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1. Introduction 
 

It is known that in many cases, pipelines, tunnels, 

subway lining, mine works and other similar types of 

underground structures can be modelled as infinite hollow 

cylinders surrounded with an elastic or viscoelastic infinite 

medium. Consequently, the theoretical study of the 

problems related to the dynamics of the soil-structure 

interaction can be carried out with the use of the mechanical 

model consisting of a hollow cylinder and surrounding 

elastic or viscoelastic medium. In connection with this, in 

the present work we investigate the forced vibration of this 

system under action of the point-located axisymmetric 

normal forces, with respect to the cylinder axis which are 

uniformly distributed in the circumferential direction, acting 

on the inner surface of the cylinder. However, up to now in 

related investigations, the focus has been on the study of the 

resonance waves in such systems. For instance, in the paper 

by Abdulkadirov (1981) and others listed therein, the low-

frequency resonance axisymmetric longitudinal waves in a 

cylindrical layer surrounded by an elastic medium are 

investigated. Note that under “resonance waves” it is 

understood that the velocity of the waves is determined 

from the relation dc/dk=0, where c is the wave propagation 
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velocity and k is the wavenumber. It is evident that the 

resonance velocity corresponds to the point of the 

dispersion curves at which the tangential line to this curve is 

parallel to the wavenumber axis. In the paper by 

Abdulkadirov (1981) it is established that if the modulus of 

elasticity of the cylinder material is greater than that of the 

surrounding elastic material then the aforementioned 

resonance waves appear. Moreover, in that paper it is 

established that the character of the contact conditions (in 

the sense of the perfect and imperfect) between the cylinder 

and surrounding medium also has a great influence on the 

dispersion curves. In connection with this, it is found that 

under imperfect (full slipping) contact between the 

constituents, the long waves limit value of the wave 

propagation velocity exists in the lowest first mode. 

However, this limit value does not exist under perfect 

contact between the constituents. In this sense, we note that 

the influence of the imperfect contact conditions on the 

axisymmetric and flexural wave dispersion in compound 

cylinders was also studied in the papers by Akbarov and 

Ipek (2012, 2015), Ipek (2015) and detailed in the 

monograph by Akbarov (2015), in which it was established 

that the imperfectness of the contact conditions between the 

constituents can influence the dispersion curves not only 

quantitatively, but also qualitatively. Moreover, we note that 

the velocity of the resonance waves determined in the paper 

by Abdulkadirov (1981) and others listed therein coincides 

with the critical velocity of the axisymmetric moving load 

acting on the inner surface of the hollow cylinder and under 

this velocity the resonance type phenomenon takes place. A 

review of the investigations regarding the dynamics of the 
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moving load acting on the layered system has been made in 

the monograph by Akbarov (2015) and related papers listed 

therein. According to these investigations, it was established 

that under action of the moving load on the layered half-

space, the critical velocity appears only in the cases where 

the modulus of elasticity of the covering layer material is 

greater than that of the half-space material. Consequently, 

the condition on the existence of the critical velocity for the 

plane-layered systems coincides with the corresponding one 

examined in the paper by Abdulkadirov (1981).  

Note that vibration problems for the hollow cylinders 

and spheres without any connection with the surrounding 

medium are considered in the papers by Asgari et al. 

(2011), Hasheminejad and Mirzaei (2011), Baba and Keles 

(2016), Bayon et al. (2012), Ebenezer et al. (2015), Kharouf 

and Heyliger (1994) and other ones listed therein. 

The other type of problems related to the layered 

systems are the problems related to their forced vibration. 

