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1. Introduction 

 

Composite beams are widely used in many engineering 

applications including aircraft wings, helicopter rotor blades, 

robot arms and bridges (Librescu 2006, Hodges 2006, Tasi 

1992). One of the advantages of using composite beams is that 

their overall stiffness and strength can be precisely controlled 

to satisfy the design requirements. However, composite beams 

may exhibit complex nonlinear mechanical behaviors because 

the deformation modes such as stretching, bending, shearing, 

and twisting are usually highly coupled to one another, 

rendering their analysis and design difficult. 

In particular, the warping effect must be accurately 

modeled in finite element analysis of beams in order to obtain 

a reliable solution for their torsional behaviors (Bathe 2014, 

Timoshenko and Goodier 1970, Vlasov, 1961, Yoon and Lee 

2014, Ishaquddin et al. 2012, Rand 1998, Lee and Lee 2004). 

This becomes even more important for the analysis of 

composite beams because significant coupling exists between 

the deformation modes, and hence, inaccurate consideration of 

the warping effect may deteriorate the solution accuracy of the 

beam element not only under torsion but also under other 

loading types.  

A considerable amount of research effort on developing 

accurate and efficient warping models for composite beams 

has been made in mathematical theories and their finite 

element implementations (Giavotto et al. 1983, Horgan and 

                                           

Corresponding author, Associate Professor 

E-mail: phillseung@kaist.edu 
a
Postdoctoral Researcher 

b
Associate Professor 

 

 

Simmonds 1994, Yu et al. 2002, Yu et al. 2005, Cortinez and 

Piovan 2006, Cardoso et al. 2009, Sapountzakis and Tsipiras 

2010, Høgsberg and Krenk 2014). Most recent theoretical 

approaches focus on the secondary warping effect (Fatmi and 

Ghazouani 2011, Genoese et al. 2014, Tsipiras and 

Sapointzakis 2012) and Wagner effect (Popescu and Hodges 

1999, Pi et al. 2005, Mohri et al. 2008) which may lead to 

mechanical behaviors of composite beams significantly 

different from those predicted by classical theories. 

Nevertheless, most beam elements developed so far cannot 

fully represent the complex, highly coupled 3D behaviors of 

composite beams. Furthermore, their nonlinear behaviors in 

geometry and material properties have rarely been explored. 

The objective of this paper is to present the finite 

element formulation for geometric and/or material nonlinear 

analysis of beams with arbitrary composite cross-sections. 

The remarkable accuracy and efficiency of the proposed 

beam element are attributed to the employment of the 

continuum mechanics based beam formulation that 

naturally accounts for variations in geometry and material 

properties within the cross-section as well as along the 

beam axis. In particular, the warping function and the 

corresponding twisting center are calculated simultaneously 

for any composite beam based on the extended St. Venant 

equations within our framework. As a result, the proposed 

element can predict complex and non-intuitive three-

dimensional behaviors of composite beams under any type 

of loading and boundary conditions. The formulation is 

simple and straightforward for both geometric and material 

nonlinear analyses as it is based on well-established  

continuum mechanics. 

In the following sections, we briefly review the 

nonlinear formulation of the continuum mechanics based 

beam element, present our method to calculate the warping  
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function for an arbitrary composite cross-section and 

demonstrate the usefulness of the proposed beam element 

via several numerical examples. Finally, we conclude with a 

summary and possible future directions of the current 

research. 

 

 

2. Continuum mechanics based beam elements 
 

In this section, we review the nonlinear formulation of 

the continuum mechanics based beam finite elements (Yoon 

and Lee 2014, Yoon et al. 2012). Within the total 

Lagrangian framework, the proposed nonlinear formulation 

adopted in this study can describe large twisting kinematics 

accurately coupled with stretching, bending, shearing and 

warping. 

