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1. Introduction 
 

These problems are based on the more realistic elastic 

model since thermoelastic waves are propagating on the 

surface of earth, moon and other planets which are rotating 

about an axis. Schoenberg and Censor (1973) were the first 

to study the propagation of plane harmonic waves in a 

rotating elastic medium where it is shown that the elastic 

medium becomes dispersive and anisotropic due to rotation. 

Later on, many researchers introduced rotation in different 

theories of thermoelasticity. Agarwal (1979) studied 

thermo-elastic plane wave propagation in an infinite non-

rotating medium. The normal mode analysis was used to 

obtain the exact expression for the temperature distribution, 

the thermal stresses and the displacement components. The 

purpose of the present work is to show the thermal and 

rotational effects on the surface waves.Surface waves have 

been well recognized in the study of earthquake, 

seismology, geophysics and geodynamics. A good amount 

of literaturefor surface waves is available (in Refs. Bullen 

1965, Ewing and Jardetzky 1957, Rayleigh 1885, Stoneley 

1924). Acharya andSingupta (1978), Pal and Sengupta 

(1987) and Sengupta and Nath (2001) and his research 

collaborators have studied surface waves. These waves 

usually have greater amplitudes ascompared with body 

waves and travel more slowly than body waves. There are 

many types of surface waves but we only discussed 
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Stoneley, Love and Rayleigh waves. Earthquakeradiate 

seismic energy as both body and surface waves. These are 

also used for detecting cracks and other defects in materials. 

The idea of continuous self-reinforcement at every point of 

an elastic solid was introduced by Belfield et al. (1983). 

The superiority of fibre-reinforced composite materials over 

other structural materials attracted many authors to study 

different types of problems in this field. Fibre-reinforced 

composite structures are used due to their low weight and 

high strength. Two important components, namely concrete 

and steel of a reinforced medium are bound together as a 

single unit so that there can be no relative displacement 

between them i.e. they act together as a single anisotropic 

unit. The artificial structures on the surface of the earth are 

excited during an earthquake, which give rise to violent 

vibrations in some cases (Refs. Acharya 2009, Samaland 

and Chattaraj 3011). Engineers and architects are in search 

of such reinforced elastic materials for the structures that 

resist the oscillatory vibration. The propagation of waves 

depends upon the ground vibration and the physical 

properties of the material structure. Surface wave 

propagation in fiber reinforced media was discussed by 

various authors (Sing 2006, Kakar et al. 2013). Abd-Alla et 

al. (2012) investigated the transient coupled 

thermoelasticity of an annular fin. Reflection of quasi-P and 

quasi-SV waves at the free and rigid boundaries of a fibre-

reinforced medium was also discussed by Chattopadhyay et 

al. (2012). Abd-Alla and Mahmoud (2011) investigated the 

magneto-thermoelastic problem in rotating non-

homogeneous orthotropic hollow cylinder under the 

hyperbolic, heat conduction model.The extensive literature 

on the topic is now available and we can only mention a 
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Singh 2004, Abd-Alla 2013, Singh 2007, Abd-Alla 2011, 
Abo-Dahab et al. 2016, Alla et al. 2015,  Kumar et al. 2016, 
Said and Othman 2016, Bakora and Tounsi 2015).The 
temperature-rate dependent theory of thermoelasticity, 
which takes into account two relaxation times, was 
developed by Green and Lindsay (1972). Kumar et al. 
(2016) investigated the thermomechanical interaction 
transversely isotropic magnetothermoelastic medium with 
vacuum and with and without energy dissipation with the 
combined effects of rotation. Marin (1996) studied the 
Lagrange identity method in thermoelasticity of bodies with 
microstructure. Marin (1995) presented the existence and 
uniqueness in thermoelasticity of micropolar bodies. Marin 
and Marinescu (1998) investigated the thermoelasticity of 
initially stressed bodies. Asymptotic equipartition of 
energies. 

The aim of this paper is to investigate the propagation of 
thermoelastic surface wavesin a rotating fibre-reinforced 
viscoelastic anisotropic media of higher order. The general 
surface wave speed is derived to study the effect of rotation 
and thermal on surface waves. The wave velocity equations 
have been obtained for Stoneley waves, Rayleigh waves 
and Love waves, and are in well agreement with the 
corresponding classical result in the absence of viscosity, 
temperature, rotation as well as homogeneity of the material 
medium. The results obtained in this investigation are more 
general in the sense that some earlier published results are 
obtained from our result as special cases. For order zero our 
results are well agreedto fibre-reinforced materials. It is also 
observed that the corresponding classical results follow 
from this analysis, in viscoelastic media of order zero, by 
neglecting reinforced parameters, rotational and thermal 
effects. Numerical results are given and illustrated 
graphically. It is important to note that Love wave remains 
unaffected by thermal and rotational effects. 
 
