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1. Introduction 
 

For decades, structural analysis using finite element 

(FE) models has been widely conducted in various 

engineering fields, and it has played a very important role in 

structural design. With the recent substantial improvement 

of computer resources, the demand for structural analysis of 

large, complex FE models has increased more than ever 

before. 

In general, until the design of a structure is completed, 

the structural analysis is performed iteratively for several 

times. Therefore, when local analysis of a region of interest 

should be required, it is advantageous to construct a reduced 

model of the local region using a static model reduction 

method, rather than to perform the analysis iteratively using 

the entire FE model. For this, the static condensation 

method (Irons 1963, Guyan 1965, Wilson 1974) and the 

superelement technique (Jagadish et al. 2007, Long et al. 

2013, MSC Nastran 2014) have frequently been employed 

to construct the reduced model for the local analysis. 

In the static condensation method, the degrees of 

freedom (DOFs) are divided into the retained and omitted 

DOFs, and the reduced model is constructed by condensing 

the physical quantities corresponding to the omitted DOFs, 

into those of the retained DOFs. The static condensation 
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method has been the cornerstone of several dynamic model 

reduction methods, such as the improved reduced system 

(IRS) method (O’ Callahan 1989), its iterative methods 

(Friswell et al. 1995, Xia and Lin 2004), and the component 

mode synthesis (CMS) methods (Craig and Bampton 1968, 

MacNeal 1971, Benfield and Hruda 1971, Rubin 1975, Han 

2014, Boo et al. 2016). The static condensation method 

provides an exact solution for static analysis, while it gives 

an approximated solution for dynamic analysis because it 

ignores the inertial effect of the omitted DOFs. 

In the late 1960s, the superelement technique was 

developed by applying the physical domain-based 

substructuring scheme to the static condensation method. 

Thus, the efficiency of the computations needed to 

construct the reduced model was considerably improved. 

The superelement technique was embedded in MSC 

Nastran, ANSYS, and ABAQUS, which are very well 

known commercial FE analysis programs. These are 

frequently applied to the static and dynamic analyses of the 

practical engineering problems (Agrawal et al. 1994, 

Cardona 2000, Ju and Choo 2005). 

Considering the recent trend of increased demand for 

analysis of large FE models, computational efficiency has 

been regarded as the one of the most important 

requirements in model reduction methods. To meet this 

demand, an algebraic multilevel substructuring technique 

(George 1973, Karypis and Kumar 1998) was successfully 

adopted in several dynamic model reduction methods 

(Bennighof and Lehoucq 2004, Boo and Lee 2016). These 

methods can solve very large FE models (over 10
5 DOFs) 

with remarkable computational efficiency. 
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In this study, by applying the algebraic multilevel 

substructuring technique to the original static condensation 

method, we develop a new static model reduction method, 

named the automated static condensation method, for 

efficient local analysis of large FE models. After permuting 

the global stiffness matrix and force vector though the 

algebraic multilevel substructuring, the retained 

substructure, which is regarded as the local model of 

interest, is defined through the matrix re-permutation based 

on the node numbers of the local model. 

Then, the omitted substructures are automatically 

defined in the algebraic perspective. The condensation 

procedures of the proposed method are illustrated 

sequentially, and using the substructural sets defined in the 

substructural tree diagram established, we provide 

substructural matrices updating that occurs during the 

condensation procedures. The general formulation of the 

reduced model is expressed using multiplications and 

summations of submatrices. Using several large practical 

engineering problems, we demonstrate the excellent 

computational efficiency of the proposed method in 

comparison to the original static condensation method and 

superelement technique. 

In Section 2, the formulation of the original static 

condensation method is briefly reviewed, and the proposed 

method is derived in Section 3. The performance of the 

proposed method is compared to the static condensation 

method and the superelement technique, in Sections 4 and 

5, respectively. Finally, conclusions are drawn in Section 6. 

 

 

2. Static condensation method 
 

In this section, we briefly review the formulation of the 

static condensation method (Irons 1963, Guyan 1965, 

Wilson 1974). 

The linear static equation is given by 

ggg FuK   (1) 

where Kg is the global stiffness matrix, and ug
 
and Fg

 
are 

the global displacement and force vectors, respectively. 