Fig. 1 represents a 2-node continuum mechanics based 

beam consisting of 4 sub-beams in the configurations at 

time 0  and t, in which basic variables used for the beam 

element are schematically defined. In the q-node continuum 

mechanics based beam, the geometry interpolation for sub-

beam m is described using 
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where )(mt
x  is the material position vector at time t, hk(r) 

is the 1D shape function at beam node k (Ck), k
t
x  is the 

position vector of beam node k at time t, 
k
x

t
V , 

k
y

t
V  and 

k
z

t
V  are the director vectors at time t orthonormal to each 

other, and k
t  is the corresponding warping degree of  

 

 

freedom at beam node k at time t. In Eq. (2), ),( tsh j  

represents the 2D shape function at cross-sectional node j, 
)(mj

ky  and 
)(mj

kz  are the coordinates of cross-sectional 

node j, and 
)(mj

kf  is the value of warping function at 

cross-sectional node j. The calculation methodology of 

warping function for arbitrary composite cross-sections is 

presented in Section 3. 

The covariant components of the Green-Lagrange strain 

tensor in the configuration at time t, referred to the 

configuration at time 0 , are defined as 

)(
2

1 )(0)(0)()()(
0

m
j

m
i

m
j

tm
i

tm
ij

t
gggg   

with 
i

mt
m

i
t

r




)(
)( x

g  

(3) 

where 
)(

220
mt , 

)(
330

mt , and 
)(

230
mt  are zero according to the 

assumption of Timoshenko beam theory. The covariant strain 

components are used to construct an assumed strain field of 

the element in order to circumvent shear and membrane 

locking problems, which is achieved in this study using the 

MITC (Mixed Interpolation of Tensorial Components) 

scheme (Yoon and Lee 2014, Lee and McClure 2006). 

The local strain components are calculated as 
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where the base vectors for the local Cartesian coordinate 

system are obtained by interpolating the nodal director 

vectors 
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The corresponding second Piola-Kirchhoff stresses are 

defined as 
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Fig. 1 A 2-node continuum mechanics based beam element with 4 sub-beams in the configurations at time 0 and t 
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where E
(m)

 and G
(m)

 represent the elastic and shear moduli, 

respectively, of sub-beam m. Note that this subdivision 

process facilitates the modeling of various material 

compositions. 

For elastoplastic analysis of composite metallic beams, 

the 3D von Mises plasticity model with the associated flow 

rule and linear isotropic hardening in Refs. (Lee and 

McClure 2006, Neto et al. 2008, Kim et al. 2009) is 

employed. The constitutive equations are derived from a 

beam state projected onto the von Mises model. The 

conventional return mapping algorithm is adopted to solve 

the constitutive equations implicitly at each integration 

point. In practice, a higher-order Gauss integration scheme 

is required to obtain an accurate solution for elastoplastic 

analysis. 

 

 

3. Warping functions for composite cross-sections 
 

In this section, we propose a method to calculate the 

warping function for beams with an arbitrary composite 

cross-section. The warping function and the corresponding 

twisting center are simultaneously calculated based on the 

extended St. Venant equations, which are rooted in the 

previously developed method (Yoon and Lee 2014). 

First, let us consider a discretized cross-sectional 

domain denoted using 
n

m

m

1

)(


  on the beam cross-

section k and its boundary ie   , where Ω
(m)

 is the 

domain corresponding to the cross-sectional element m, Γe 

is the external boundary, and Γi is the internal boundary, as 

shown in Fig. 2. The cross-sectional domain Ω
(m)

 has the 

elastic modulus E
(m)

 and the shear modulus G
(m)

. 

It is important to note that we consider two parallel 

cross-sectional Cartesian coordinate systems defined in 

different origins: Ck (beam node) and kĈ  (twisting 

center). 

In the cross-sectional domain m, the displacement field 

under pure twisting can be written as 

)()( m
k

m fu  , x
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where u , v  and w  are the displacements in the x  

(longitudinal), y  and z  directions, respectively, 

xx   , 
)(m

kf  is the warping function, and )(ˆ my  

and )(ˆ mz  are the coordinates in the cross-sectional 

Cartesian coordinate system defined at the twisting center 

kĈ . This displacement field results in the following 

transverse shear stresses 
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while other stress components are zero. 

