 1

0 0 0

0 0 0

0 0 0

n n

n n

n n

 
 


 
  

N     (17) 

 

4.2 Discretization of equations  
 

In order to discrete the equations, a kind of 

approximation method is needed. One of the well-known 

methods for approximation of the field variable u(x) over a 

number of randomly located nodes within the solution 

domain is the moving least squares (MLS) technique which 

is described in Atluri and Shen (2002). In this method the 

nodal interpolation of u(x) is expressed as 

1
ˆ( ) ( )

Nh J J

J
u u


  xx x x Ω     (18) 

whereJ
(x) is called the shape function of the MLS 

approximation corresponding to node J and ˆJu are 

fictitious nodal values of the field variable. More details on 

construction of the shape functions can be found in Atluri 

and Shen (2002). 

Using the MLS discretization approach, the strains  

which are defined in (14) can be written in the discretized 

form as  
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N
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in which dummy index means summation from 1 to N, and 
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and ,i is the partial derivative of (x) respect to the xi. The 

details for obtaining ,i can be found in Atluri and Shen 

(2002). By substituting from (13) and (19) into (10), the 

governing equation of the problem can be obtained as 





I
su

I
s

ddA JJ
N

J

J
N

J

uWNCBuCBB
11

ˆ  

1 1

0 0 0

늿

( )

( )

I I
s su

I I I
st su s

I I
s su

N N
J J J J

J J

T T

dA d

d d d

T d d



  

  

 

  

    

   

  

  

 

BCB u WNCB u

t WNC BC

BC WNC

 (21) 

The above equations can be written as 

ˆ
IIJK u f   (22) 

where the stiffness and force matrix can be obtained as 
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    (23) 

 

4.3 Imposing the boundary and interface conditions 
 
One of the challenges of meshless methods is imposing 

the essential boundary conditions and material discontinuity 

in the problem solution. In this study, the periodic boundary 

conditions are directly imposed to the global stiffness and 

force matrices. For example, in the transverse loading one 

of the periodic boundary conditions on the right and left 

edges of the RVE is prescribed as 

1 2 1 2 11( , ) ( , ) 2u a x u a x a           (24) 

Eq. (24) can be enforced to the nodes that are located on 

right and left edges of the RVE using MLS approximation 

as 
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Table 1 Elastic and thermo-elastic properties of SiC, Ti, 

Kevlar and Epoxy in the composite system 

Material E (GPa)   (10-6/ºC) Yield Strength, Y (MPa) 

SiC Fiber 409 0.2 4.5 3496 

Ti Matrix 107 0.35 10 910 

Kevlar 130 0.3 - 2800 

Epoxy 3.5 0.35 - 58 

 

 

 


N

J

J

I

JN

J I

J auxux LR
1 1111

2)(ˆ)(    (25) 

where I
R
 indicates the node on the right edges of the RVE at 

(a,x2) and I
L
 is the conjugate nodes located on the same 

point on the left edge of the RVE at (-a,x2). Eq. (25) is 

added as a row to the global stiffness and force matrix for 

the nodes that are located on the boundary. Also the 

continuity of displacement and reciprocity of traction at the 

fiber-matrix interface for fully bonded interface must be 

imposed as 

 at the interface   (26) 

in which superscript f and m denotes fiber and matrix, 

respectively.  
 
 

5. Numerical results and discussion 
 

In the numerical results, the unidirectional SiC/Ti and 

Kevlar/Epoxy composite are studied. It is assumed that 

fibers have circular cross sections and arranged at the 

square array in the matrix. The Representative Volume 

Element (RVE) for the composite system is taken as Fig. 2. 

The elastic and thermo-elastic properties and yield strength 

of fibers and matrixes are considered as Table 1. The failure 

envelopes of SiC/Ti with 35% FVF and Kevlar/Epoxy with 

63% FVF in the biaxial and off-axis loading are 

investigated in the numerical results. The thermal residual 

stress and its effects on the failure envelopes of SiC/Ti are 

considered in the analysis. The results show that the failure 

envelopes are affected by the thermal residual stress in the 

composite. 