Up to now, such types of problems are investigated mainly 

for the plane-layered systems. The source of these 

investigations is Lamb’s (1904) paper in which the time-

harmonic Lamb’s problem was investigated and it was 

established that the frequency response of the stresses have 

non-monotonic character. In other words, in the paper by 

Lamb (1904) it was established that the behavior of the 

half-space under time harmonic forced vibration is similar 

to the behavior of the discrete mechanical system consisting 

of the spring, mass and parallel connected dashpot. Later, 

this conclusion was also established with the investigations 

by Gladwell (1968), Johnson (1985), Wang and Achenbach 

(1996) and others. The corresponding investigations 

regarding the layered half space, or more-precisely, 

regarding the system consisting of the half-space and 

covering layer started in the first decades of the XXI 

century and have continued up to now by the first author of 

the present paper and his students. Consider a brief review 

of some of these investigations which are also detailed in 

the monograph by Akbarov (2015). We begin this review 

with the paper by Akbarov (2006a) in which the 

axisymmetric forced vibration problem for the system 

consisting of the finitely pre-strained half-space and finitely 

pre-strained covering layer is studied and it is assumed that 

this forced vibration is caused by the point-located time-

harmonic normal force acting on the free-face plane of the 

covering layer. The three-dimensional linearized equations 

of the theory of elastic waves in initially stressed bodies are 

employed for mathematical formulation of the problem. It is 

supposed that the materials of the constituents are 

incompressible and their elasticity relations are described 

through the Treloar potential. In the case where the initial 

stresses (or strains) are equated to zero, the problem 

formulation and obtained concrete numerical results relate 

to the corresponding ones obtained within the scope of the 

classical linear theory of elastodynamics. Numerical results 

on the frequency response of the interface stresses are 

presented and discussed. It is established that the 

mechanical behavior of the axisymmetric forced vibration 

of the system consisting of the covering layer and half-

space is also similar to that for the system consisting of a 

spring, mass and parallel connected dashpot.  

In the other paper by Akbarov (2006b), within the scope 

of the assumptions and field equations used in the paper by 

Akbarov (2006a) the forced vibration of the pre-strained bi-

layered slab resting on the rigid foundation is examined. It 

is found that under axisymmetric forced vibration of the bi-

layered slab resting on the rigid foundation, ordinary 

resonance frequencies appear and consequently the 

vibration of the system under consideration is dissimilar 

from the vibration of the system consisting of a spring, 

mass and parallel connected dashpot.  

In the paper by Akbarov and Guler (2007) the forced 

vibration of the system consisting of a pre-stressed half-

plane and pre-stressed covering layer under action of the 

linearly-located inclined time-harmonic forces is studied. It 

is assumed that the initial strains are small and the initial 

static stress-strain state is determined within the scope of 

the classical linear theory of elasticity. Concrete numerical 

results are presented for aluminum and steel and according 

to these results it is also established that the behavior of the 

system under consideration is similar to the corresponding 

behavior of the system comprising a spring, mass and 

parallel connected dashpot. 

In all the foregoing investigations, it is assumed that the 

materials of the covering layer and half-space are isotropic. 

In the papers by Akbarov and Ilhan (2010, 2013), and Ilhan 

and Koc (2015) the aforementioned investigations are 

developed for the cases where the materials of the 

constituents are orthotropic (Akbarov and Ilhan 2010) and 

piezoelectric (Akbarov and Ilhan 2013).  

With this we restrict our review of the investigations 

related to the forced vibration of plane-layered bi-material 

elastic systems. At the same time, we recall that a more 

detailed review and consideration of the results reviewed 

above can be found in the monograph by Akbarov (2015).  

Thus, it follows from the foregoing review that up to 

now there has not been any investigations related to the 

forced vibration of elastic systems consisting of the 

cylindrical covering layer and infinite elastic medium 

surrounding this layer. Taking into consideration this 

statement and the significance of the results of related 

theoretical investigations for understanding the dynamics of 

underground structures, in the present paper we attempt to 

investigate an axisymmetric forced vibration of the system 

comprising the circular hollow cylinder and surrounding 

infinite elastic medium under action of the point-located 

axisymmetric time-harmonic normal forces, with respect to 

the cylinder axis, uniformly distributed in the 

circumferential direction on the inner surface of the 

cylinder. Consequently, the problem studied in the present 

paper can also be considered as a development of the 

reviewed-above investigations for cylindrically-layered bi-

material elastic systems. 

 

 

2. Mathematical formulation of the problem  
 

Consider a system consisting of the hollow circular 

cylinder with thickness h and surrounding infinite elastic 

medium and associated with the central axis of this cylinder 

are the cylindrical and Cartesian systems of coordinates  
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Fig. 1 The sketch of the elastic system under consideration 

 

 

Orθz and Ox1x2x3 (Fig. 1). Assume that the external radius 

of the cross section of the cylinder is R and that at the point 

z=0 on the inner surface of the cylinder, in the 

circumferential direction, uniformly distributed 

axisymmetric time-harmonic normal forces act. Within 

these frameworks we investigate the axisymmetric 

frequency response of this system to these forces by 

employing the exact equations of the linear theory of 

elastodynamics. Below, the values related to the cylinder 

and to the surrounding elastic medium will be denoted by 

upper indices (2) and (1), respectively. 