Substitution of Eq. (8) into the local equilibrium 

equations yields 
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Considering the transverse shear stress vector 

 Tm
zx

m
yx

m )()()( τ , the following boundary conditions 

should be satisfied for the cross-sectional domain m 
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where n
(m)

 is the vector normal to the boundary Γ and m′ 

denotes the adjacent domains, as shown in Fig. 2. 

Combining Eq. (8) and Eq. (10) leads to the following 

equations 
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Considering the boundary of the cross-sectional domain 

m (Γ
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), both Eqs. 11(a) and (b) can be rewritten as 
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Fig. 2 A discretized composite cross-section using 4-node  

cross-sectional elements and its twisting center ( y , z ) in  

the cross-sectional Cartesian coordinate system 
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The variational formulation can be easily derived from 

Eq. (9) with the variation of the warping function 
)(m

kf  
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Substituting the boundary condition Eq. (12) into Eq. 

(13), the finite element formulation for the extended St. 

Venant equations is obtained as 
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Using the relation between the two cross-sectional 

Cartesian coordinate systems denoted as ),( zy  and 

)ˆ,ˆ( zy , yyy ˆ  and zzz ˆ , in Eq. (14), we obtain 
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Zero bending moment conditions ( 0ˆˆ  yz MM ) for 

beams under pure twisting give 
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with the location of the cross-sectional centroid 
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Eqs. (15) and (16) are discretized by interpolating the 

warping function 
)(m

kf  and its variation 
)(m

kf  using the 

same interpolation as in Eq. (2) represented by  

FLHFH
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(a) 

 
(b) 

Fig. 3 Rectangular composite beam problem (unit: m): (a) longitudinal and cross-sectional meshes used in the beam 

model (8 beam elements, 63 DOFs) and (b) solid element model (10,000 solid elements, 11,781 DOFs) used 
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in which L
(m)

 is the standard assemblage Boolean matrix 

for the cross-sectional element m, F
(m)

 is the elemental 

warping DOFs vector, F is the entire warping DOFs vector, 

and l denotes the number of cross-sectional nodes. 

Finally, the following equations in matrix form are 

obtained 
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We can calculate the warping function as well as the 

corresponding twisting center at the same time by solving 

Eq. (20).  

 

 

4. Numerical examples 

 

Here we demonstrate the performance of the proposed 

beam element through several representative numerical 

examples. The standard full Newton-Raphson iterative 

scheme is employed for the solution of nonlinear problems. 

Solutions obtained using the proposed beam element are 

compared with reference solutions obtained using finely 

meshed 3D solid finite element models in ADINA (ADINA 

R&D 2013).  

 

4.1 Rectangular composite beam problem 
 
We consider a straight cantilever beam with a length of 

L=1 m and a rectangular composite cross-section, as 

illustrated in Fig. 3. The beam is modeled using eight 

 
(a) 

 
(b) 

Fig. 4 Longitudinal displacements in the cross-section for 

the rectangular composite cross-section beam problem: (a) 

E2/E1=1 and (b) E2/E1=4 

 

 

Fig. 5 Position z  of the twisting center according to 

Young’s modulus ratio E2/E1 in the rectangular composite 

cross-section problem ( 0y ) 

 

 

continuum mechanics based beam elements whose cross-

section is discretized using two 16-node cubic cross-

sectional elements. Various Young’s modulus ratios (E2/E1) 

are considered with fixed E1=1.0×10
11

 N/m
2
 and Poisson’s 

ratio v=0. The fully clamped boundary condition applied is 

u=v=w=θx=θy=θz=α=0 at x=0 m. Loading conditions are 

• Load Case I: The shear force Fz=100 kN is applied at 

the free tip (x=1 m). 