In the static condensation method, the linear static 

equation described in Eq. (1) is partitioned as 
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in which the subscripts o and r denote the omitted and the 

retained DOFs, respectively, and or denotes the coupled 

DOFs between the omitted and the retained DOFs. 

Expanding the 1
st
 row equation in Eq. (2), the omitted 

displacement vector uo 
is represented as 

ooro FKΨuu
1  with oro KKΨ

1 , (3) 

where Ψ denotes the constraint mode matrix (Craig and 

Bampton 1968) to couple the omitted DOFs with the 

retained DOFs.  

Then, expanding the 2
nd

 row equation in Eq. (2), the 

following equation is obtained as 

rrro
T
or FuKuK   (4) 

Substituting Eq. (3) into Eq. (4), we can obtain the 

reduced linear static equation as follows 

FuK r  with ΨKKK
T
orr  , o

T
r FΨFF  , (5) 

and finally, the displacement vector for the retained DOFs, 

ur, is defined as 

FKu
1r  (6) 

From Eq. (5), it is identified that we only have to 

compute the constraint mode matrix Ψ to obtain the reduced 

linear static equation. Note that, the constraint mode matrix 

Ψ is calculated from the linear solving of oro KΨK  , 

without direct calculation of the inverse matrix 1
oK . The 

computational cost for the constraint mode matrix Ψ 

occupies most of the total computational cost in the static 

condensation method. 

Although the reduced stiffness matrix K  and force 

vector F  described in Eq. (5) are calculated through 

simple matrix operations, the static condensation method is 

not appropriate for solving large FE models (over 10
5
 

DOFs). In large FE models, the number of omitted DOFs is 

considerably larger, and thus, the computational cost for 

calculating the constraint mode matrix Ψ becomes very 

expensive. This will be proved using numerical examples in 

Section 4. 

 

 

3. Automated static condensation method 
 

In this section, we describe the algebraic multilevel 

substructuring and automated static condensation 

procedures that are the key procedures of the proposed 

method. 

 

3.1 Algebraic multilevel substructuring procedure 
 

In the original algebraic multilevel substructuring 

(Karypis and Kumar 1998), the global matrix, which is a 

very sparse matrix, is automatically permuted, and 

partitioned into many submatrices. 

Then, those submatrices are defined as substructures in 

the algebraic perspective, and the substructural tree 

diagram, which defines the relationships among the 

substructures, is constructed. The details are well described 

in Fig. 1. 

However, in the original algebraic multilevel 

substructuring, the stiffness terms for the local model to be 

analyzed may be scattered in the permuted matrix. 

Fortunately, because the node numbers of the local model 

are already known, through the re-permutation of the 

matrix, the scattered stiffness terms can be gathered 

intentionally. Then, we can define the retained substructure, 

which corresponds to the local model to be analyzed. The 

modified algebraic multilevel substructuring procedure is 

shown in Fig. 2. 

Based on Fig. 2, the partitioned linear static equation in 

the proposed method is written as 

ggg FuK  , (7) 
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(a) Original large sparse 

matrix 

(b) Matrix permutation and 

partitioning 

 

 

(c) Definition of 

substructures 

(d) Definition of 

substructural tree diagram 

Fig. 1 Algebraic multilevel substructuring procedure (seven 

substructures with two substructural level, where Ωi denotes 

the i
th

 substructure) 
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(8) 

where Ki, ui, and Fi are the stiffness matrix, displacement 

vector, and force vector of the i
th

 substructure, respectively. 

Ki,j is the stiffness matrix of the i
th

 substructure coupled 

with the j
th

 substructure. 

Here, the 1
st 

through 7
th 

substructures become the 

omitted substructures, and the related quantities 

corresponding to those substructures will be condensed out. 

The subscript r denotes the quantities related to the retained 

substructure to be analyzed. 

 
(a) Re-permutated and re-partitioned matrix 

 
(b) Definition of substructures 

 
(c) Definition of substructural tree diagram 

Fig. 2 Modified algebraic multilevel substructuring 

procedure (eight substructures with three substructural 

level, where Ωr denotes the retained substructure to be 

analyzed) 

 

 

Using the substructural tree diagram described in Fig. 

