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1. Introduction 
 

Numerous researchers have investigated the mechanical 

behaviors of perforated plates, with main concerns being 

classified into four categories; stress concentration (Savin 

1961, Muskhelishvili 1963, Miyata 1970, Peterson 1974, 

Iwaki and Miyao 1980, Yang and He 2002, Zhang et al. 

2002, She and Guo 2007, Li et al. 2008, Yang et al. 2008, 

Yu et al. 2008, Kang 2014, Woo et al. 2014), vibration 

(Boay 1996, Sabir and Davies 1997, Sivakumar et al. 

1999a, 1999b, Pan 1997, Chau and Wang 1999, Liu and 

Liew 1999a, 1999b, Yang and Zhou 1996, Yang and Park 

1999, Geannakakes 1990, Laura et al. 1997, Liew et al. 

1993a, 1993b, Liew et al. 1995, Liew and Sum 1998, Liew 

et al. 2001, Aksu and Ali 1976, Lam and Hung 1989, Liew 

et al. 2003), buckling (Rockey et al. 1967, Narayanan and 

Rockey 1981, Shanmugam and Narayanan 1982, Azizian 

and Roberts 1983, Narayanan and Chow 1984, Narayanan 

and Avanessian 1984, Roberts and Azizian 1985, Narayanan 

and Darwish 1985, Brown and Yettram 1986, Brown et al. 

1987, Brown 1990, Nemeth 1996, Shakerley and Brown 

1996, Shanmugam et al. 1999, Cheng and Fan 2001, El-

Sawy and Nazmy 2001, Shanmugam et al. 2002, El-Sawy 

et al. 2004, Azhari et al. 2005, El-Sawy and Martini 2007, 

Paik 2007, 2008, Maiorana et al. 2008, Koomur and 

Sonmez 2008, Maiorana et al. 2009, Moen and Schafer 

2009, Cheng and Zhao 2010, Komur 2011), and fatigue 

(Dalessandro 1976, Lacarac et al. 2000, Tokiyoshi et al. 

2001, Chakherlou and Abazadeh 2011, Chan et al. 2013, 

Liu et al. 2013, Saleem et al. 2013). The various discrete 

methods have been used to study them. The finite element 
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method is the most widely used. Diverse methods other than 

the finite element method have been used like the complex 

variable method, three-dimensional stress analysis, the Ritz 

method, the boundary element method, the differential 

quadrature element method, semi-analytical solution 

method, experimental method, conjugate load/displacement 

method, and Galerkin averaging method. Most of the shapes 

of perforated holes have three types of circular, elliptical, 

and rectangular cutout. Exact solutions for perforated plates 

by two circular holes loaded by uni-axial or bi-axial 

tensions have not been reported. 

In the present study, exact solutions for stresses of an 

infinite rectangular plate perforated by two circular holes 

subjected to uni-axial or bi-axial tensions are investigated 

by two-dimensional theory of elasticity using the Airy stress 

function. The hoop stresses occurring at the edge of the 

circular hole are computed and plotted. Comparisons are 

made for the stress concentration factors for several types of 

loading conditions. 

 

 

2. Stresses for a rectangular plate perforated by a 
circular hole under uni-axial tension 
 

Fig. 1 shows a rectangular plate with a circular hole of 

radius of R under uni-axial tension σ1 in the x-direction, and 

the rectangular (x,y) and polar (r,θ) coordinate systems. The 

plate is assumed to be very large compared with the hole.  

First of all, considering a rectangular plate with no hole 

under uni-axial uniform tension σ1 in the x-direction, the 

stress components are as below 
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is a fundamental Airy stress function and satisfies  
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Fig. 1 A rectangular plate perforated by a circular hole 

subjected to uni-axial tension σ1 in x-direction, and the 

rectangular (x, y) and the polar coordinates (r,θ) 

 

 

the governing equation 
4
ϕ=

2
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in 2-D plane problems in elasticity, where the Laplacian 

differential operator 
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 is expressed as 
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and 
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 is the bi-harmonic differential operator defined by 
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in the rectangular coordinates. From Eqs. (1), the function 