• Load Case II: The torsion Mx=40 kN·m
 

 is applied at 

the free tip (x=1 m). 

Reference solutions are obtained using ten thousand 8-

node solid elements in the finite element model shown in 

Fig. 3(b). All degrees of freedom are fixed at x=0 m. A point 

load Pz=100 kN
 
is applied at x=1 m for Load Case I while a 

distributed line load p=2000 kN/m
 

 around the cross-

section is applied at x=1 m for Load Case II. 

Table 1 presents the deflection under Load Case I and  
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Table 1 Numerical results in the rectangular composite beam problem. 

1

2

E

E
 

Load Case I, Deflection (m) Load Case II, Twisting angle (rad) 

Solid model 
Proposed beam 

model 

Difference 

(%) 
Solid model 

Proposed beam 

model 

Difference 

(%) 

1.0 0.08059 0.08009 0.6204 0.27047 0.27672 2.3107 

2.0 0.05860 0.05822 0.6485 0.18840 0.19283 2.3514 

3.0 0.04956 0.04924 0.6457 0.14970 0.15330 2.4048 

4.0 0.04412 0.04382 0.6800 0.12568 0.12876 2.4507 

5.0 0.04025 0.03998 0.6708 0.10886 0.11157 2.4894 

 
(a) 

 
(b) 

Fig. 6 45-degree bend beam problem (unit: m): (a) longitudinal and cross-sectional meshes used in the beam model (8 

beam elements, 63 DOFs) and (b) solid element model (80 solid elements, 3,321 DOFs) used 

 

Fig. 7 Load-displacement curves according to various composition ratios in the 45-degree bend beam problem 
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Fig. 8 Beam problem of the square cross-section with 

circular inclusion and its longitudinal and cross-sectional 

meshes (unit: m) 

 

 

the twist angle under Load Case II at the free tip (x=1 m) 

for various Young’s modulus ratios. The results obtained 

using the beam element model (in total 63 DOFs) with the 

proposed composite warping displacement agree well with 

the reference solutions obtained using the solid element 

model (in total 11,781 DOFs). Fig. 4 shows the distributions 

of the displacement in the x -direction on the cross-

sectional plane at x=0.5 m, illustrating the excellent 

predictive capability of the composite warping displacement 

model proposed in this study. Fig. 5 displays the z -

directional position of the twisting center ( z ) calculated 

according to Young’s modulus ratio E2/E1. The expected 

shifting of the twisting center is well observed. 

 

4.2 45-degree bend beam problem 
 

A 45-degree circular cantilever beam of radius R=2 m  

has a T-shaped cross-section, as shown in Fig. 6(a). The beam 

is modeled by eight continuum mechanics based beam 

elements. The beam cross-section is discretized using four 16- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 Distributions of the von Mises stress in the square 

cross-section with circular inclusion 

 

 

node cubic cross-sectional elements. We consider various 

Young’s modulus ratios (E2/E1) with fixed E1=5.0×10
10

 N/m
2
 

and Poisson’s ratio 3.0 . At ϕ=0°, the beam is fully 

clamped: u=v=w=θx=θy=θz=α=0. The z-directional load Fz is 

applied at free tip (ϕ=45°). 

Reference solutions are obtained using eighty 27-node 

solid elements in the finite element model shown in Fig. 6(b). 

In the solid model, all degrees of freedom are fixed at ϕ=0°, 

and a point load Fz is applied at ϕ=45°. 

The accurate solution of this curved beam problem is hard 

to obtain without properly considering the flexure–torsion 

coupling effect. Fig. 7 displays the load-displacement curves 

for various material composition ratios E2/E1. The proposed 

beam element model provides good agreement with the 

reference solutions. It is interesting to note that the direction of 

the displacement v varies depending on the material 

composition ratios due to bending-twisting coupling effects. 

