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1. Introduction 
 

The finite element method (FEM) which is an important 

branch of computational mechanics has been broadly 

adopted in scientific research and engineering applications. 

But with the continuous development of scientific research 

and engineering applications, the conventional finite 

element method also shows some obvious deficiencies. For 

decades, many researchers make great efforts in developing 

novel principles, techniques, algorithms, and schemes to 

improve precision, efficiency, robustness, and applicability 

of the conventional FEM.  

Various finite element models have been proposed and 

they are robust and insensitive to mesh distortion, such as 

the equilibrium models (Veubeke 1965, 1972), the hybrid 

stress method (Pian 1964, Pian and Chen 1982, Pian and 

Sumihara 1984, Zhang et al. 2007), the integrated force 

method (Patnaik 1973, 1986, Patnaik et al. 1991), the mixed 

approach (Zienkiewicz 1979), the new natural coordinate 

methods (Long et al. 1999, Long et al. 2009, Long et al. 

1999, Long et al. 2010), the smoothed finite element 

method (Liu et al. 2007), the incompatible displacement 

modes (Wilson et al. 1973), the assumed strain method 

(Simo and Hughes 1986), the enhanced strain modes 

(Piltner and Taylor 1995), the selectively reduced 

integration scheme (Hughes 1980), the quasi-conforming 

element method (Tang et al. 1984), the generalized 

conforming method (Long and Huang 1988), the Alpha 

finite element method (Liu et al. 2008), the unsymmetric 

method (Rajendran and Liew 2003), the new spline finite 
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element method (Chen et al. 2010), the extended finite 

element method (Moes et al. 1999) and so on.  

In recent years, some scholars still adhere to explore the 

finite element method based on complementary energy 

principle (Cen et al.2011, Fu et al. 2010, Cen et al. 2011, 

Cen et al. 2011, Santos and Almeida 2010, Santos 2011, 

Santos and Paulo 2011, Darilmaz 2005). A family of 

arbitrarily shaped elements (Santos and Moitinho de 

Almeida 2014) is derived which takes advantage of the 

special structure of the framework for the development of 

hybrid stress finite elements. The key feature is to explicitly 

approximate, in the parent domain, either the second Piola-

Kirchhoff, the first Piola-Kirchhoff, or the Cauchy stresses, 

and to enforce the divergence-free condition in the physical 

domain using their corresponding first Piola-Kirchhoff 

projections. The development of a novel updated 

Lagrangian variational formulation (Santos 2016) and its 

associated finite element model were addressed for the 

geometrically nonlinear quasi-static analysis of cantilever 

beams. The formulation is based on an incremental 

complementary energy principle. The proposed finite 

element model only contains nodal bending moments as 

degrees of freedom. The model is used for the analysis of 

problems modeled by the so-called elastica theory. 

In recent years, the new finite element method-BFEM 

which is described by “base forces” given by Gao (2003) 

has been greatly developed. Using the concept of base 

forces as state variables, a three-dimensional formulation of 

base force element method (BFEM) on complementary 

energy principle was proposed by Peng and Liu (2009) for 

geometrically nonlinear problems. And the new finite 

element method based on the concept of base forces was 

called as the Base Force Element Method (BFEM) by Peng 

and Liu. In the paper (Peng et al. 2014a), a 2D base force 

base force element method with complementary energy  
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Fig. 1 Base forces on planar problem 

 

 

Fig. 2 A concave polygonal element with mid-edge nodes 

 

 

principle for arbitrary meshes was researched, and its 

computational performance was studied. Large-scale 

computing element model on complementary energy was 

proposed by Peng et al. (2015) for rock engineering 

problems. The base force element method (BFEM) on the 

potential energy principle was researched by Peng et al. 

(2011) in which the stiffness matrix to the plane problems 

of elasticity was expressed by four-side plane element and 

the polygonal element.   