Assume that the materials of the constituents are 

homogeneous and isotropic. We write the field equations 

and contact conditions. 

Equations of motion 
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(1) 

Elasticity relations 
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Strains-displacement relations 

( )
( )

k
k r

rr

u

r






, 

( )
( )

k
k ru

r   , 

( )
( )

k
k z

zz

u

z






,  

( ) ( )
( ) 1

( )
2

k k
k z r

rz

u u

r z


 
 

 
 

(3) 

Thus, the Eqs. (1), (2) and (3) are the complete system 

of the field equations of the linear theory of elastodynamics 

in the case under consideration and in these equations 

conventional notation is used.  

   Now we consider the formulation of the boundary and 

contact conditions. According to the foregoing description 

of the problem, the boundary conditions on the inner face 

surface of the cylinder can be formulated as follows. 

(2)
0 ( ) i t

rr
r R h

P z e  
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  , 
(2) 0rz

r R h


 
  (4) 

We assume that the contact conditions with respect to the 

forces and radial displacement are continuous and can be 

written as follows 

(1) (2)
rr rr

r R r R
 
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(5) 

At the same time, we assume that the shear-spring type 

imperfection occurs in the contact conditions related to the 

axial displacements and, according to Berger et al. (2000), 

Akbarov and Ipek (2012, 2015) and others listed therein, 

these conditions are formulated by the following equation 

(2) (1) (1)

(1)z z rz
r R r R r R

FR
u u 

  
   (6) 

The dimensionless parameter F in (6) characterizes the 

degree of the imperfection and the range of change of this 

parameter is −∞≤F≤∞. Note that the case where F=0 

corresponds to complete contact, but the case where F=±∞ 

corresponds to full slipping contact conditions. 

Moreover, we assume that 

(1)(1) (1) (1) (1) (1); ; ; ; ; .rr zz rz r zu u M const       

as  
2 2r z   

(7) 

This completes formulation of the problem and 

consideration of the governing field equations. 

   

   
3. Method of solution  
   

For solution to the problem formulated above we use the 

well-known, classical Lame (or Helmholtz) decomposition 

(see, for instance, Eringen and Suhubi 1975) 
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(8) 

where Φ(k) and Ψ(k) satisfy the following equations 
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1 ( )
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(9) 

As we consider the time-harmonic forced vibration of 

the above described system under action of the force 

P0δ(z)eiωt, we can represent all the sought values as 

( , , ) ( , ) i tg r z t g r z e  . According to this representation, we 

obtain the corresponding equations, boundary and contact 

conditions for the amplitudes of the displacements and 

stresses from the foregoing equations by replacing the 
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operator 2 2f t   with 2 f . Below we will omit the 

over-bar on the amplitudes.  

Thus, using the dimensionless coordinates r′=r/h and 

z′=z/h (the upper prime will be omitted below) and 

introducing the notation 

(2)
2

h

c


   (10) 

we obtain the following equations for the amplitudes of the 

potentials Ф(k) and Ψ(k) 
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(11) 

For solution to the equations in (11) and other foregoing 

equations rewritten for the amplitudes we employ the 

exponential Fourier transformation to these equations with 

respect to the coordinate z. 
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Thus, after employing this transformation, we obtain the 
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(13) 

Moreover, after employing this transformation, the 

second condition in (4) and all the conditions in (5) and (6) 

remain as are for the Fourier transformation of the 

corresponding quantities. However, the transformation of 

the first condition in (4) becomes 

(2)
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Solutions to the equations in (13) are 
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Substituting the solutions (15) and (16) into the Fourier 

transformations of the presentations for the displacements 

in (8), the strain-displacement relations in (3) and the 

elasticity relations in (2), we obtain the following 

expressions for the transformations of the stresses and 

displacements which enter into the boundary and contact 

conditions. 
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
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Thus, substituting the expressions in (17) into the 

Fourier transformation of the boundary and contact 

conditions (4)-(6), we obtain the following equations for the 

unknowns A1, A2, B1, B2, C2 and D2. 

1 1 2 2 1 3 2 4j j j jA A B B       , 
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(18) 

Note that the explicit expression of the coefficients αmj 

(m;j=1,2,…,6) can be easily determined from the 

expressions in (6) and (17). It is evident that the solution to 

the equation (18) can be presented as follows. 