 

4.3 Square cross-section with circular inclusion 
 

We consider the benchmark problem proposed by 

Sapountzakis and Mokos (Sapountzakis and Mokos 2003) 

under small displacement assumption. As shown in Fig. 8, a 

straight cantilever beam of L=3 m is considered that has a  

Table 2 Shear stresses at point A and torsional constants (It) in the square cross-section with circular 

inclusion 

1

2

E

E
 

τxy (kPa) It (m
4) 

Sapountzakis ( p

xy ) Proposed beam model 
Sapountzakis 

Proposed beam 

model 

Difference 

(%) Matrix Inclusion Matrix Inclusion 

0.0 21.8998 0 24.149 0 0.1344 0.1331 0.9673 

1.0 19.3489 19.3489 21.627 22.660 0.1406 0.1392 0.9957 

4.0 16.2734 65.0815 17.897 75.020 0.1590 0.1580 0.6289 

6.0 14.9615 89.7487 16.292 102.45 0.1712 0.1706 0.3505 

8.0 13.8862 111.0617 15.005 125.81 0.1835 0.1832 0.1635 

10.0 12.9715 129.6811 13.931 146.01 0.1958 0.1959 0.0511 
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(a) 

 
(b) 

 
(c) 

Fig. 11 Numerical results for the reinforced wide-flange 

beam problem: (a) load-displacement curves, (b) 

distributions of the von Mises stress obtained using the 

proposed beam element model, and (c) distributions of the 

von Mises stress obtained using the solid element model 

 

 
(a) 

 
(b) 

Fig. 12 90-degree circular arch problem (unit: cm): (a) 

longitudinal meshes used in the beam model (8 beam 

elements) and (b) cross-sectional meshes used (63 DOFs) 

 

 

square cross-section with circular inclusion. The beam is 

modeled using eight 2-node continuum mechanics based beam 

elements. The cross-section is discretized using nine 16-node 

cubic cross-sectional elements. The boundary condition 

u=v=w=θx=θy=θz=α=0 is applied at x=0 m. The y-directional 

concentrated  load  Fy=2 kN  is  applied  at x=3 m  with 

eccentricity e=5 m. Various Young’s modulus ratio (E2/E1) are 

tested with fixed E1=3.0×10
10

 N/m
2
 and Poisson’s ratio v=0.2. 

Table 2 lists the shear stresses τxy at point A and the  

 
(a) 

 
(b) 

Fig. 10 Reinforced wide-flange beam problem (unit: m): (a) longitudinal and cross-sectional meshes used in the beam 

model (2 beam elements, 21 DOFs) and (b) solid element model (4,000 solid elements, 35,301 DOFs) used 
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Fig. 13 Solid element model for the 90-degree circular arch 

problem (35,000 solid elements, 118,728 DOFs) 

 

 

torsional constants It (=MxL/G1θx) for various Young’s modulus 

ratios. The results predicted by the proposed beam element are 

in good agreement with the reference solutions obtained by 

Sapountzakis and Mokos (Sapountzakis and Mokos 2003). 

Note that, based on Jourawski’s theory, they considered both 

primary and secondary warping functions but the shear stresses 

obtained by Sapountzakis in Table 2 include only the primary 

shear stress term corresponding to the primary warping 

function. Fig. 9 illustrates the distributions of the von Mises 

stress on the cross-section at x=3 m obtained using the 

proposed beam element. Variations in the stress distribution 

with respect to the ratio of Young’s modulus are well captured. 

 

4.4 Reinforced wide-flange beam problem 

 

We consider a straight cantilever beam with a length of L=2 

m with a reinforced wide-flange cross-section, as shown in Fig. 

10(a), consisting of two different elasto-plastic materials: 

• Material 1 (yellow colored): Young’s modulus 

E1=2.0×10
11

 N/m
2
, Poisson’s ratio v1=0, hardening 

modulus H1=0.1, and yield stress Y1=2.0×10
8
 N/m

2
, 

• Material 2 (gray colored): Young’s modulus E1=0.7×10
11

 

N/m
2
, Poisson’s ratio v2=0, hardening modulus H2=0.1, and 

yield stress Y2=2.0×10
8
 N/m

2
.  