In the present paper, a degenerated 4-mid-node plane 

element from concave polygonal element of BFEM was 

proposed. The quadrilateral element model with 4 mid-edge 

nodes in the BFEM on complementary energy principle is 

applied to the analysis of plane frame structure. The 

performance of the 4 mid-edge node model of BFEM will 

be researched and be compared to the displacement model 

in the case of large aspect ratio. 

 

 

2. Model of the BFEM 
 

2.1 Base force 
 
Consider a two-dimensional domain of solid medium, 

let x
α
 (α=1,2) denote the Lagrangian coordinate system. In 

order to describe the stress state at a point Q, a 

parallelogram with the edges dx
1
e1, dx

2
e2 is shown in Fig. 1, 

where e1 and e2 are unit vectors. Define, 
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Fig. 3 Four-mid-node plane element 

 

 

where 3=1 for indexes. Quantities t
α
 (α=1,2) are called the 

base forces at point Q in the two-dimensional coordinate 

system x
α
.  

The gradient of displacement uα 
can be written as 

x
 





u
u

                  

(2) 

 

2.2 A degenerate base force element 
 
In the paper (Peng et al.2014b), the compliance matrix 

of a concave polygonal element with n nodes as shown in 

Figure 2 was be reduced as follows: 

 
1 ν ν

, 1 2 3 ,
1 ν

IJ IJ I Jr I,J , , , n
EA

  
    
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(3) 

where E is Young’s modulus , v is Poisson’s ratio , A is the 

original area of the element, rIJ 
is the dot product of 

position vectors rI and rJ of points I and J, U is the unit 

vectors which can be written as 

1 1 2 2   U e e e e             (4) 

In this paper, we consider a 4-mid-node plane element 

as shown in Fig. 3. Let I, J, J, L denote its sides, and T
I
, T

J
, 

T
k
, T

l
 the force vectors acting on each of the sides. 

We found that the compliance matrix of the concave 

polygonal element can be degenerated into a four-mid-node 

plane element. The compliance matrix of the degenerate 

base force element can be written as follow: 
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The compliance matrix of these two kinds of elements 

are the same. Further, the compliance matrix of an element 

can be written as follow
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For a plane strain problem, it is necessary to replace E 

by E/(1−v
2
) and v by v/(1−v) in Eqs. (5), (7). 

In the above derivation, the following equilibrium 

conditions were used 
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Now, we can release the equilibrium condition of an 

element using the Lagrange multiplier method as follow 

 *( , , )e e I I
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(9) 

in which, arbitrary vectors λM={λ1 λ2} and λM is the 

Lagrange multipliers, 
e

CW

 

is the complementary energy of 

the degenerate base force element, 
*( , , )e

C M NΠ T λ
 

is new 

energy function of the degenerate element. 

The complementary energy of a degenerate element for 

an isotropic material can be written as 
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The new complementary energy function of the elastic 

system with n elements can be written as 


n

ΠΠ *e

C

*

C
              (12) 

And by means of modified complementary energy 

principle, we can obtain the control equation of elastic 

system 
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2.3 Explicit expression for the stress of element and 
the displacement of node 

Now, the explicit expression of displacement can be 

obtained as  

*( , , )e

C M N
I I

 
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T λ
δ

T
          (14) 

Further, the displacement vectors of an element can be 

reduced as follows 
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And the explicit expression of stress for the 4-mid-node 

element can be written as 

4
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3. Flow chart of the BFEM 
 

According to the above derivation, we make out the 

program of the BFEM based on the complementary energy 

principle can be shown in Fig. 4. 

The differences between the present method and the 

conventional finite element method of complementary 

energy principle are as follow: 

(1) The traditional finite element method of 

complementary energy principle is usually constructing 

the stress interpolation function of an element first, and 

then constructing the compliance matrix of an element. 

However, the choice of interpolation function is very 

difficult. Because the interpolation function is not only 

to ensure that the stress can balance in each element, but 

also to ensure that the stress can balance in the junction 

of each element and the stress boundary of an element. 