 

5.1 Interface failure criteria 
 
One of the most important features of metal matrix 

composites is generally the low strength of the interface 

between the fibers and matrix. In this study, two failure 

criteria are considered for fiber-matrix interface. 

1- The Maximum Interface Normal Stress criteria which 

supposed that the tensile normal to interface stress (n) 

causes the failure of the interface at tension. 

2- The Maximum Interface Shear Stress criteria which 

supposed that the shear stress on the interface () causes the 

failure of the interface. 

It is supposed that shear strength of the interface is 

affected by the friction between the fiber and matrix. 

Compressive stress on the interface increases the shear 

strength of the interface. The friction depends on the 

compressive normal stress on the interface. So in the 

present study the failure criteria of the interface are 

considered as; 

(a) In tension of the interface (n>0) 

0
n n

n

n

Y
for

Y










  (27) 

(b) In compression of the interface 

0n n nY for      (28) 

where Yn is the strength of the interface in normal tension 

and supposed to be Yn=55 MPa (Li and Wisnom 1996) and 

 is a factor that shows the dependency of shear strength of 

the interface to the compressive normal stress on the 

interface. In (27) and (28), n is the normal to interface 

stress and  is the shear stress on the fiber interface. It is 

supposed that the fiber-matrix interface does not fail by 

normal compressive stress. 

 

5.2 Strength prediction of composite using direct 
micromechanics 

 
In this section the presented micromechanical model is 

applied to predict the strength of SiC/Ti composite and 

Kevlar/Epoxy composite though prediction of the micro-

stresses in the fiber, matrix and fiber-matrix interface for 

axial and transverse loading. The failure may begin to occur 

in the fiber, matrix or interface due to the micro-stresses. 

Prediction of the failure of the composite based on the 

analysis of micro-stresses in the fiber, matrix and interface 

is named direct micromechanical model (DMM). Various 

failure criteria can be considered for predicting the failure 

in the fiber and in the matrix. For example the Maximum 

stress criteria or the Quadratic (Von Misses) criteria may be 

employed to predict the failure initiation in the fiber or 

matrix. Also interface failure criteria may be considered in 

prediction the Failure of the RVE. The Maximum stress 

criteria are usually used for brittle materials such as 

ceramics and Quadratic criteria are usually used for ductile 

materials such as metals. For abbreviation of failure criteria, 

the letter Q is used to refer to Quadratic (Von Misses) 

criteria and M is used to denote Maximum normal stress 

criteria. 

In this study, a two letter notation such as AB is used to 

illustrate the combinations of the failure criteria which are 

employed to predict failure in the fiber and matrix. The first 

letter, A denotes the criteria that are used for predicting of 

failure in the fiber and the second one, B stands for the 

criteria which are used for prediction of failure in the matrix 

in the composite system. For example notation QM means 

that the Quadratic criterion is used for fiber, Maximum 

normal stress criteria is used for matrix and interface failure 

is not considered for fiber-matrix interface and QQ means 

that Quadratic criteria is employed for both fiber and matrix 

and interface failure is not considered. The predicted 

strength of the RVE based on failure of the interface 

(Interface Normal Stress and Interface Shear Stress) is 

reported separately in the tables and figures. The failure  

0

0

f m

f m

 

 
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t t
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Table 3 Predicted Strength of Kevlar/Epoxy with 63% FVF 

with DMM without considering thermal residual stress  

Criteria XT=Xc (MPa) YT=YC (MPa) S13 (MPa) S12
 (GPa) 

QQ 1377 51 17.5 20.7 

MQ 1377 51 17.5 20.7 

QM 1340 29 15.1 17.9 

MM 1340 29 15.1 17.9 

 

 

strength of the fibers and matrix are shown in Table 1. The 

interface bonding strength between the fiber and matrix is 

supposed to be Yn=55 MPa (Li and Wisnom 1996). In this 

study the results are presented for Yn=55 MPa, 300 MPa and 

500 MPa. 

 