ϕ
0
 can be assumed as 
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where A, B, and C are arbitrary integration constants. A 

linear function of x or y and a constant in the Airy stress 

function are trivial terms which do not give rise to any 

stresses and strains. Dropping the trivial terms in Eq. (4), 

the function ϕ
0
 becomes 
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Using the relation of 
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and the multiple angle formula 
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Eq. (5) can be transformed into the bi-harmonic 

functions as 
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and 
4
 is expressed as 

 

Fig. 2 A rectangular plate perforated by a circular hole 

subjected to biaxial tensions σ1 
and

 
σ2 
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(10) 

in the polar coordinates. From the relation between stress 

components and the Airy stress function in the polar 

coordinates, the stresses in the plate with no hole subjected 

to remote uni-axial tension σ1 in the x-direction can be 

calculated as below 
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Let us return to the problem of a perforated rectangular 

plate by a circular hole under uni-axial tension σ1 in the x-

direction. The Airy function ϕx 
becomes 

 
*0 x              (14) 

where ϕ
*

 
is an Airy stress function to cancel unwanted 

traction due to ϕ
0
 on r=R. The normal σrr and shear stress 

σrθ on r=R must be free as 
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Therefore, *
rr  

must have terms of cos2θ or a constant 

and *
 r

 must have sin2θ on r=R in order to eliminate the 

stresses on r=R due to ϕ
0
 in Eqs. (11) and (12). Tables 1 and 

2 show the potential candidates of the bi-harmonic 

functions identified as r
2
, lnr, r

2
lnr, r

2
cos2θ, r

4
cos2θ, 

cos2θ/r
2
, cos2θ from the tables by Dundurs (Fu 1996), 

which contain stresses and displacements corresponding to 

certain bi-harmonic functions in the polar coordinates. The 

symbols in Table 2 μ and κ are shear modulus and a 
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secondary elastic constant, respectively. The constant κ is 

defined by (3−v)/(1+v) for plane stress problems and 3−4v  

for plane strain ones where v is Poisson's ratio. In order not 

to (1) disturb the uniform traction at infinity, (2) have multi-

valued displacement and (3) have infinite stress at infinity 

we delete the terms r
2
, r

2
lnr, r

2
cos2θ, and r

4
cos2θ. We thus 

arrive at the Airy stress function ϕx  
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where C1~C3 are arbitrary integration constants to be 

determined by the traction boundary conditions. In order to 

make the constants C1~C3 dimensionless, they are 

multiplied by R
2
 or R

4
. Applying the stress free boundary 

conditions on the edge of the circular hole at r=R
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the unknown constants are computed as C1=−2, C2=−1, and 

C3=2. Thus the function ϕx 
becomes 
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From the relations between the stresses and the Airy 

stress function in polar coordinates in Eqs. (11)-(13), the 

stress components in the plate with a circular hole under 

uniform tension σ1 in x-direction can be expressed as  
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The Airy stress function ϕy for perforated rectangular 

plate by a circular hole of a radius of R under uniform 

tension σ2 in the y-direction can obtain by replacing σ1 and θ 

by σ2 and θ±π/2, respectively 
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Accordingly, the stress components become 
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3. Stresses for a rectangular plate perforated by a 
circular hole under bi-axial tensions 
 

Fig. 2 shows a rectangular plate with a circular hole of 

radius of R under bi-axial tensions σ1 in the x-direction and 

σ2 in the y-direction. The plate is assumed to be very large 

compared to the hole. By the principle of superposition the 

Airy stress function ϕ for Eqs. (20) and (24) becomes ϕ= 

ϕx+ ϕy 
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Consequently, the stress components become 
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Table 1 Stresses of potential candidates of bi-harmonic 

functions ϕ 

ϕ σrr σrθ σθθ 

r2
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r2lnr 
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1/r2 

2lnr+1 
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0 
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2 

−1/r2 

2lnr+3 

r2cos2θ −2cos2θ 2sin2θ 2cos2θ 

r4cos2θ 0 6r2sin2θ 12r2cos2θ 
cos2θ/r2 −6cos2θ/r4 −6sin2θ/r4 6cos2θ/r4

 
cos2θ −4cos2θ/r2 −2sin2θ/r2 0 

 

Table 2 Displacements of potential candidates of bi-

harmonic functions ϕ  

ϕ 2μur 2μuθ 

r2

 
lnr 
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(κ−1)r 
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(κ+1)rθ 
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cos2θ/r2 2cos2θ/r3