 
2. Formulation of the problem 
 

The constitutive relation of an anisotropic and elastic 
solid is expressed by the generalized Hooke’s law, which 
can be written as 

ij = Cijkl kl i, j, k, l=1, 2, 3.            (1) 

Let To be the reference temperature at which the system 
is in equilibrium and let it be subjected to a temperature 
change T−T0 where |T−T0|<<T0. Thus the coupled 
thermoelastic equations for the material Kakar et al. (2013) 
may be written as 
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(3) 

The thermal constant v0 and τ0 appearing in the above 
equations satisfy the inequalities v0≥τ0≥0. It is evident that if 
τ0>0, consequently v0>0, the Eq. (3) Predicts a finite speed 
of propagation of thermal signals and that if, the Eqs. (2) 

and (3) reduce to the  equations of the coupled 
thermoelasticity (C-T theory). The assumption τ0=0 and 
v0>0 is also a valid one; in this case the equation of motion 
continues to be affected by the temperature rate, while Eq. 
(3) predicts an infinite speed for the propagation of heat. 

In Eq. (3) We have made use of the condition 
|T−T0|<<T0 to replace T by T0 in the last term of Eq. (3). The 
kij is the conductivity tensor, c is the specific heat at 
constant deformation, βij

 
are the thermal moduli, τij are the 

Cartesian components of the stress and εkl 
is the strain 

tensor which is related to the displacement vector, ui, Cijkl 
are the components of a fourth-order tensor called the 
elasticities of the medium. The Einstein convention for 
repeated indices is used. 

If a body is rotating about an axis with a constant 
angular velocity  then the equation of motioncan be 
written as follows. 

  
 2

, 2ij j i j j i i ijk j ku u u u          (4)

where εijk 
is the Levi-Civita tensor, by using (2), the 

equation of motionin a thermoelastic medium becomes 

 ,
2 2i j j i i ijk j kijkl k jl u uu uC u         

 

    
,(1 )ij o jT

t
  




 (5)

In isotropic medium κij=κδij and βij=βδij, β is the 
coefficient of linear thermal expansion and κis the thermal 
conductivity of the medium. 

We consider a homogeneous thermally conducting 
anisotropic two fibre-reinforced medium. Let M1 and M2 be 
two fibre-reinforced thermoelastic semi-infinite solid 
media. They are perfectly welded in contact to prevent any 
relative motion or sliding before and after the disturbances 
and that the continuity of displacement, stress etc. hold 
good across the common boundary surface. Further the 
mechanical properties of M1 are different from those of M2. 
These media extend to an infinite great distance from the 
origin and are separated by a plane horizontal boundary and 
M2 is to be taken above M1. 

Let Ox1x2x3 be a set of orthogonal Cartesian coordinates 
and let O be the any point of the plane boundary and Ox3 
points vertically downward to the medium M1. We consider 
the possibility of a type of wave travelling in the direction 
Ox1, in such a manner that the disturbance is largely 
confined to the neighborhood of the boundary and at any 
instant, all particles in any line parallel to x2-axis have equal 
displacements. These two assumptions conclude that the 
wave is a surface wave and all partial derivatives with 
respect to x2 are a zero. It is assumed that the waves travel 
in the positive direction of x1-axis and at any instant, all 
particles have equal displacements in any direction parallel 
to Ox3. In view of those assumptions, the propagation of 
waves will be independent of

 
x3. The general equation for a 

fibre-reinforced linear elastic anisotropic media (Kakar et 
al. 2013) and ā=(a1, a2, a3) where, 12

3

2

2

2

1  aaa . 