(1)

1

det( )

det( )

mj

mj

A



 , 

(2)

2

det( )

det( )

mj

mj

A



 , 

(3)

1

det( )

det( )

mj

mj

B



 , 

(4)

2

det( )

det( )

mj

mj

B



 , 

(5)

2

det( )

det( )

mj

mj

C



 , 

(6)

2

det( )

det( )

mj

mj

D



  

(19) 

where the matrix ( )
( )

k
mj  is obtained from the matrix (αmj) 

by replacing the k-th column of the latter one with column 
1

0( )jP  .  

Thus, in this way, we determine completely the Fourier 

transformation of the sought functions. The originals of 

these functions are determined from the inverse Fourier 

transformation 

 ( )( ) ( ) ( ) ( ) ( ); ; ; ; ;
nn n n n n

rr zz rz r zu u      

 ( ) ( ) ( ) ( ) ( ) ( )1
; ; ; ; ;

2

n n n n n n isz
rrF zzF rzF rF zFF u u e ds   



 

  

(20) 

Note that the integral in (20) is calculated numerically. 

The algorithm for calculation of this integral we will 

discuss in the next section. 

 

 

4. Numerical results and discussions 

 

Fig. 2 The sketch of the Sommerfeld contour 

 

 

In the present section, first, we consider the algorithm 

for calculation of the integral in (20) and consider 

numerical examples illustrating its validation and after these 

considerations we present numerical results on the 

frequency response of the normal and shear stresses acting 

on the interface surface between the constituents and 

discuss them. 

   
4.1 The algorithm for calculation of the integral in 

(20) 
 

The integrals in (20) are called the wavenumber 

integrals, because if we equate to zero the det(αmj) in (19) 

and consider the Fourier transformation parameter s  as 

the wave number, then we obtain the dispersion equation 

for the corresponding longitudinal axisymmetric wave 

propagation. In other words, the solution Ω=Ω(s)
 

to the 

equation det(αmj)=0 is the dispersion diagram of the 

aforementioned wave propagation. Consequently this 

solution is also the singular points of the integrated 

functions in (20), i.e., the integrated functions in (20) have 

singular points with respect to s, and if the order of this 

singularity is equal to one, then the integrals have a 

meaning in Cauchy’s principal value sense. However, in the 

cases where the order of the singularity is equal to two, then 

these cases cause resonance type behavior of the system 

under consideration.  

The algorithms used under calculation of the 

wavenumber integrals are detailed in the works by Tsang 

(1978), Jensen et al. (2011), Akbarov (2015) and others 

listed therein. Among these algorithms a more suitable and 

convenient one is the algorithm based on the use of the 

Sommerfeld contour. For employing this algorithm, 

according to Cauchy's theorem, the contour [−∞, +∞] is 

“deformed” into the contour C (Fig. 2), which is called the 

Sommerfeld contour in the complex plane s=s1+is2 and in 

this way the real roots of the equation det(αmj)=0 are 

avoided. Despite this avoidance of the real roots of the 

equation det(αmj)=0, the values of the integrals calculated by 

the Sommerfeld contour algorithm have a jump in the near 

vicinity of the second order singular points. Such cases 

which appear with respect to the concrete problems as 

examples, are also detailed in the monograph by Akbarov 

(2015).  Hence, this method also allows for determination 

of the cases in which resonance behaviors of the system 

take place. 

Thus, according to the foregoing discussions, the 

integrals in (20) can be presented as follows. 

 ( )( ) ( ) ( ) ( ) ( ); ; ; ; ;
nn n n n n

rr zz rz r zu u      (21) 
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 ( ) ( ) ( ) ( ) ( ) ( )1
; ; ; ; ;

2

n n n n n n isz
rrF zzF rzF rF zFFC

u u e ds   



  

Using the configuration of the contour C given in Fig. 2 

we can write the following relation for the integrals in (20). 

 1 10
( ) ( ) ( )isz

C
f s e ds f s i f s i 

        

1 1cos(( ) )s i z ds    

 1 1 1 10
( ) ( ) sin(( ) )i f s i f s i s i z ds  


      

2 2( )i f is ds









   

 

 

 

 

 

(22) 

Assuming that ε<<1 we can neglect the last integral on 

the right side of the relation (22) and use the following 

expression for calculation of the integrals in (20). 

 1 10
( ) ( ) ( )isz

C
f s e ds f s i f s i 

        

1 1cos(( ) )s i z ds  
 

 1 1 1 10
( ) ( ) sin(( ) )i f s i f s i s i z ds  


     . 