It is difficult to find out the further breakthrough of the 

finite element method of complementary energy 

principle under the framework of this kind of solution. 

The present method does not need to construct the 

compliance matrix of an element using stress 

interpolation function. 

(2) The conventional finite element method of 

complementary energy principle needs to use the Gauss 

integral method to calculate the compliance matrix of an 

element. However, the compliance matrix of the present 

method is an explicit expression which does not use the 

numerical integration. So the calculation accuracy and 

operation speed are improved. 

(3) The conventional finite element method of 

complementary energy principle is usually using 

quadrilateral elements for plane problems. But the base 

force element method can use either quadrilateral 

elements or arbitrary polygonal elements. The base 

force element method is not restricted by the shape of 

the element. And the expression of compliance matrix of 

the base force element method is a unified mathematical 

expression. Its programming calculation is very simple. 

(4) In a conventional finite element method of  
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Fig. 4 Flow chart of main program of the BFEM 

 

 

complementary energy principle, the displacement is 

difficult to solve. The displacement is solved using 

integral method by the geometric equation after the 

element strain is obtained. The method of using the base 

force element method to calculate the node displacement 

is very simple. In the present method, the displacement 

of nodes can be calculated directly by using the 

governing equations of elements. It does not need to be 

integral, thus it can ensure the accuracy of the present 

method. 

(5) The base force element method uses the base force 

vector to express the stress state  and uses the 

displacement  gradient  to  describe  the  state  of  

 

Fig. 5 A right angle cantilever frame loaded by a 

concentrated end load 

 

 

deformation. This shows its superiority in the derivation 

of formula and the expression of mathematics. So it has 

good application prospects. 

 
 
4. Numerical examples 
 

The present formulation of base force element method 

will be used for the linear elastic analysis of plane frame 

structure in this section. The numerical experiments are 

performed in order to establish the validity and accuracy of 

the base force element method, as well as to assess the 

relative performance of the present elements. The results 

obtained from present developments are compared with 

corresponding analytical solutions. The responses obtained 

using the standard displacement method are also given for 

some problems in order to assess the potential advantages 

of the base force element method. All displacement method 

calculations are performed using the four-node 

isoparametric element (Q4 model). 

Example-1: Consider a rectangular cantilever frame 

under concentrated force shown in Fig. 5. The cantilever 

frame has the length L=10 m, height h=1 m, width b=1 m, 

elastic modulus E=1×10
8
 Pa and Poisson’s ratio v=0. While 

the applied load is P=1 N. The theoretical solution of 

deflection at free end of the cantilever frame is 1.6×10
-8

 m.  

The calculated specimen was divided into the 4-mid-

node base force elements with the center nodes of each of 

the sides. In order to consider the influence of the aspect 

ratio of element, we adopt three kinds of element meshes as 

shown in Fig. 6, successively. 

The values of deflection at free end of the cantilever 

frame are compared with those provided by the theoretical 

solution, conventional quadrilateral isoparametric element 

(Q4 model) and quadrilateral reduced integration element 

(Q4R model) in Table 1, Fig. 7, respectively. The results 

show that the predicted response using the two-dimensional 

quadrilateral isoparametric element (Q4 element) deviates 

from the theoretical solution with large element aspect 

ratios and the 4-mid-node element of BFEM has very good 

performance compared with Q4 model and Q4R model. 
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(a) 280 elements (b) 140 elements 

 
(c) 70 elements 

Fig. 6 Three element meshes with different aspect ratios 

 

Table 1 Vertical displacement of the right-angle cantilever 

frame 

Meshes 
Theoretical 

(×10-4 m) 

BFEM 

(×10-4 m) 

Q4 model 

(×10-4m) 

Q4R model 

(×10-4 m) 

7×40 -1.6000 -1.6100 -1.2525 -1.6031 

7×20 -1.6000 -1.6042 -0.8317 -1.5911 

7×10 -1.6000 -1.5941 -0.3634 -1.5453 
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Fig. 7 Relation curves of the number of mesh elements and 

free end vertical displacement 

 

 

The σy of the point A of the cantilever frame with 

different meshes are listed in Table 2, Fig. 8, respectively. 