5.2.1 Uniaxial strength 
The strengths of the SiC/Ti and Kevlar/Epoxy 

composite in uniaxial normal and shear loading are studied 

based on the analysis of the RVE. This type of analysis is 

named direct micromechanical method (DMM). The 

predicted strength values of SiC/Ti composite without 

considering the thermal residual stress (TRS) are shown in 

Table 2. In this table, XT and XC refer to the tensile and 

compressive strength composite in the axial direction and 

YT and YC refer to the tensile and compressive strength in 

the transverse direction, respectively and S refers to the 

shear strength of the composite. The predicted results based 

on the combination of different criteria are tabulated in 

Table 2. A look at Table 2 makes it clear that same value 

for XT as 1.7721 GPa is predicted for SiC/Ti by MQ and 

MM criteria which this value is more conservative than QQ 

and QM criteria in predicting the axial strength of SiC/Ti. 

The QQ and QM criteria also predicts same value for axial 

tensile strength as XT=1.8103 GPa. In the prediction of XT, 

because the results of MQ and MM are the same and the 

results of QQ and QM are the same, so it is concluded that 

fiber controls the failure initiation of SiC/Ti in the axial 

loading and maximum stress criteria (M) is more 

conservative. In axial tensile loading of SiC/Ti composite, 

the normal stress at the interface (n) is compressive and so 

the interface will not fail in the axial tension.  

In Table 2, the predicted value for transverse strength of 

SiC/Ti is YT=41.3 MPa and YC=145.7 MPa and is obtained 

by Interface Normal Stress and Interface Shear Stress  

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

criteria. So the dominant failure mode for axial loading is 

failure of fiber, the dominant mode for transverse tensile 

loading is Interface Normal Stress criteria and the dominant 

failure mode for transverse compressive loading is interface 

shear stress criteria. 

The unidirectional strengths of unidirectional 

Kevlar/Epoxy composite with 63% FVF which are obtained 

by the micromechanical model using different failure 

criteria for matrix and fiber are shown in Table 3. 

The fiber-matrix failure criteria are not considered for 

Kevlar/Epoxy composite. The table includes the transverse 

normal Y, axial normal Y and shear strength S12 and S13. It is 

seen that the predicted strengths of Kevlar/Epoxy composite 

do not depend on the chosen failure criteria of Fiber. The 

predictions of QQ are the same as MQ, and the predictions 

of QM are the same as MM. It means that matrix control the 

failure of the Kevlar/Epoxy composite.  

The strengths of the SiC/Ti composite with considering 

the thermal residual stress (TRS) are shown in Table 4. It 

must be noted that the manufacturing process of SiC/Ti 

metal matrix composite takes place at the temperature about 

910ºC and after manufacturing, the composite is cooled 

down to the room temperature. Because of the mismatch in 

the coefficient of thermal expansion of the fiber and matrix 

the change of temperature will cause serious thermal 

residual stresses in the composite at the room temperature. 

To estimate the thermal residual stress in the SiC/Ti 

composite system, it is assumed that the composite system 

is stress free at the manufacturing temperature and during 

the cooling the thermal residual stresses arise in the 

composite. For prediction of the thermal residual stresses in 

SiC/Ti, it is supposed that the composite components are 

stress free in the manufacturing temperature 910ºC, so at 

the room temperature (25ºC) the composite system is 

subjected to decrease in temperature as T=25-910=-885ºC 

Due to this temperature change a compressive thermal 

residual stress about -300MPa will occur at the fiber-matrix 

interface on x1 axis in radial direction. Also the axial 

thermal residual stress at fiber is about -810 Mpa and in the 

matrix on x1 axis is about 420 MPa. 