 

 

 

(23) 

Note that under calculation of the integrals in (23) the 

improper integral 
10

( )ds


  is replaced with the 

corresponding definite integral 
*
1

10
( )

S
ds  and the values of 

*
1S  are defined from the corresponding convergence 

requirement. At the same time, under calculation of the 

integral 
*
1

10
( )

S
ds , the interval *

1[0, ]S  is divided into a 

certain number (denote this number through N) of shorter 

intervals and within each of these shorter intervals the 

integrals are calculated by the use of the Gauss algorithm 

with ten integration points. The values of the integrated 

functions at these integrated points are calculated through 

the solution of the Eqs. (17)-(19) and it is assumed that in 

each of the shorter intervals the sampling interval Δs1 of the 

numerical integration must satisfy the relation 

Δs1<<min{ε,1/z}. All these procedures are performed 

automatically in the PC by use of the corresponding 

programs constructed by the authors of the paper in 

MATLAB.  Numerical results for the problem under 

consideration can be also obtained with employing of the 

packet programs ANSYS or COMSOL. However, these 

programs solve the problem within the scope of the finite 

element modelling which is especially numerical method. 

Note that any analytical solution of the problem is more 

accurate and authentic than corresponding numerical 

solution and this is advantage of the used analytical-

numerical method with respect to the use of the packet 

programs ANSYS or COMSOL. However, if we considered 

the problem related to the more complicated geometries for 

which it is difficult to find analytical or approximate 

analytical solutions, then, it can be appeared the necessity 

the use of the packet programs ANSYS or COMSOL.  

 4.2 Testing of the calculation algorithms 
 

We test the calculation algorithm with respect to the 

frequency response of the normal stress 

(1) (2)( ) ( , ) ( , )rr rr rrz R z R z     (24) 

i.e., the relation between the stress ζrr (=ζrr(0)) and 

dimensionless frequency Ω determined by expression (10) 

in the case where E(1)/E(2)=0.5, v(1)/v(2)=0.3, R/h=10 and 

ρ(1)μ(1)/ρ(1)μ(2)=1. Consider the perfect contact case, i.e., 

assume that F=0 in (6). 

First we consider the convergence of the numerical 

results with respect to the number N under *
1 9S   and 

ε=0.01. These results are illustrated by the corresponding 

graphs given in Fig. 3(a). As we will also discuss below, the 

dependence between the stress ζrr and Ω has non-monotonic 

character and in the vicinity of Ω at which the stress has its 

absolute maximum (denote this value of Ω through Ω*) the 

convergence of the numerical results requires a greater 

value of the number N. For instance, according to the results 

given in Fig. 3(a), the value of N (denote this value through 

N*) after which the order of the influence of an increase in 

the N is not greater than 10-6÷10-7 on the stress under 

consideration, is N*=100 for the selected values of the 

problem parameters. In a similar manner, the values of N* 

are determined for the other values of the problem 

parameters which are considered in the present paper. 

Fig. 3(b) shows the convergence of the considered in 

Fig. 3(a) results with respect to the values of *
1S . It follows 

from Fig. 3(b) that a decrease in the values of *
1S  causes a 

decrease of the absolute values of the stress. These values 

of the stress approach a certain limit one with *
1S  and as 

this limit the results obtained in the case where *
1 9S   can 

be taken, because the absolute values of the difference 

between the results obtained under *
1 9S   and under 

*
1 9S   is not greater than 10-6.  

Consider selection of the values of the parameter ε and 

note that, according to the relation Δs1=
*
1S /(10N) 

<<min{ε,1/z}, as indicated above, this selection depends 

also on the values of N and *
1S . Examples of the influence 

of ε on the frequency response of the stress ζrr in the cases 

where E(1)/E(2)=1, 0.8 and 0.5 are given in Fig. 3(c). The 

results given in Fig. 3c and others which are not given here 

show that to obtain sufficiently accurate results it is enough 

to select the value of ε from the interval 0.0001 0.01  . 

Taking the foregoing type of results into consideration, 

all the numerical results which will be discussed below are 

obtained in the case where N*=100, *
1 9S   and ε=0.01. 

Moreover, under obtaining these numerical results we 

assume that v(1)/v(2)=0.3 and ρ(1)μ(1)/ρ(1)μ(2)=1. 

Unfortunately we haven't found any related results in the 

literature with which to compare the present ones. 