The numerical results of the present model are consistent 

with those of Q4R model and the 4-mid-node element of 

BFEM has very good performance compared with Q4 

model for large aspect ratio of element. 

Example-2: Consider a rectangular cantilever frame 

under a tip moment shown in Fig. 9. The cantilever frame 

has the length L=15 m, height h=1 m, width b=1 m, 

Table 2 The σy of the point A of the right-angle frame 

loaded by a concentrated load 

Meshes BFEM(Pa) Q4 model (Pa ) Q4R model (Pa) 

7×40 51.5021 41.7433 51.4775 

7×20 52.1003 27.9487 51.9031 

7×10 47.9929 11.7328 48.2981 
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Fig. 8 Relation curves of the number of mesh elements and 

the σy of the point A 

 

 

Fig. 9 Aright angle cantilever frame loaded by a tip moment 

 

 

Poisson’s ratio v=0 and elastic modulus E=1×10
7
 Pa. While 

the tip moment is M=1000 N·m. The theoretical solution of 

deflection at free end of the cantilever frame is 4.050×10
-6

 

m. 

The calculated specimen was divided into the 4-mid-

node base force elements with the center nodes of each of 

the sides. In order to consider the influence of the aspect 

ratio of element, we adopt four kinds of element meshes as 

shown in Fig. 10, successively. 

The values of deflection at free end of the cantilever 

frame are compared with those provided by the theoretical 

solution, conventional quadrilateral isoparametric element 

(Q4 model) and quadrilateral reduced integration element 

(Q4R model) in Table 3, Fig. 11, respectively.The results 

show that the predicted response using the 4-node two-

dimensional isoparametric element (Q4 element)deviates 
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(a) 720 elements (b) 480 elements 

  
(c) 240 elements (d) 80 elements 

Fig. 10 Four kinds of element meshes with different aspect 

ratios 

 

Table 3 Vertical displacement of the right-angle cantilever 

frame loaded by a tip moment 

Meshes 
Theoretical 

(×10-6 m) 

BFEM 

(×10-6 m) 

Q4 model 

(×10-6m) 

Q4R model 

(×10-6 m) 

8×90 -4.0500 -4.0154 -3.5756 -4.0693 

8×60 -4.0500 -4.0120 -3.2265 -4.0659 

8×30 -4.0500 -4.0059 -2.1448 -4.0495 

8×10 -4.0500 -3.9778 -0.4849 -3.8900 
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Fig. 11 Relation curves of the number of mesh elements and 

free end vertical displacement 

 

 

from the theoretical solution with large element aspect 

ratios and the 4-mid-node element of BFEM has very good 

performance compared with Q4 model and Q4R model. 

The σx of each element at free end of the cantilever 

Table 4 The σx of the center of each element at the right of 

right-angle cantilever frame 

y (m) BFEM (Pa) Q4 model (Pa) Q4R model (Pa) 

15.4375 5250.4266 4974.6000 5326.4000 

15.3125 3750.5686 3555.9800 3809.3300 

15.1875 2249.7926 2136.0100 2287.4500 

15.0625 750.2947 715.4660 764.4880 

14.9375 -749.8102 -705.4640 -758.6870 

14.8125 -2250.7960 -2126.8300 -2283.1200 

14.6875 -3749.7322 -3548.9400 -3807.7700 

14.5625 -5249.9319 -4972.7900 -5337.9800 
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Fig. 12 y−σx 
curves of the center of each cell at the right of 

right-angle cantilever frame 
 

 

Fig. 13 Right-angle frame under uniformly distributed load 
 

 

frame with different meshes are listed in Table 4, Fig. 12, 

respectively. The numerical results of the present model are 

consistent with those of Q4R model and the 4-mid-node 

element of BFEM has very good performance compared 

with Q4 model for large aspect ratio of element. 