The beam is modeled using two beam elements whose 

cross-section is discretized using nine 16-node cubic cross-

sectional elements. The fully clamped boundary condition is 

applied at x=0 m and the twisting moment Mx is applied at the 

free tip (x=2 m). 

Reference solutions are obtained using four thousand 27-

node solid elements in the finite element model illustrated in 

Fig. 10(b). All degrees of freedom are fixed at x=0 m, and the 

line load p=12.5 Mx is distributed around the cross-section at 

the free tip (x=2 m). 

Fig. 11(a) displays the load-displacement curves calculated 

using 16 incremental load steps. The results obtained using the 

beam element model (in total 21 DOFs) match well with the 

reference solutions computed using the solid element model (in 

total 35,301 DOFs).  

Figs. 11(b) and (c) illustrate the distributions of the von  

 
(a) 

 
(b) 

Fig. 14 Numerical results for the 90-degree circular arch 

problem: (a) load-displacement curves, (b) distributions of 

the von Mises stress obtained using the proposed beam and 

solid element models 

 

 

Mises stress on the cross-section at x=1 m in the beam and 

solid element models, respectively, where we can observe that 

the propagation of the yield region is well predicted using the 

beam element model. 

 

4.5 90-degree circular arch problem 
 

We consider a 90-degree circular arch of radius R=600 cm 

with a composite cross-section, as shown in Fig. 12. The 

beam is modeled using eight 2-node continuum mechanics 

based beam elements. The cross-section is discretized using 

twenty-eight 16-node cubic cross-sectional elements. The 

boundary condition u=v=w=θx=θy=θz=α=0 is applied at ϕ=0° 

and ϕ=90°, while the y-directional concentrated load Fy is 

applied at ϕ=45° (marked by a red dot). The cross-section 

consists of three different materials. 

• Material 1: Young’s modulus E1=3.0×10
7
 N/m

2
, Poisson’s 

ratio v1=0. 

• Material 2: Young’s modulus E2=3.0×10
8
 N/m

2
, Poisson’s 

ratio v2=0.  

• Material 3: Young’s modulus E3=2.0×10
8
 N/m

2
, Poisson’s 

ratio v3=0. 

To obtain the reference solutions, thirty five thousand 8-

node solid elements are used in the solid element model  

illustrated in Fig. 13. All degrees of freedom are fixed at 

ϕ=0° and ϕ=90°, while a concentrated load Fy is applied at 

ϕ=45°. 

Fig. 14(a) compares the load-displacement curves obtained 

using the solid and beam element models. Solutions up to 

Fy=300 MN can be easily obtained in ten load steps when we 

use the proposed beam element. However, when we use the 

solid element model, the solution procedure is terminated quite 
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early even though five hundred load steps with line search 

algorithms are used. Fig. 14(b) shows the distributions of the 

von Mises stress on the cross-section at ϕ=22.5° in the beam 

and solid element models when Fy=300 MN
 
is applied. Note 

that, in order to obtain appropriate responses in this beam 

problem, coupled behaviors among stretching, bending, 

shearing, twisting, and warping must be properly modeled. 

 

 

5. Conclusions 
 

In this paper, we presented a nonlinear finite element 

formulation for arbitrary composite cross-section beams. The 

element was developed within continuum mechanics based 

framework so that it can handle the complexity in geometry 

and material properties of beam cross-sections with ease. The 

warping function and the corresponding twisting center were 

computed by solving the extended St. Venant equations 

numerically on a discretized cross-section. The excellent 

performance of the proposed beam element in geometric 

and/or material nonlinear problems was demonstrated through 

various representative numerical examples. 

While we applied only the proposed element to nonlinear 

static problems in this study, it can be easily extended for 

analysis of nonlinear dynamic problems where the inertia 

effect of the cross-section needs to be properly modeled as 

well, which is worthwhile to investigate. 
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