2(c), the substructures are categorized into the bottom and 

higher substructures. Here, the bottom substructures refer to 

the substructures in the lowest substructural level, and the 

higher substructures refer to the substructures above the 

lowest substructural level. In addition, by considering the 

substructural level to which each substructure belongs, the 

ancestor substructures for each substructure can be defined. 

Let B and H be the sets of the bottom and higher 

substructures, respectively, and let Ai be the set of ancestor 

substructures for the i
th

 substructure. Thus, we can define 

the bottom and higher substructural sets as follows, 

B={1,2,4,5} and H={3,6,7,r}. 

The ancestor substructural sets for the 1
st
, 3

rd
, and 7

th 

substructures are defined as A1={3,7,r}, A3={7,r}, and 

A7={r}. The other ancestor substructural sets can be defined 

in the same manner. Note that the defined substructural sets 
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have an important role to perform for the efficiency of the 

matrix computations. 

 

3.2 Automated static condensation procedure 
 

Expanding the 1
st
 row equation in Eq. (8), the following 

equation is obtained 

1,177,133,111 FuKuKuKuK  rr , (9) 

and the displacement vector u1 corresponding to the 1
st
 

substructure is written by 

1
1

1,177,133,11 FKuΨuΨuΨu
 rr , (10a) 

3,1
1

13,1 KKΨ
 , 7,1

1
17,1 KKΨ
 , rr ,1

1
1,1 KKΨ
 . (10b) 

Substituting u1 in Eq. (10a) into the global displacement 

vector ug in Eq. (8), the following equation is obtained 
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From Eq. (11), the global displacement vector ug can be 

rewritten as 

)1()1(
1 agg FuCu  , (12a) 
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(12b) 

where C1 is the 1
st
 condensation matrix, 

)1(
gu  is the 1

st
 

condensed global displacement vector, and 
)1(

aF  is the 1
st
 

additional force vector. 

Applying the relation 
)1()1(

1 agg FuCu   in Eq. (12a) to 

Kgug=Fg in Eq. (7), we can obtain the 1
st
 condensed linear 

static equation as follows 

)1()1()1(
ggg FuK   

with 1
)1(

CKK gg  , )1()1(
aggg FKFF  , 

(13) 

in which )1(
gK  and 

)1(
gF  are the 1

st
 condensed global 

stiffness matrix and force vector, respectively. 

Then, using C1 and )1(
aF  in Eq. (12b), the partitioned 

formulation for the 1
st
 condensed linear static equation, 

)1()1()1(
ggg FuK  , is expressed as 
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where the hat ^ denotes the substructural terms to be 

updated during the condensation procedure. Note that the 

stiffness, displacement, and force terms corresponding to 

the 1
st
 substructure become zero, and the stiffness and force 

terms corresponding to the ancestor substructural set for the 

1
st
 substructure, that is A1={3,7,r}, are only updated by the 

1
st
 condensation matrix C1. 

In Eq. (14), the 2
nd

 row equation is expressed as 

2,277,233,222 FuKuKuKuK  rr , (16) 

and thus, the displacement vector u2 corresponding to the 

2
nd

 substructure is written by 

2
1

2,277,233,22 FKuΨuΨuΨu
 rr , (17a) 
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1
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Substituting u2 in Eq. (17) into 
)1(

gu  in Eq. (12b), the 1
st
 

condensed global displacement vector 
)1(

gu  can be 

rewritten as 
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where C2, 
)2(

gu , and )2(
aF  are the 2

nd
 condensation matrix, 

the 2
nd

 condensed global displacement vector, and the 2
nd

 

additional force vector, respectively. 

Then, using Eq. (18a) in Eq. (13), we can obtain the 2
nd

 

condensed linear static equation as follows 
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in which 
)2(

gK  is the 2
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 condensed global stiffness matrix, 

and 
)2(

gF  is the 2
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 condensed global force vector. 