Example-3: Consider a rectangular cantilever frame 

under uniformly distributed load shown in Fig. 13. The 

cantilever frame has the length L=15 m, height h=1 m, 

width b=1 m, elastic modulus E=1×10
6
 Pa and Poisson’s 

ratio v=0. While the uniformly distributed load is q=1000 

N/m. The theoretical solution of horizontal displacement of 

the point A of the cantilever frame is 4.1092×10
-5

 m. 
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(a) 504 elements (b) 360 elements 

 
(c) 168 elements 

Fig. 14 Three element meshes with different aspect ratios 
 

Table 5 Horizontal displacement of the point A of the right-

angle frame 

Meshes 
Theoretical 

(×10-5m) 

BFEM 

(×10-5m) 

Q4 model 

(×10-5m) 

Q4R model 

(×10-5m) 

12×42 4.1092 4.0904 3.8729 4.0789 

12×30 4.1092 4.0556 3.7213 4.0445 

12×14 4.1092 3.7416 2.9475 3.7954 
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Fig. 15 Relation curves of the number of mesh elements and 

horizontal displacement of the point A 
 

 

The calculated specimen was divided into the 4-mid-

node base force elements with the center nodes of each of 

the sides. In order to consider the influence of the aspect 

ratio of element, we adopt three kinds of element meshes as 

shown in Fig. 14, successively. 

The values of horizontal displacement of the point A of  

Table 6 The σy of the point of A of right-angle cantilever 

frame 

Meshes BFEM(Pa) Q4 model (Pa ) Q4R model (Pa) 

12×42 -7445.53 -6984.15 -7444.02 

12×30 -7420.10 -6823.23 -7410.46 

12×14 -7593.09 -5166.12 -7808.32 
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Fig. 16 Relation curves of the number of mesh elements and 

the σy of the point A 
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Fig. 17 The frame under uniformly distributed load 
 

 

the cantilever frame are compared with those provided by 

the theoretical solution, conventional quadrilateral 

isoparametric element (Q4 model) and quadrilateral reduced 

integration element (Q4R model) in Table 5, Fig. 15, 

respectively. The results show that the predicted response 

using the 4-node two-dimensional isoparametric element 

(Q4 element) deviates from the theoretical solution with 

large element aspect ratios and the 4-mid-node element of 

BFEM has very good performance compared with Q4 

model and Q4R model. 

The σy of the point A of the cantilever frame with 

different meshes are listed in Table 6, Fig. 16, respectively. 

The numerical results of the present model are consistent 

with those of Q4R model and the 4-mid-node element of 

BFEM has very good performance compared with Q4 

model for large aspect ratio of element. 

Example-4: Consider a frame under uniformly 

distributed load shown in Fig. 17. The frame has the length  
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Fig. 18 1/2 structure of the frame 
 

  
(a) 264 elements (b) 176 elements 

 
(c) 88 elements 

Fig. 19 Three element meshes with different aspect ratios 
 

 

L1=10 m, L2=6 m, height h=1 m, width b=1 m, elastic 

modulus E=2×10
7
 Pa and Poisson’s ratio v=0. While the 

uniformly distributed load is q1=100 N/m, q2=200 N/m. The 

theoretical solution of horizontal displacement of the point 

A of the cantilever frame is 4.1092×10
-5

 m, and vertical 

displacement of the point B is 13.3112×10
-4

 m ( Santos and 

Almeida 2010). 

Symmetry of the axial and loading will be considered. 

Such that only 1/2 of the domain needs to be considered, as 

shown in Fig. 18.  