If ā has components that are (1,0,0), so that the preferred 
direction is the x-axis 
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where the strain tensor is 1
, ,2 ( )ij i j j iu u   and Dλ, DμT 

are elastic parameters. Dα, Dβ 
and )(

TL
DD    are 

reinforced anisotropic viscoelastic parameters of higher 
order, s, defined as 
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An Einstein summation convention for repeated indices 
over “k” is used and comma followed by an index denotes 
the derivative with respect to coordinate. 

ui are the displacement vector components. The 
components of stress becomes as follows 
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It is assumed that thebody is rotated about thez-axis with 
an angular frequency, Ω i.e., Ω=Ω(0,0,1).                                                                                                                            
The Eq. (5) of motion take the following form 
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 From Eq. (3), we have 
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Similarly, we can get similar relations in M1 
with ρ, α, β, 

κ, cv, Dα, Dλ, 
L

D ,
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D and Dβ are replaced by ρ′, β′, κ′, c′v, 
Dα′, Dλ′, 

L
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T
D and Dβ′ i.e., all the parameters in medium 

M1 are denoted by superscript “dash”. 
Thus the above set of Eqs. (8)-(11)  becomes (For 

convenience dashes are omitted) 
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3. Solution of the problem 
 

Now our main objective to solve Eqs. (12), (13) and (14). 
We seek the solution of (12), (13), (14) in the following 
forms 

)},,(),,,(),,,({ 213212211 txxutxxutxxu  

))(exp()}(),(ˆ),(ˆ{ 1232221 ctxixuxuxu       (15) 

and 
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where ω is the angular frequency, c is the phase velocity 
and θ=T−T0. 

Thus the coupled Eqs. (12)-(14) become 
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where, 
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Eq. (10) has the following solution 
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For positive real root η, it is necessary that 0<ρc2<μLk. 
The above set of Eqs. (17)-(19) can be written as 
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From above set of Eq.s (21), we have 
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The auxiliary Eq. (23) becomes 
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A, B and C must be positive for real positive roots (m). 
If there is no thermal effect, then the above equation is 
quadratic in m and it is easy to solve. But in the case of 
thermoelastic, it is cubic. A, B and C must positively impose 
a necessary and sufficient condition

 
upon the frequency of 

rotation of the medium. Through which a surface wave 
cannot propagate in a fast rotating medium. If there is no 
thermal effect then 

2 2
3 /    , 

This means that in a fast rotating medium, surface wave 
cannot propagate.  

Let m1, m2 and m3 be three positive real roots, then the 
solution by normal mode method has the following form 
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Where, Mn, M1n and M2n, are some parameters 
depending on c and ω. By using Eqs. (25)-(27) into Eq. 
(21), we get the following relations 
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Hence we obtain the expressions of the displacement 
components, temperature distribution function and stresses 
as follows  
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Also it is found that 
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(35)

Similar expressions can be obtained for second medium 
and present them with dashes as follows 
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In order to determine the secular equations, we have the 
following boundary conditions. 
 
 
4. Boundary conditions 
 

The stresses components, the displacement components, 
and temperature at the boundary surface between the media 
M1 

and M2 must be continued at all times and positions. 
Consider the following: 
1) The displacement components between the mediums 
are continuous, i.e.  
2) u1=u′1, 

u2=u′2 
and θ=θ′ on x2=0, for all x2 and t. 

3) Stress continuity exists, i.e., τ12=τ′12, τ22=τ′22 
on x2=0, 

for all x1 
and t. 

4) Thermal boundary conditions (Singh and Singh 2004) 
gives 
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on the plane x2=0, 1x  and t, where h is non negative 

thermal constant. 
The boundary conditions imply the following equations
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(44) 

From the above equations containing E and F, we have 
E=F=0.

 

This implies that there is no propagation in the 
transverse component of displacement. 

Elimination of constants Mn and M′n, (n=1,2,3) from the 
above set of relation, gives the following secular equation 
for thermoelastic surface wave in a rotating fibre reinforced 
viscoelastic material of order n. 
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From Eq. (45), we get the velocity of surface waves in 
common boundary between two viscoelastic, fiber-
reinforced solid media of Voigt type, where the viscosity is 
of general nth order involving time rate of change of strain. 
 
 
5. Particular cases 
 

5.1 Stoneley waves 
 
It is the generalized form of Rayleigh waves in which 

we assume that the waves are propagated along the 
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common boundary of two semi-infinite media M1 and M2. 
Therefore, Eq. (45) determines the wave velocity equation 
for Stoneley waves in the case of general viscoelastic, fibre- 
reinforced solid medal of nth order involving time rate of 
strain. Clearly from the Eq. (45), it  follows that wave 
velocity of the Stoneley waves depends upon the parameters 
for fibre-reinforced of the material medium and the 
viscosity. Since the wave velocity Eq. (45) for Stoneley 
waves under the present circumstances does not contain ω 
explicitly, such types of waves are not dispersive like the 
classical one. In case of absence of parameters for fibre-
reinforced and isotropic  viscoelastic medium of 1st order 
involving time rate of change of strain is taken. Eq. (45) is 
the secular equation for Stonely waves in a fibre reinforced 
viscoelastic media of  orders. For k=0, results are similar to 
Abd-Alla et al. (2013)and Lotfy (2012). If rotational, 
thermal and fiber-reinforced parameters are ignored, then 
for k=0, the results are same as Stoneley (1924). 