From Eq. (18b) and Eq. (19), the following partitioned 

formulation for the 2
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 condensed linear static equation 
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and similarly as shown in Eq. (14), by the 2
nd

 condensation 

matrix C2, all the terms corresponding to the 2
nd

 

substructure become zero, and the stiffness and force terms 

corresponding to the ancestor substructural set for the 2
nd

 

substructure, A2={3,7,r}, are updated as follows 

3,23,2
)1(

3
)2(

3
ˆˆ ΨKKK

T , 7,23,2
)1(
7,3

)2(
7,3

ˆˆ ΨKKK
T , 

r
T

rr ,23,2
)1(

,3
)2(

,3
ˆˆ ΨKKK  , 

(21a) 

7,27,2
)1(

7
)2(

7
ˆˆ ΨKKK

T , r
T

rr ,27,2
)1(
,7

)2(
,7

ˆˆ ΨKKK  , 

r
T

rrr ,2,2
)1()2( ˆˆ ΨKKK   

(21b) 

23,2
)1(

3
)2(

3
ˆˆ FΨFF

T , 27,2
)1(

7
)2(

7
ˆˆ FΨFF

T , 

2,2
)1()2( ˆˆ FΨFF

T
rrr  . 

(21c) 

In the same way, we can define the remaining 3
rd  

through 7
th

 condensation matrices (C3, C4, C5, C6, and C7); 

the 3
rd 

through 7
th

 condensed global displacement vectors (
)3(

gu , )4(
gu , )5(

gu , )6(
gu , and )7(

gu ); and the 3
rd

 through 7
th

 

additional force vectors ( )3(
aF , )4(

aF , )5(
aF , )6(

aF , and )7(
aF ). 

Then, after all the remaining condensation procedures are 

carried out, we can obtain the fully condensed linear static 

equation. 

The fully condensed linear static equation is expressed 

by 

)7()7()7(
ggg FuK  , (22) 

where 
)7(

gK  and 
)7(

gF  are the final (=7
th

) condensed 

global stiffness matrix and force vector, respectively.  

The partitioned formulation would be expressed as 
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, (23) 

in which )7(ˆ
rK , ur, and )7(ˆ

rF  are the stiffness matrix, 

displacement vector, and force vector corresponding to the 

retained substructure, respectively. Note that, except for the 

terms related to the retained substructure, all the 

substructural terms become zero. 

Finally, we can obtain the reduced linear static equation 

for the retained substructure 

)7()7( ˆˆ
rrr FuK  , (24) 

and the displacement vector for the retained substructure, 

ur, is obtained by 

)7(1)7( ˆ)ˆ( rrr FKu
 , (25) 

Because there is no approximation during the 

condensation procedures, the retained displacement vector 

ur in Eq. (25) is mathematically the same as that calculated 

from the global model in Eq. (8). 

Based on the derivation procedure described above, the 

updated stiffness and force terms during the condensation 

procedures can generally be described as follows 

ki
T

ji
i
kj

i
kj ,,

)1(
,

)(
, )(ˆˆ ΨKKK 


 (26a) 
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with ki,iki ΚΚΨ
1

,
  for Bi , iAkj , , 

i
T

ji
i

j
i

j FΨFF ,
)1()( ˆˆ 


  for Bi , iAj , (26b) 

kjkj ,
)0(

,
ˆ KK  , jj FF 

)0(ˆ , (26c) 

ki
Ti

ji
i
kj

i
kj ,

)1(
,

)1(
,

)(
, )ˆ(ˆˆ ΨKKK


  

with )ˆ()ˆ(
)1(

,
1)1(

,



i
ki

i
iki ΚΚΨ   for Hi , iAkj , , 

(26d) 

)1(
,

)1()( ˆˆˆ 


i
i

T
ji

i
j

i
j FΨFF  for Hi , iAj . (26e) 

The general formulation of the reduced linear static 

equation is written by 

)()( ˆˆ n
rr

n
r FuK  , (27) 

where n is the number of the omitted substructures. 

Finally, using Eq. (26), the stiffness matrix )(ˆ n
rK  and 

the force vector )(ˆ n
rF  for the retained substructure can be 

described as 







n

i

ri
Ti

rir
n

r

1

,
)1(

,
)( )ˆ(ˆ ΨKKK , (28a) 

)1(

1

,
)( ˆˆ 




i

i

n

i

T
rir

n
r FΨFF . (28b) 

Note that, to calculate the stiffness matrix )(ˆ n
rK  and 

force vector )(ˆ n
rF  for the retained substructure, we have 

only to consider Eq. (26) and Eq. (28), which are very 

simple formulations represented by the submatrices. 

Therefore, we can efficiently construct the reduced linear 

static equation, )()( ˆˆ n
rr

n
r FuK  . 