Therefore, the foregoing numerical results can also be taken  

as validation of the algorithm and PC programs used in the 

present investigation. 
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(a) 

 
(b) 

 
(c) 

Fig. 3 Examples of the convergence of the numerical results with 

respect to the number N (a) to the value of *
1S  and (b) to the 

value of ε 

 
 

4.3 Numerical results related to the perfect contact 
case 

 

First of all, we note that the results discussed in the 

present subsection are obtained in the case where F=0 in the  

 

Fig. 4 Frequency response of the normal stress ζrr obtained 

for various E(1)/E(2) under h/R=1/10 

 

 

Fig. 5 Frequency response of the normal stress ζrr obtained 

for various h/R under E(1)/E(2)=0.5 and 1.2 

 

 

condition (6). Moreover, we note that besides the normal 

stress ζrr(z) determined through the expression (24), we 

consider also the shear stress 

(1) (2)( ) ( , ) ( , )rz rz rzz R z R z     (25) 

which also acts on the interface surface between the 

constituents of the system under consideration. 

Thus, we consider the frequency response of the stress 

ζrr (=ζrr(0)) illustrated by the graphs given in Fig. 4 which 

are constructed for various values of the ratio E(1)/E(2) under 

h/R=1/10. The influence of the ratio h/R on this frequency 

response is illustrated by the graphs given in Fig. 5 which 

are constructed in the cases where E(1)/E(2)=0.5 and 1.2. The 

corresponding results on the frequency response of the 

shear stress ζrz (=ζrz(0.5)) obtained for various E(1)/E(2 under 

h/R=1/10 are given in Fig. 6. Moreover, the graphs showing 

the frequency response of the stress ζrz (=ζrz(0.5)) obtained 

for various h/R are given in Fig. 7 which are constructed in 

the cases where E(1)/E(2)=0.5 (Fig. 7(a)) and 1.2 (Fig. 7(b)). 

Thus, it follows from Figs. 4-7 that in the considered 

range of change of the dimensionless frequency Ω, i.e., in 

the cases where 0<Ω≤2, the frequency responses of the  
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Fig. 6 Frequency response of the shear stress ζrz obtained 

for various E(1)/E(2) under h/R=1/10 

 

 

Fig. 7 Frequency response of the shear stress ζrz obtained 

for various h/R under E(1)/E(2)=0.5 and 1.2 

 

 

stresses have non-monotone character, i.e. there exists such 

a value of the frequency Ω under which absolute values of 

the stresses have their maximum. We call these maximums 

and their corresponding frequencies the “resonance” values 

of the stresses (denoted by *
rr  and *

rz ) and “resonance” 

frequencies (denoted by Ω*), respectively. Namely, 

according to this property of the frequency responses, it can 

be concluded that the behavior of the mechanical system 

comprising the hollow circular cylinder and surrounding 

elastic medium (as a time-harmonic forced vibration of the 

systems consisting of the covering layer and half-space 

(see, Akbarov 2015)) is similar to that of the system 

consisting of a spring, mass and parallel connected dashpot. 

It follows from Figs. 4 and 6 that a decrease in the 

values of the ratio E(1)/E(2) (i.e., with increasing of the 

modulus of elasticity of the cylinder material under fixed 

modulus of elasticity of the surrounding elastic medium) 

causes a decrease in the absolute values of the interface 

stresses ζrr and ζrz, and  their “resonance” values *
rr  and 

*
rz . These figures also show that a decrease in E(1)/E(2) 

causes a decrease in the values of Ω*.  

 

Fig. 8 Distribution of the stress ζrr with respect to z/h in the 

cases where E(1)/E(2)≤1 and E(1)/E(2) ≥1 

 

 

Fig. 9 Distribution of the stress ζrz with respect to z/h in the 

cases where E(1)/E(2)≤1 and E(1)/E(2) ≥1 

    

 

Note that the results on the decrease of the absolute 

values of the interface stresses with increasing of the 

modulus of elasticity of cylinder layer (or covering layer) 

material agrees with well-known impact events of layered 

systems which are observed in daily engineering practice. 

Moreover, note that the non-monotonic character of the 

dependencies between the interface stresses and 

dimensionless frequency Ω is caused with the physical 

nature of the vibration of the system under consideration. If 

to say more precisely, this non-monotonic character of the 

mentioned dependencies is caused with infinity of the sizes 

of the system under consideration in the radial and axial 

directions. These infinities of sizes mean that there is not 

any reflected waves from the surfaces which bound the 

body. Namely, as a result of this non-reflection the ordinary 

resonance case does not takes place and the “resonance” 

cases appear instead of that. 