Then Eq. (45) reduces to 

ijb =0, i,j=1,2,3,4,5,6;
 

(46)
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Eq. (46) gives the wave velocity equation of Stoneley 

waves in a viscoelastic medium of Voigt type where the 
viscosity is of Ist order involving time rate of change of 
strain which is completely in agreement with classical 
results given by Sengupta and Nath (2001). Further Eq. 
(46), of course, is in complete agreement with the 
corresponding classical result, when the effect of rotation, 
viscosity and parameters of fibre-reinforcement are ignored. 

 
5.2 Love waves 

 
To investigate the rotational effects on Love waves in a 

fibre reinforced viscoelastic media of higher order, we 
replace medium M1 by an infinitely extended horizontal 
plate of finite thickness d and bounded by two horizontal 
plane surfaces x2=0 and x2=d. Medium M is semi infinite as 

in the general case.  
The boundary conditions of Love wave are as follows 
The displacement component u3 and τ12 between the 

mediums is continuous, i.e., 
u3=u′3 and τ 3=τ′23 on x2=0 

τ′23=0 on x2=d, for all x1 and t, 

where 
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This gives the wave velocity of Love waves propagating 

in a fiber-reinforced viscoelastic medium of orders. For 
k=0, the results are exactly same as in (Stoneley 1924). It is 
interesting to note that rotation and thermal does not affect 
the velocity of Love waves. 

 
5.3 Rayleigh waves 
 
Rayleigh wave is a special case of the above general 

surface wave. In this case we consider a model where the 
medium M1 is replaced by vacuum. Since the boundary 
x2=0 is adjacent to vacuum. It is free from surface traction. 
So the stress boundary condition in this case may be 
expressed as 

τ12=0, τ22=0 on x2=0, for all x1 and t, 

2 1
2

on theplane0, 0 , ,h x x and t
x

 
   


 

Thus the above set of equations reduces to 
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An Einstein summation convention for repeated indices 

upon k is applied. 
Eliminating the constants M1, M2 and M3 

we get the 
wave velocity equation for Rayleigh waves in the rotating 
thermoelastic fibre-reinforced viscoelastic media of order n 
as under 
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where 

   
 

11 1 11 12 2 12

13 3 13

, ,

,

b m i H b m i H

b m i H

 



     

  
 

 21 2 1 4 1 11 21( ) (1 )–      ob i m H i c H    

226



 
Rotational effect on thermoelastic Stoneley, Love and Rayleigh waves in fibre-reinforced anisotropic general viscoelastic media… 

 
 

 23 2 1 4 3 13 23( ) (1– )      ob i m H i c H    

31 1 21 32 2 22

33 3 23

( ) , ( ) ,

( ) ,

b h m H b h m H

b h m H

   
   

The Eq. (5.1) is the magnitude of the frequency Eq. for 
Rayleigh wave for the medium M1. For k=0, that is, our 
results are similar to Abd-Alla et al. (2013). For a non-
rotating media, we have to put Ω=0, then for k=0 our results 
are same as that of Kakar et al. (2013). If one ignores the 
fiber-reinforced parameters, then the results are same as 
Rayleigh (1885). 
 
 
6. Numerical results and discussion 
 

The following values of elastic constants are considered 
Chattopadhyay et al. (2002), Singh (2006), for mediums M  

 
 

and M1 respectively. 
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Taking into consideration Green-Lindsay theory, the 
numerical technique outlined above was used to obtain 
secular equation, surface wave velocity and attenuation 
coefficients under the effects of rotation in two models. For 
the sake of brevity, some computational results are being 
presented here. The variations are shown in Figs. 1-3 
respectively. 