The computational procedure of the automated static 

condensation method proposed in this study is described in 

Fig. 3. 

 

 

4. Numerical examples 
 

In this section, to evaluate the performance of the 

proposed method, we solve four practical structural 

problems (i.e., a stiffened plate, a jacket structure, a barge 

structure, and a spar structure). The numerical code is 

implemented with MATLAB, and a personal computer is 

used for computation (Intel core (TM) i7-3770, 3.40 GHz 

CPU, 32GB RAM). 

To verify the solution accuracy of the proposed method, 

we compare the L2-norm of the displacement vector ur 

obtained from the reduced model, to that of the global 

model. The L2-norm is defined as follows 



i

r
ir

2

2
)u(u , (29) 

 

Fig. 3 Computational procedure of the automated static 

condensation method 

 

 
Fig. 4 Computational procedure of the automated static 

condensation method 

 

 

where 
r
iu  denotes the i

th
 element in the displacement 

vector ur. We also investigate the computational cost of the 

proposed method, and compare to that of the original static 

condensation method, to show the computational efficiency 

of the proposed method. 

All FE models are modeled using the MSC Patran, 

which is a very widely used commercial FE analysis 

software. We use a mild steel, so that Young’s modulus E is 

206 GPa, Poisson’s ratio υ is 0.3, and density ρ is 7850 

kg/m
3
. For the algebraic multilevel substructuring, we use 

the METIS (Karypis and Kumar 1998) software package, 

which has frequently been used for efficient matrix 

reordering and partitioning. 
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Table 1 The L2-norm of the displacement vector ur obtained 

from the global and the reduced models for the stiffened 

plate problem 

 
Global 

model 

Reduced model 

Original static 

condensation 
Proposed 

L2-norm 13.92 13.92 13.92 

 

Table 2 Specific computational cost of the stiffened plate 

problem 

Methods Items 
Related 

equations 

Computation 

times 

[sec] Ratio [%] 

Original 

static 

condensation 

Calculation of Ψ matrix 3 286.74 99.87 

Calculation of K  

matrix and F  vector 
5 0.33 0.12 

Solving FuK r
 6 0.04 0.01 

Total - 287.11 100.00 

Proposed 

Algebraic substructuring 8 0.77 0.27 

Calculation of Ψi,k 

matrices 
26 2.44 0.85 

Calculation of )(ˆ n
rK  

matrix and )(ˆ n
rF  vector 

28 3.17 1.11 

Solving )()( ˆˆ n
rr

n
r FuK   27 0.04 0.01 

Total - 6.42 2.24 

 

 

4.1 Stiffened plate problem 
 

We consider a stiffened plate, which is an important 

structural unit of ships and offshore structures, as shown in 

Fig. 4. Its length L is 26.0 m, breadth B is 6.0 m, and the 

stiffener spacing is 2.0 m. The stiffener is represented by a 

vertical web of height 0.5 m, a flange of breadth 0.2 m, and 

thickness of 0.019 m. The global FE model is modeled 

using 8580 shell elements (Dvorkin and Bathe 1984, Lee 

and Bathe 2004, Lee et al. 2014), and the number of DOFs 

is 52662. The applied point load F is 150 N, and the 

stiffened plate is fully fixed at x=0. 

Using algebraic multilevel substructuring (Karypis and 

Kumar 1998), the global model is automatically partitioned 

into the retained substructure Ωr and 255 omitted 

substructures with 8 substructural levels. Here, the number 

of DOFs for the retained substructure Ωr is 1248. 

Table 1 shows the L2-norm of the displacement vector ur 

obtained from the global and the reduced models for the 

stiffened plate problem. Table 2 shows the specific 

computational cost, and comparison to the computation 

time required for the original static condensation method. 

The proposed method only requires 2.24% of the previous 

computation time. From the results, we can conclude that 

the proposed method outperforms the original static 

condensation method in computational efficiency without 

loss of accuracy. 