It can be seen that in the presence of TRS the axial 

strength of SiC/Ti is reduced. It is seen in Table 4 that in the 

presence of TRS, axial tension strength (XT) is not affected 

by the failure criteria of the fiber. So it can be claimed that 

by considering the residual stresses, tension strength in fiber  

Table 2 Predicted Strength Values of SiC/Ti with 35% FVF with DMM without considering the thermal 

residual stress, Yn=55 MPa (the most conservative value in each column is bolded) 

Criteria XT (GPa) XC (GPa) YT (GPa) YC (GPa) S13 (GPa) S12
 (GPa) 

QQ 1.8103 1.8103 0.7833 0.7833 0.3712 0.5078 

MQ 1.8103 1.8103 0.7833 0.7833 0.3712 0.5078 

QM 1.7721 1.7721 0.6592 0.6592 0.6445 0.8471 

MM 1.7721 1.7721 0.6592 0.6592 0.6445 0.8471 

Interface failure 

(Max. Interface Normal stress) 
- 2.1913 0.0413 0.3561 - 0.0524 

Interface failure, (Max. Interface 

Shear Stress, =0.8) 
- 9.6862 0.0971 0.1457 0.0387 0.0455 

The most conservative values 

(Composite Strengths) 
1.7721 1.7203 0.0413 0.1457 0.0387 0.0455 
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direction (XT) is controlled by failure of matrix. It is due to 

the fact that axial thermal residual stress in the matrix is 

tensile and about 410 MPa. Also based on Table 3, it can be 

concluded that the axial strength of composite in 

compression (XC) is controlled by failure of fiber because as 

seen in Fig. 5, the axial thermal residual stress is 

compressive in the fiber (about -790 MPa). Because of the 

large value of compressive residual stress in the fiber, in the 

axial compression of SiC/Ti, fibers fail before matrix. 

Table 5 shows that by considering the thermal residual 

stress and using the Interface Normal Stress criteria, the 

transverse strength of SiC/Ti is predicted as YT=277 MPa. 

The experiment value for the transverse failure initiation of 

SiC/Ti is reported about 250 MPa by Li and Wisnom (1996) 

and Nimmer et al. (1991). So, it is concluded that 

predictions of the Interface Normal Stress criteria is more 

close to the experiment data. The Interface Normal Stress 

criteria are selected as interface failure criteria in most of 

the presented figures in the next sections.  

 The predicted transverse strength of composite is 

increased by considering the thermal residual stress (TRS). 

This is due to the compressive TRS in the fiber-matrix 

interface. Hu (1996) reported the experimental data for 

initiation of de-bonding for a single fiber material as 247 

MPa. They predicted the residual stress in the interface as 

321 MPa. 

 

5.2.2 Biaxial transverse-transverse loading 
The composite system which is subjected to state of 

biaxial stress in the transverse directions x1 and x2 is 

considered. The external normal stresses 
1  and 

2  are 

the only nonzero external loads that are applied to the 

composite. The direct micromechanical method (DMM) is 

used to predict the failure envelopes of composite in 

transverse-transverse loading.  

The failure envelopes of the SiC/Ti composite in 

transverse-transverse loading, without considering the 

thermal residual stresses are shown in Fig. 3. This figure 

contains the envelopes obtained by micromechanical 

approach for the case of QQ, MQ, QM and MM. In Fig. 3, 

it is clear that QQ and MQ criteria predict the same 

envelopes and QM and MM predict the same envelopes. It 

means that failure of matrix controls the failure of the RVE 

in transverse-transverse loading. The figure contains the 

failure envelope predicted by phenomenological Tsai-Hill 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Fig. 3 Failure envelopes of SiC/Ti in transverse-transverse 

loading without considering the thermal residual stress 

 

 

criteria. The Tsai-Hill envelope is obtained based on the 

uniaxial strengths of the RVE which are obtained by QQ 

criteria in Table 2. Also the predictions obtained by 

Interface Normal Stress criteria by Yn=500 MPa, 200 MPa 

and 55 MPa are included in Fig. 3. Based on Fig. 3, it is 

obvious that QM and MM are more conservative than QQ 

and MQ in predicting the failure envelopes. As seen in the 

figure, because of weak fiber-matrix interface, in the 

absence of the thermal residual stress, the transverse tensile 

strength of the composite which are predicted based on the 

failure of interface has very small value.  