 2sin2θ/r3

 
cos2θ (κ+1)cos2θ/r

 
−(κ−1)sin2θ/r 
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Fig. 3 A rectangular plate perforated by two circular holes 

of different radii a an b subjected to bi-axial tensions σ1 
and 

σ2 in the x and y directions, respectively 
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4. Stresses of a rectangular plate perforated by 
two circular holes under bi-axial tensions 

 
Fig. 3 shows a rectangular plate perforated by two 

circular holes of radii a and b subjected to bi-axial tension 

σ1 in the x-direction and σ2 in the y-direction, and the 

rectangular coordinates (x, y1) and (x, y2) and the polar 

coordinates (r1, θ1) and (r2, θ2). The distance 
21OO  

between the centers of two circular holes is denoted by d.  

Again, applying the principle of superposition from Eq. 

(28), one can obtain finally the total Airy stress function Φ 

for an infinite plate perforated by two circular hole of radii 

a and b under biaxial uniform tensions σ1 in x-direction and 

σ2 in y-direction as below 
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However, two different polar coordinate systems (r1, θ1) 

and (r2, θ2) exist in the total Airy stress function Φ in Eq. 

(32). In order to calculate stress components based on one 

of the polar coordinate system (ri, θi), the other polar 

coordinate system (rj, θj) should be transformed into (ri, θi) 

where i≠j. Using the law of cosines for ΔO1PO2 in Fig. 3, 

the radial coordinates r1 
and r2 can be expressed in terms of 

(r2, θ2) and (r1, θ1), respectively, as below 
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where r1 and r2 are expressed in terms of (r2, θ2) and (r1, θ1), 

respectively, in Eqs. (33). The terms of cos2θ1 
and cos2θ2 in 

Eq. (32) are expressed in terms of (r2, θ2) and (r1, θ1), 

respectively, using the formulas of double angle, as below 
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(r1, θ1), respectively, in Eqs. (34). One can now express the 

total Airy stress function Φ in Eq. (32) in terms of one of 

the polar coordinate systems, (r1, θ1) or (r2, θ2). By means 

of the below relations between stress components and the 

Airy stress function, the stress components for an infinite 

plate perforated by two circular holes in terms of one of the 

polar coordinate systems (ri, θi) (i=1, 2) can be compute as 

below 
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where Φi is the total Airy stress function expressed in terms 

of (ri, θi). 

 

 

5. Hoop stresses and stress concentration factors 

 

The circumferential normal stress 
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stress 01
/

1
   occurring at the edge of the left circular 

hole at r1=a becomes 













 1

2

2
1

14
1

2
1

2
1

2
1

1 2cos2
2cos

ln22cos
8

a
r

ararr

750



 

Stress analysis of an infinite rectangular plate perforated by two unequal circular holes under bi-axial uniform stresses 

 

 

Fig. 4 The non-dimensional hoop stresses σθθ/σ0 for an 

infinite plate perforated by one circular hole (b/a=1 and 

d/a=0) subjected to uni-axial or bi-axial uniform stresses 
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where 

 ab/ , ad /       (40) 

 011 / , 022 /    (41) 

 1
2 cos21         (42) 

The non-dimensional hoop stress 0/
22
   on the edge 

of the right circular hole at r2=b results in 
































2

22
2

21
0

2 )cos)(cos(2

2
)(

2

2

br

 

4

2
22 )cos)((2




  














 1

1

2

)cos23(
22

2
332

 

2
2

3

2
34222

sin
2

cos426











  
























2

1
2cos

2

)2()cos(
1

1

4

1
23

2
2

 

 

Fig. 5 The non-dimensional hoop stresses 01
/

1
   for the 

left circular hole of an infinite plate perforated by two 

circular holes subjected to uni-axial or bi-axial uniform 

stresses with b/a=1 and d/a=3.5 

 

 

Fig. 6 The non-dimensional hoop stresses 01
/

1
   for the 

left circular hole of an infinite plate perforated by two 

circular holes subjected uni-axial uniform tension in x-

direction (γ1=1 and γ2=0) for d/a=3.5 
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where 

2
22 cos2 

       
(44) 

The non-dimensional hoop stress for an infinite plate 

perforated by one circular hole (β=1, δ=0) subjected to bi-

axial uniform tensions is reduced to 

2
2

21
0

2)2cossin2)(( 








ar

     (45) 