 

4.2 Jacket structure problem 
 

In Fig. 5, the jacket structure is considered. The height 

 

Fig. 5 Jacket structure problem (26484 shell elements, 

Global model of 155766 DOFs, Retained substructure Ωr of 

6816 DOFs) 

 

Table 3 The L2-norm of the displacement vector ur obtained 

from the global and reduced models for the jacket structure 

problem 

 
Global 

model 

Reduced model 

Original static 

condensation 
Proposed 

L2-norm 38.98 38.98 38.98 

 

 

H and the width B are 87 m and 37 m, respectively, and the 

thickness is 0.025 m. We use 26484 shell elements for finite 

element modeling. The number of total DOFs is 155766. 

The applied point load F is 100 N, and the fixed boundary 

condition is imposed at z=0. 

The retained substructure Ωr is defined at the connection 

of the jacket structure where a fatigue crack could occur due 

to the geometrical discontinuity. The number of DOFs for 

the retained substructure is 6816. The global model is 

partitioned into one retained and 511 omitted substructures, 

and the substructural tree diagram is constructed with 9 

substructural levels. 

Table 3 presents the L2-norm of the displacement vector 

ur for the jacket structure problem, and it shows that the 

proposed method provides same accuracy as with the global 

analysis. The specific computational costs for the original 

static condensation and the proposed methods are described 

in Table 4. It is determined that the proposed method only 

requires 1.01% of the computation time needed for the 

original static condensation method. That is, the proposed 

method is about 100 times faster than the original static 

condensation method. 

 

4.3 Barge structure problem 
 

A barge structure is considered in Fig. 6. The length L, 

breadth B, height H, and draft D are 140.0 m, 37.0 m, 12.0 

m, and 8.8 m, respectively. 
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Table 4 Specific computational cost for the jacket structure 

problem 

Methods Items 
Related 

equations 

Computation 

times 

[sec] Ratio [%] 

Original 

static 

condensation 

Calculation of Ψ matrix 3 2048.41 99.87 

Calculation of K  

matrix and F  vector 
5 1.52 0.12 

Solving FuK r
 6 0.14 0.01 

Total - 2050.07 100.00 

Proposed 

Algebraic substructuring 8 1.52 0.07 

Calculation of Ψi,k 

matrices 
26 13.29 0.65 

Calculation of )(ˆ n
rK  

matrix and )(ˆ n
rF  vector 

28 5.71 0.28 

Solving )()( ˆˆ n
rr

n
r FuK   27 0.14 0.01 

Total - 20.66 1.01 

 

 

Fig. 6 Barge structure problem (123770 shell elements, 

Global model of 347604 DOFs, Retained substructure Ωr of 

5268 DOFs) 

 

 

The FE model is constructed with 123770 shell 

elements, and the number of total DOFs is 347604. 

Hydrostatic pressure is applied, and the density of the sea is 

1025 kg/m
3
. The fixed boundary condition is imposed at the 

four corners on the bottom of the barge structure. 

A part of the upper deck is defined as the retained 

substructure Ωr, and its number of DOFs is 5268. To obtain 

a more accurate analysis result, the retained substructure Ωr 

has a finer mesh than the other part. To construct the 

reduced model, the global stiffness matrix and force vectors 

are partitioned into 1023 omitted substructures with 10 

substructural levels, using algebraic multilevel 

substructuring. From the numerical results described in 

Table 5 and Table 6, we can conclude that the proposed 

method can handle large FE models with excellent 

computational efficiency, compared to the original static 

condensation method. 

Table 5 The L2-norm of the displacement vector ur obtained 

from the global and the reduced model for the barge 

structure problem 

 
Global 

model 

Reduced model 

Original static condensation Proposed 

L2-norm 4.42 4.42 4.42 

 

Table 6 Computational cost for the barge structure problem 

Methods 
Number of substructures 

omitted, n 

Computation times 

[sec] Ratio [%] 

Original static 

condensation 
- 8701.86 100.00 

Proposed 512 332.14 3.81 

 

 

Fig. 7 Spar structure problem (337825 shell elements, 

Global model of 1831242 DOFs, Retained substructure Ωr 

of 18084 DOFs) 

 

 

4.4 Spar structure problem 
 

Let us consider a spar structure such as shown in Fig. 7. 

The structure was modeled using 337825 shell finite 

elements, and the number of total DOFs is 1831242. The 

retained substructure Ωr considered has 18084 DOFs. 

Hydrostatic pressure is applied, and the draft D and density 

of the sea are 190.0 m and 1025 kg/m
3
, respectively. 