Figs. 5 and 7 show that the absolute values of ζrr and 
*
rr , as well as the absolute values of ζrz and *

rz  increase  
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with decreasing of the ratio h/R (or with increasing of the 

ratio R/h) , i.e., with increasing of the radius of the interface 

cylindrical surface under fixed thickness of the cylinder. At 

the same time, these figures show that in the case where 

E(1)/E(2)=0.5 (in the case where E(1)/E(2)=1.2) the values of 

the resonance frequency Ω* decrease (increase) with 

decreasing of the ratio h/R.  

For avoiding the misunderstanding note that in Fig. 7 in 

the region 0.01≤Ω≤0.6 the graph constructed for the case 

where R/h=0.5 under E(1)/E(2)=1.2 is crossed with the graphs 

constructed for the cases R/h=15, 20 and 30 under 

E(1)/E(2)=0.5 and there isn't any connection between these 

graphs in the sense of multi-valuation of the results.  

   Consider the distribution of the stresses with respect to 

z/h, the graphs of which are given in Figs. 8 and 9 for ζrr 

and ζrz, respectively. It follows from the results that the 

peak values of the stress ζrr appear at the point z/h=0. 

However, the position of the point at which the peak values 

of the stress ζrz appear, depends on the problem parameters, 

for instance on the ratio E(1)/E(2). At the same time, the 

results show that the attenuation of the stress ζrz with z/h 

depends significantly on the ratio E(1)/E(2). So this 

attenuation becomes more significant with E(1)/E(2). 

Moreover, it follows from Fig. 8 that the influence of the 

ratio E(1)/E(2) on the attenuation of the stress ζrr with z/h is 

insignificant. 

 

 
 

4.4 Numerical results obtained in the shear-spring 
type imperfect contact case 

 
The main aim of the numerical investigations considered 

in the present subsection, is to determine how the 

imperfection of the contact conditions acts in the qualitative 

and quantitative sense on the frequency responses of the 

stresses studied in the previous subsection. For this purpose 

we consider the numerical results on the frequency response 

of the stress ζrr (=ζrr(0)), obtained for various values of the 

F in (6) under some selected values of the problem 

parameters. These results are given in Fig. 10 which relate 

to the cases where E(1)/E(2)=0.5 (Fig. 10(a) for h/R=1/7; Fig. 

10(b) for h/R=1/20 and Fig. 10((c) for h/R=30) and 

E(1)/E(2)=1.2 (Fig. 10(d) for h/R=1/20).  

We consider the cases −∞<F≤0 and 0≤F<+∞ separately 

and which have the following meaning: according to (6), in 

the case where F>0(the case where F<0) if ζrz<0, (2) 0zu   

and (1) 0zu   then the relation (2) (1)
z zu u  ( (2) (1)

z zu u ) 

occurs. It can also be presented other similar cases which 

have real practical meaning.  

Thus, it follows from these and other results which are 

not given here that under F→−∞ the results obtained in the 

case where F<0 approach the corresponding results 

obtained in the case where F>0 under F→+∞. This situation 

 
 

(a) (b) 

  

(c) (d) 

Fig. 10 The influence of the shear-spring type imperfectness of the contact conditions on the frequency response of the normal stress 

ζrr the : the cases where h/R=1/7 (a), 1/20 (b), 1/30 (c) under E(1)/E(2)=0.5 and h/R=1/20 under E(1)/E(2)=1.2 (d) 
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can also be predicted, according to the usual mechanical 

consideration and according to the mathematical expression 

of the condition (6). Note that the results obtained for F=±∞ 

correspond the “full-slipping” contact condition, according 

to which, it is assumed that sear stress on the interface-

contact surface is equal to zero, i.e., ζrz=0 at r=R. Namely, 

according to this statement, it can be predicted that the 

absolute “resonance” values of the interface normal stress 

ζrr obtained in the “full-slipping” contact case must be 

greater than corresponding ones obtained in the cases where 

|F|<∞. This prediction is confirmed by the results illustrated 

in Fig. 10. Moreover, it follows from Fig. 10 that, in 

general, the character of the influence of the parameter F on 

the frequency response under consideration has non-

monotonic and complicated character. The magnitude of 

this influence depends significantly on the values of the 

vibration frequency of the external force. For instance, the 

absolute values of the stresses obtained under Ω≤1.0 in the 

cases where F=0.5, 0.8 and 0.9 for R/h=7 are less than those 

obtained in the complete contact condition case, i.e. in the 

case where F=0. However, in all the considered cases the 

absolute “resonance” values of the normal stress obtained 

for the cases where F>0 increase monotonically with the 

values of F. In this case the “resonance” frequencies (i.e. 

frequencies corresponding the “resonance” values of the 

normal stress) increase also with F. At the same time, it 

follows from the results given in Fig. 10 that the 

dependence between the absolute “resonance” values of the 

stress and |F| has a non-monotonic character, so that the 

mentioned “resonance” values increase (decrease) with |F| 

before (after) a certain F.  