Figs. 4-9 show the non-dimensional hoop stresses for 

infinite rectangular plates perforated by one hole (Fig. 4) or 

two holes (Figs. 5-9) under uni-axial or bi-axial uniform 

loadings. Figs. 5-9 indicate them for the left circular hole of 

the two holes. It is seen in Figs. 4 and 5 that the hoop 

stresses are for four type of loading conditions (1) γ1=1, 

γ2=0, (2) γ1=1, γ2=1, (3) γ1=1, γ2=−1, (4) γ1=0, γ2=1. It is 

interesting to note in Figs. 6-9 that the hoop stresses for the 

plate with one circular hole is larger than those for the plate 

with two holes irrespective of the values of b/a and loading 

conditions. Table 3 presents the stress concentration factors 

corresponding to Figs. 4-9. 
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Fig. 7 The non-dimensional hoop stresses 01
/

1
   for the 

left circular hole of an infinite plate perforated by two 

circular holes subjected to uni-axial uniform tension in y-

direction (γ1=0 and γ2=1) for d/a=3.5 

 

 

Fig. 8 The non-dimensional hoop stresses 01
/

1
   for the 

left circular hole of an infinite plate perforated by two 

circular holes subjected to bi-axial uniform tensions 

(γ1=γ2=1) for d/a=3.5 

 

 

Fig. 9 The non-dimensional hoop stresses 01
/

1
   for the 

left circular hole of an infinite plate perforated by two 

circular holes subjected bi-axial uniform stresses (γ1=1 and 

γ2=−1) for d/a=3.5 

 
 
6. Conclusions 

 

Exact solutions for stresses of an infinite rectangular 

plate perforated by two circular holes of different radii 

subjected to uni-axial or bi-axial uniform tensions are 

investigated by two dimensional theory of elasticity using 

the Airy stress function. The circumferential normal stresses 

on the edge of the circular hole, which is called the hoop 

stresses, are calculated and plotted. The stress concentration 

Table 3 Stress concentration factors (SCF) for the left 

circular hole of an infinite plate perforated by two circular 

holes subjected uni-axial or bi-axial uniform stresses 

Loading 

Condition 

SCF 

(Location) 

One Hole (d/a=0) Two holes (d/a=3.5) 

b/a=1 b/a=0.5 b/a=1 b/a=2 

Uni-axial 

uniform 

stress 

σ1/σ0 =1 

σ2/σ0=0 

3 

(θ=90°) 

1.984 

(θ1=90.3°) 

1.938 

(θ1=91.1°) 

1.780 

(θ1=93.4°) 

σ1/σ0=0 

σ2/σ0=1 

3 

(θ=0°, 

180°) 

2.011 

(θ1=0°) 

2.059 

(θ1=180°) 

2.467 

(θ1=0°) 

Bi-axial 

uniform 

stresses 

σ1/σ0=1 

σ2/σ0=1 

2 

(any 

points) 

1.520 

(θ1=0°) 

1.580 

(θ1=0°) 

1.820 

(θ1=0°) 

σ1/σ0=1 

σ2/σ0=−1 

±4 

(θ=90° 

or θ=0°, 

180°) 

 2.502 

(θ1=0°) 

 2.538 

(θ1=0°) 

 3.114 

(θ1=0°) 

 

 

factors, which is the maximum non-dimensional hoop 

stresses, are tabulated for various loading conditions. The 

hoop stresses for the plate with one circular hole is larger 

than those for the plate with two holes irrespective of the 

values of b/a and loading conditions. 

The bi-harmonic functions ϕ to satisfy the governing 

equation 
4
ϕ=0 for plane problems with no body force in 

elasticity are called the Airy stress functions. Considering 

multi-valueness and singularity in stresses and 

displacements and applying the traction boundary 

conditions, proper bi-harmonic functions for an infinite 

rectangular plate perforated by one circular hole under uni-

axial tension are decided from the table presented by 

Dundurs (Fu 1996), which contains stresses and 

displacements of certain bi-harmonic functions. And then 

using the principle of superposition, the Airy stress 

functions for an infinite plate perforated one circular hole 

subjected to bi-axial tension are calculated. Again using the 

principle of superposition, the Airy stress functions for an 

infinite plate perforated by two circular holes under bi-axial 

tension are obtained. 
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