The calculated specimen was divided into the 4-mid-

node base force elements with the center nodes of each of 

the sides. In order to consider the influence of the aspect 

ratio of element, we adopt three kinds of element meshes as  

Table 7 Horizontal displacement of the point A of the frame 

under uniformly distributed load 

Meshes 
Theoretical 

(×10-4m) 

BFEM 

(×10-4m) 

Q4 model 

(×10-4m) 

Q4R model 

(×10-4m) 

8×33 3.0385 3.0422 2.7739 3.0355 

8×22 3.0385 3.0072 2.5828 2.9952 

8×11 3.0385 2.7662 1.9789 2.7298 

 

Table 8 Vertical displacement of the point A of the frame 

under uniformly distributed load 

Meshes 
Theoretical 

(×10-4m) 

BFEM 

(×10-4m) 

Q4 model 

(×10-4m) 

Q4R model 

(×10-4m) 

8×33 -13.3112 13.3958 -11.2972 -13.3176 

8×22 -13.3112 -13.1637 -10.2687 -13.1520 

8×11 -13.3112 -12.4735- -7.4196 -12.6871 
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Fig. 20 Relation curves of the number of mesh elements and 

horizontal displacement of the point A 
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Fig. 21 Relation curves of the number of mesh elements and 

vertical displacement of the point B 
 

 

shown in Fig. 19, successively. 

The values of horizontal displacement of the point A 

and vertical displacement of the point B of the frame are 

compared with those provided by the theoretical solution,  
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Table 9 The σy of the point of A of the frame 

Meshes BFEM(Pa) Q4 model(Pa ) Q4R model (Pa) 

8×33 -1300.66 -859.73 -1286.23 

8×22 -1456.59 -1222.81 -1455.69 

8×11 -1480.78 -1333.38 -1475.45 

 

Table 10 The σx of the point of B of the frame 

Unite Number BFEM(Pa) Q4(Pa ) Q4R(Pa) 

8×33 -691.96 -702.31 -692.18 

8×22 -691.75 -721.74 -692.09 

8×11 -716.27 -725.67 -716.02 
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Fig. 22 Relation curves of the number of mesh elements and 

the σy of the point A 
 

 

conventional quadrilateral isoparametric element (Q4 

model) and quadrilateral reduced integration element (Q4R 

model) in Tables 7-8, Figs. 20,21, respectively. The results 

show that the predicted response using the two-dimensional 

quadrilateral isoparametric element (Q4 element) deviates 

from the theoretical solution with large element aspect 

ratios and the 4-mid-node element of BFEM has very good 

performance compared with Q4 model and Q4R model. 

The σy of the point A and the σx of the point of B of 

frame with different meshes are listed in Tables 9-10, Figs. 

22, 23, respectively. The numerical results of the present 

model are consistent with those of Q4R model and the 4-

mid-node element of BFEM has very good performance 

compared with Q4 model for large aspect ratio of element. 

 

 

5. Conclusions 
 

In this paper, a degenerated 4-mid-node plane element 

from concave polygonal element of BFEM was presented. 

The application of base force element method on 

complementary energy principle is used to analyze the 

plane frame structure. Based on the complementary energy 

principle, the equilibrium conditions are released by 

Lagrange  multiplier  method,  and  a  modified 

complementary energy principle described by the base force 

is obtained. A new BFEM procedure is developed using 
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 (
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Element Number  

Fig. 23 Relation curves of the number of mesh elements and 

the σx of the point B 
 

 

MATLAB language. The chief features of the method are 

that the model does not introduce an interpolating function 

and can be used in any coordinate system, and is not 

necessary to introduce the Gauss` integral for calculating 

the compliance coefficient at a point. 

The calculation results of BFEM on complementary 

energy principle coincide with the theoretical solution and 

quadrilateral reduced integration element (Q4R model). The 

correctness of the present method and its computer program 

is verified. And the researches show that it has a very good 

performance for large aspect ratio of element. The plane 

frame structure is solved by base force element method, and 

further research results on large deformation will be 

published in the future. The advantages of the BFEM are 

simple and effective, and it has widely application 

extension.  
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