The failure envelopes of SiC/Ti composite in (
1 ,

2 ) 

plane by considering the thermal residual stresses are shown 

in Fig. 4. The effects of residual stresses on the failure 

envelopes are seen in this Figure. By comparing Fig. 4 with 

Fig. 3, it is clear that the failure envelopes in (
1 ,

2 ) plane 

are shifted due to presence of compressive transverse 

residual stress in the matrix. The compressive residual 

stress at the fiber-matrix interface tends to delay the fiber-

matrix de-bonding in transverse tension. For Yn=55 MPa, 

based on the interface failure criteria, in the presence of 

thermal residual stress the strength of composite in uniaxial 

transverse loading is increased from 41.3 MPa to 277 MPa. 

 

5.2.3 Biaxial axial-transverse loading 
The failure envelopes of SiC/Ti composite in Axial- 
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Table 4 Predicted Strength values of SiC/Ti with 35% FVF with DMM in presence of thermal residual 

stress, Yn=55 MPa 

Criteria XT (GPa) XC (GPa) YT (GPa) YC (GPa) S13 (GPa) S12 (GPa) 

QQ 0.3307 1.5084 0.3252 0.1020 0.1611 0.2219 

MQ 0.3307 1.4080 0.3252 0.1020 0.1611 0.2219 

QM 0.8226 1.5084 0.5356 0.4354 0.5574 0.6446 

MM 0.8226 1.4080 0.5356 0.4354 0.5574 0.6446 

Interface failure, (Max. Interface 

Normal Stress) 
- - 0.277 2.4868 - 0.1585 

Interface failure, (Max. Interface 

Shear Stress, =0.8) 
- - 0.1366 0.8380 0.1585 0.1057 

The most conservative values 

(Composite Strengths) 
0.3328 1.4080 0.277 0.1020 0.1585 0.1057 
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Fig. 4 Failure envelopes of SiC/Ti in transverse-transverse 

loading in presence of thermal residual stress 
 

 

Fig. 5 Failure envelopes of SiC/Ti in axial-transverse 

loading without considering thermal residual stress 
 

 

Transverse loading in the absence of thermal residual stress 

are shown in Fig. 5. The envelope for QQ is the same as 

MQ and envelope for QM is the same as MM. So it can be 

concluded that matrix is the dominant constituent in failure 

of SiC/Ti in (
3 ,

1 ) plane. For tensile transverse stress 

(1>0), interface damage controls the failure of composite. 

For compressive transverse stress (1<0), the interface will 

not fail and matrix controls the failure of the composite.  

The effects of the thermal residual stress on the failure 

envelopes of SiC/Ti in (
3 ,

1 ) plane are shown in Fig. 6. 

In the presence of the thermal residual stresses the 

envelopes is shifted to the negative side of axial stress. 

Shifting the envelope to the negative side of the 3 is due to 

the positive thermal residual stress in the matrix in axial 

direction. In Fig. 6, it is seen that the dominant failure mode 

of composite for positive axial loading (3>0) is the failure 

of matrix and for negative axial stress (3<0) is the failure 

of fiber. Because the thermal residual stress in the fiber is 

compressive, in the presence of thermal residual stress the 

axial strength of the composite is decreased in axial 

compression. 

 

Fig. 6 Failure envelopes of SiC/Ti in axial-transverse 

loading in presence of thermal residual stress 
 

 

Fig. 7 Failure envelopes of Kevlar/Epoxy composite in 

axial-transverse loading 
 

 

The failure envelopes of Kevlar/Epoxy composite with 

63% FVF in Axial-Transverse loading of the composite 

with different failure criteria are shown in Fig. 7. It is seen 

that the failure criteria which is used for the fiber has no 

effect on the failure envelopes of the Kevlar/Epoxy 

composite and failure of the matrix is dominant in the 

failure envelopes of the composite.  

 

5.2.4 Off-axis loading 
Off-axis loading of SiC/Ti and Kevlar/Epoxy composite 

is simulated in this section. Fig. 8 indicates the failure curve 

for off-axis loading of the SiC/Ti composite without 

considering the effect of thermal residual stress for =0 to 

90º. The failure curves for MQ (QQ) and MM (MN) are 

shown in this figure. Two criteria for fiber-matrix interface 

failure are considered in this figure:  

a) Interface Normal Stress criterion; which means that 

the normal to fiber-matrix interface stress causes de-

bonding of interface.  

b) Interface Shear Stress criterion; which means that the 

shear stress on the interface causes the failure of interface.  