For this FE model, the static condensation method could 

not construct a reduced model due to the large amount of 

computer memory required to store the constraint mode 

matrix Ψ, which is an almost fully populated matrix. Using 

the proposed method, after defining the retained 

substructure Ωr, the remaining part is partitioned into 4095 

omitted substructures automatically, and the substructural 

tree diagram of 12 levels is constructed. 

 

 

Table 7 The L2-norm of the displacement vector ur obtained 

from the global and reduced models for the spar structure 

problem 

 
Global 

model 

Reduced model 

Original static condensation Proposed 

L2-norm 637.00 637.00 637.00 
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Table 8 Computational cost for the spar structure problem 

Methods 
Number of substructures 

omitted, n 

Computation times 

[sec] 

Original static 

condensation 
- N/A 

Proposed 4095 6307.15 

 

 

Table 7 and Table 8 present the accuracy and 

computational cost of the proposed method, respectively. 

We observed that the proposed method could provide 

reduced models with excellent computational efficiency for 

large FE models (over 10
6
 DOFs). 

 

 

5. Comparison with the superelement technique 
 

In this section, we compare the computational efficiency 

of the proposed method with that of the superelement 

technique, which is a well-known reduction method 

embedded in MSC Nastran. 

The superelement technique was originally proposed by 

applying the physical domain-based substructuring to the 

original static condensation method to reduce the 

computational cost for computing the constraint mode 

matrix Ψ described in Eq. (3). 

However, with the superelement technique, when the 

number of the omitted substructures defined is small, each 

omitted substructure contains relatively large DOFs and the 

computational cost to construct the constraint mode matrix 

Ψ is still expensive. Furthermore, it requires huge modeling 

effort of substructuring to define the many omitted 

substructures (over 100 omitted substructures). That is, the 

superelement technique has an inefficiency for solving large 

FE models over 10
6
 DOFs. 

The major difference of the newly proposed method 

from the superelement technique comes from how to 

accomplish substructuring. With the superelement 

technique, the substructuring is accomplished manually 

using physical domain-based partitioning, and considering 

the geometry feature of the global structure. On the other 

hand, with the proposed method, the large number of 

omitted substructures are defined automatically in the 

algebraic perspective, and we only have to define the 

retained substructure Ωr using the algebraic multilevel 

substructuring procedure as shown in Fig. 3. This feature is 

the most attractive strength of the proposed method, 

because there is no need for the demanding modeling effort 

of substructuring to define the omitted substructures as 

required with the superelement technique. 

To compare the performance of the superelement 

technique and the proposed method, the spar structure 

problem in Fig. 7 is considered again. For the superelement 

technique, the spar structure is partitioned into 30 omitted 

substructures and the retained substructure Ωr. 

Table 9 shows the computational cost. Compared to the 

computation time required for the superelement technique, 

the proposed method requires only 20.49% of the 

computation time. Therefore, we can say that the proposed 

method is more competitive than the superelement 

Table 9 Comparison of computational costs for the 

superelement technique and the proposed method in the 

spar structure problem 

Methods 
Number of the 

substructures omitted, n 

Computation times 

[sec] Ratio [%] 

Superelement 

technique 
30 17596.90 100.00 

Proposed 4095 6307.15 20.49 

 

 

technique regarding the aspect of computational efficiency. 

 

 

6. Conclusions 
 

In this study, we proposed the new automated static 

condensation method. Using the algebraic multilevel 

substructuring technique, the global FE model was 

partitioned into many substructures, and through matrix re-

permutation considering the node numbers of the local 

model of interest, the retained substructure was defined. 

Then, the remaining substructures were automatically 

designated as the omitted substructures. The sequential 

condensation procedure was expressed as a way of updating 

the substructural matrices, and the general formulation of 

the reduced model was very efficiently expressed with 

submatrix operations that were easier to compute. To 

investigate the performance of the proposed method, the 

calculations for several large structural FE models were 

done, and the numerical results showed that the 

computational efficiency of the proposed method was much 

superior to that of the original static condensation method 

with the superelement technique. 

In future work, the proposed method will be practically 

applied to a variety of structural analyses of large FE 

models requiring re-analyses, such as local analysis used to 

consider design modifications, local non-linear analysis, 

and local fatigue analysis considering a load history varying 

with time. 
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