Now we present some arguments on the applications of 

the obtained theoretical results. It is known that the 

realization of the rotationally symmetric time-harmonic 

loading is difficult, nevertheless the theoretical results 

obtained within this assumption can be used as very 

important information on the dynamical behavior of the 

system under consideration. For instance, the magnitudes of 

the interface stresses obtained for the case under 

consideration can be used as an upper limit case for 

interface stresses obtained for each corresponding non-

axisymmetric time-harmonic external loading case. 

Moreover, theoretical results on the influence of the 

material properties of the constituents of the system under 

consideration, as well as results on the influence of the 

imperfections of the contact conditions are valid also in the 

qualitative sense in the non-axisymmetric time-harmonic 

cases.  

The results obtained in the present investigations have 

also the following application. Here we consider the steady-

state axisymmetric dynamic problem and if under solution 

procedure of this problem we take the frequency ω (or Ω) 

as the Fourier or Laplace transformation parameter, then the 

theoretical results obtained in the present paper in the cases 

where Ω→0 and Ω>>1 can be taken with a certain accuracy 

as corresponding results related to the corresponding non 

steady-state dynamic problem with zero initial conditions 

under t→∞ and under t→0, respectively. As an example for 

such non steady-state dynamic problem it can be taken an 

explosion inside the pipes used in geological prospecting. 

Consequently, the theoretical results obtained in the present 

paper have not only applications in the qualitative sense, but 

also these results have direct quantitative applications for 

the limit cases of the corresponding non stationary 

dynamical problem.    
 

 

5. Conclusions 
 

Thus, in the present paper the axisymmetric forced 

vibration of the system comprising the hollow cylinder and 

surrounding infinite elastic medium under action of the 

point-located time-harmonic force loaded on the inner 

surface of the cylinder, with respect to the cylinder’s axis 

and which is uniformly distributed in the circumferential 

direction, is investigated. This investigation is made by 

employing the exact equations of linear elastodynamics for 

isotropic bodies. It is assumed that between the constituents 

of the system shear-spring type imperfect contact conditions 

are satisfied. Numerical results on the frequency response 

of the normal and shear stresses acting on the interface 

surface between the constituents are presented and 

discussed. These results are obtained in two cases: in Case 1 

it is assumed that the contact conditions between the 

constituents are perfect; in Case 2 it is assumed that shear-

spring type imperfect contact conditions between the 

constituents take place. From the discussions of these 

results the following concrete conclusions can be drawn in 

Case 1. 

- the frequency response of the stress has non-

monotonic character, i.e., there exists such a value of the 

frequency (denoted by Ω* and called a “resonance” 

frequency) under which the absolute values of the 

stresses have their maximum (i.e., the “resonance” 

stresses appear). Consequently, the behavior of the 

forced vibration of the system consisting of the hollow 

cylinder and surrounding elastic medium is similar to 

that of the system consisting of a spring, mass and 

dashpot; 

- the “resonance” frequencies and absolute values of the 

normal and shear stresses decrease with increasing of 

the elasticity modulus of the cylinder material, however; 

- an increase of the radius of the cross section of the 

cylinder under constant thickness causes an increase in 

the absolute values of the stresses and a decrease in the 

values of the “resonance” frequency. 

At the same time, the numerical results obtained in Case 

2 allow us to draw the following main conclusions: 

- the character of the influence of the shear-spring type 

imperfection on the values of the interface stresses 

depends significantly on the vibration frequency of the 

external force; 
- in the cases where F>0 the absolute “resonance” 
values of the stress increase monotonically with F and 
approach the corresponding ones obtained in the “full-
slipping” contact case as F→+∞, however, in the cases 
where F<0 the dependence between the absolute 
“resonance” values of the stress and |F| has a non-
monotonic character and the values of the stress also 
approach the corresponding ones obtained in the “full-
slipping” contact case as F→−∞. 
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