The off-axis failure curves for SiC/Ti are presented for 

Yn=300 MPa and Yn=55 MPa. It is seen in Fig. 8 that for  
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Fig. 8 Failure curve for SiC/Ti in off-axis loading with 

various failure criteria, without considering thermal residual 

stress 
 

 

Fig. 9 Failure curve of SiC/Ti in off-axis loading in 

presence of thermal residual stress 
 

 

Yn=55 MPa, the Interface Shear Stress criteria for 

2.5º≤≤48º is more conservative than the Interface Normal 

Stress criterion and is the dominant criteria in failure of 

SiC/Ti in off-axis loading. For 48º≤≤90º the Interface 

Normal Stress is most conservative. For Yn=300 MPa, 

Interface Shear Stress is the dominant criteria for 8º≤≤48º 

and Interface Normal Stress criterion is dominant for >48º. 

The off-axis strength curves of SiC/Ti with considering 

the thermal residual stress are shown in Fig. 9. It is seen in 

Fig. 9 that the QQ (and MQN) has the most conservative 

predictions for >18º. The failure of interface based on 

Interface Normal Stress and Interface shear stress (=0.2) 

are shown in this figure. Fig. 9 shows that the axial strength 

is decreased and transverse strength is increased in the 

presence of thermal residual stresses. The experimental data 

shows that the transverse tensile strength for SiC/Ti is about 

250 MPa (Li and Wisnom 1996). The Interface Normal 

Stress criterion predicts the value about 277 MPa for 

transverse failure initiation. The residual stress in Ti in axial 

direction is tensile and about 410 MPa. This tensile stress 

decreased the axial tensile strength of the composite. 

The effect of  on the interface failure curve of SiC/Ti 

in off-axis loading is shown in Fig. 10. It is clear in Fig. 10 

 

Fig. 9 Failure curve of SiC/Ti in off-axis loading in 

presence of thermal residual stress 
 

 

Fig. 11 Off-axis failure curve of Kevlar/Epoxy composite 

with MQ and MM failure criteria 
 

 

that the strength of SiC/Ti in off-axis loading is increased 

by increasing the value of .  

The off-axis failure curves of Kevlar/Epoxy composite 

are shown in Fig. 11. This figure shows the prediction of 

the micromechanical modeling for the strength of the 

Kevlar/Epoxy composite by MQ and MM criteria. The 

results of QQ criteria is the same as MQ and the results of 

QM is the same as MM. Thermal residual stress and 

interface damage are not considered in these diagrams. 

 

 

6. Conclusions 
 

In this paper, a general micromechanical model is 

developed to study the behavior of unidirectional composite 

which is subjected to combination of biaxial, thermal and 

off-axis loading conditions. In order to avoid full 3D 

modeling of RVE, the modified generalized plane strain 

assumption is employed for modeling the 3D state of 

loading of composite. The direct micromechanical method 

(DMM) is used to predict the micro-stresses in the 

composite system in order to obtain the failure envelopes of 

the composite in the biaxial and off-axis loading conditions. 
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Combinations of failure criteria are used for fiber, matrix 

and fiber-matrix interface in composite system. SiC/Ti and 

Kevlar/Epoxy composite are studied. The induced thermal 

residual stress in the manufacturing process of SiC/Ti is 

considered and its effects on the failure envelopes is 

investigated. In the presence of thermal residual stress, the 

transverse-transverse failure envelopes are shifted to the 

positive side of transverse stresses and the axial-transverse 

failure envelopes are shifted to the negative side of the axial 

stress. Comparison of the predicted results of the present 

model with experimental data shows excellent agreement. 

The failure initiation envelopes which are obtained by the 

direct micromechanical method (DMM) are compared with 

the envelope obtained by the phenomenological Tsai-Hill 

criteria. Direct micromechanical method is also used for 

prediction of yield strength of SiC/Ti in the axial and 

transverse direction. It is shown that the interface failure is 

the dominant failure mode for most cases of loading. 
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