Fig. 1 Variation of the magnitude of the frequency equation |Δ|
 
and attenuation coefficient Im(|Δ|) for Stoneley waves 

velocity Re(|Δ|) with respect to Ω with variation of c, ω and k 
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Figs. (1(a)-1(i)) Show that the variation of the 
magnitude of the frequency equation |Δ|, Stoneley wave 
velocity Re(|Δ|) and attenuation coefficient Im(|Δ|) with 
respect to rotation Ω for different values of phase velocity c, 
frequency ω and higher order k of nth order including time 
rate of strain. The magnitude of the frequency equation 
decreases with increasing of rotation and frequency when 
effect of phase velocity and higher order, while it increases 
with increasing of rotation, as well secular equation 
increases with increasing of phase velocity and frequency, 
while it decreases with increasing of higher order, the 
Stoneley wave velocity decreases with increasing of 
rotation, while it increases with increasing of phase 
velocity, frequency and higher order, the attenuation 
coefficient decreases with increasing of rotation when effect 
of phase velocity and higher order, while it increases with 
increasing of rotation when effect of frequency, as well it 
increases with increasing of phase velocity, while it  

 
 

decreases with increasing of frequency and higher order. 
Figs. 2(a)-2(i) show that the variation of the magnitude 

of the frequency equation |Δ|, Love wave velocity Re(|Δ|) 
and attenuation coefficient Im(|Δ|) with respect to rotation 
Ω for different values of phase velocity c, frequency ω and 
higher order k of nth order including time rate of strain. The 
the magnitude of the frequency equation increases with 
increasing of rotation, phase velocity and frequency, while 
it decreases with increasing of higher order, Love wave 
velocity increases with increasing of rotation, while it has 
oscillatory behavior  with effect of frequency in the whole 
range of rotation, as well  it increases with increasing of 
phase velocity and frequency, while it decreases with 
increasing of higher order, the attenuation coefficient 
increases with increasing of rotation when effect of phase 
velocity and frequency, while it increases with increasing of 
rotation when effect of wave number, as well it decreases 
with increasing of phase velocity and frequency, while it 

Fig. 2 Variation of the magnitude of the frequency equation
 
|Δ|, velocity (Re(|Δ|)) and attenuation coefficient (Im(|Δ|)) 

for Love waves with respect to Ω with the variation of c, ω and k 
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increases with increasing of higher order. 
Figs. 3(a)-3(l) display the variation of the magnitude of 

the frequency equation |Δ|, Rayleigh wave velocity Re(|Δ|)  
and attenuation coefficient Im(|Δ|)  with respect to rotation 
Ω for different values of phase velocity c, frequencies ω, 
higher order k of nth order including time rate of strain and 
thickness d. The magnitude of the frequency equation 
decreases with increasing of rotation, while it has 
oscillatory behavior  with effect of frequency in the whole 
range of rotation, as well it increases with increasing of 
phase velocity and frequency, while it decreases with 
increasing of higher order  and thickness, the Rayleigh 
wave velocity increases with increasing of rotation, while it 
increases with increasing of phase velocity, frequency and 
thickness, while it increases with increasing of wave 
number, the attenuation coefficient increases with 
increasing of rotation, while it decreases with increasing of 
phase velocity, as well it decreases with increasing of 
rotation, higher order k and thickness, while it has 

 
 

oscillatory behavior with effect of frequency in the whole 
range of rotation. 
 
 
7. Conclusions 
 

The analysis of graphs permits us some concluding 
remarks 

1. The surface waves in a homogeneous, anisotropic, 
fibre-reinforced viscoelastic solid media under the 
rotation and higher order k of nth order including time 
rate of strain are investigated.  
2. Love waves do not depend on temperature; these are 
only affected by viscosity, rotation, frequency, higher 
order k of net order, including time rate of strain, phase 
velocity and thickness of the medium. In the absence of 
all fields, the dispersion equation is incomplete 
agreement with the corresponding classical result. 
3. Rayleigh waves in a homogeneous, general thermo 

 

 

 

Fig. 3 Variation of the magnitude of the frequency equation |Δ|, velocity (Re(|Δ|)) and attenuation coefficient (Im(|Δ|)) 
for Rayleigh waves with respect to Ω with variation of c, ω, k, and d 
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viscoelastic solid medium of higher order, including 
time rate of change of strain we find that the wave 
velocity equation, proves that there is a dispersion of 
waves due to the presence of rotation, temperature, 
frequency, phase velocity and viscosity. The results are 
incomplete agreement with the corresponding classical 
results in the absence of all fields. 
4. The wave velocity equation of Stoneley waves is very 
similar to the corresponding problem in the classical 
theory of elasticity. The dispersion of waves is due to 
the presence of rotation, phase velocity, frequency, 
temperature and viscosity of the solid. Also, wave 
velocity equation of this generalized type of surface 
waves is incomplete agreement with the corresponding 
classical result in the absence of all fields. 
5. The results presented in this paper will be very 
helpful for researchers in geophysics, designers of new 
materials and the study of the phenomenon of rotation is 
also used to improve the conditions of oil extractions. 
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