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1. Introduction 
 

In recent years, more attention has been devoted to the 

development of innovative materials and advanced 

technologies applied in the preservation of cultural heritage 

buildings. Fiber Reinforced Polymer (FRP) has been 

utilized as a strengthening solution and successfully 

employed for retrofitting masonry buildings and existing 

structures (Mohammadizadeh and Fadaee 2009, 

Mohammadizadeh et al. 2009, Mohammadizadeh and 

Fadaee 2010, Abdollahi Chahkand et al. 2014). Advantages 

of FRP include the low specific weight, corrosion immunity 

and high tensile strength. In the past decade, the 

characterization of FRP strengthened concrete structures 

has been considered as a top priority in civil engineering. 

Furthermore, a number of researches have dealt with 

masonry buildings, particularly ancient ones due to 

especially important ancient buildings (Ceroni et al. 2014). 

For masonry buildings, structural performance can be 

improved using externally bonded FRP retrofits that 

represent an effective, cost-effective and acceptable 

approach. 

The performance and efficiency of externally bonded 

strengthening procedures depend largely on the capability 

of the FRP-masonry interface to provide an efficient 
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mechanism for transferring loads (Oliveira et al. 2010). 

Bond loss in FRP reinforcement, i.e., the debonding failure, 

usually leads to failure. In FRP strengthened masonry 

elements common out-of plane failure mechanisms include 

sliding of masonry units, flexural-shear cracking, FRP 

rupture, FRP debonding, punching shear and crushing of 

brick in compression (Kashyap et al. 2012, Ceroni et al. 

2014). The strength and ductility of a masonry member 

retrofitted with longitudinal externally bonded FRP are 

mostly influenced by the intermediate crack debonding 

failure mechanism (Kashyap et al. 2012). The mechanism 

of the bond is highly complicated due to the mechanical 

properties of masonry blocks, mortar joints, adhesive and 

FRP reinforcement (Ceroni et al. 2014). In recent years, 

numerous numerical and analytical studies have been 

conducted to determine and formulate the service and 

ultimate debonding limit states of FRP external 

reinforcements. In order to achieve this purpose, various 

experimental setups have been introduced. The results have 

provided parametric relations defining resistance against 

debonding as a function of the main parameters involved 

(Ceroni et al. 2014, Carrara and Freddi 2014). Furthermore, 

in practical applications this resistance can be estimated 

using soft computing, numerical and analytical methods.  

Soft computing techniques have been introduced as the 

modern approach for constructing a computationally 

intelligent system. The main aim of the techniques is to 

emulate human mind as closely as possible (Jang et al. 

1996). The most popular of the techniques consists of 

Artificial Neural Networks (ANNs), Evolutionary 

Computation (EC), Machine Learning (ML), Fuzzy Logic 
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(FL) and support vector machines. The successful 

applications of the techniques have been reported in the 

problems of engineering (Gholizadeh and Salajegheh 2009, 

Seyedpoor et al. 2009, Gholizadeh et al. 2009, Helmy et al. 

2011, Khatibinia et al. 2013, Khatibinia et al. 2013, 

Khatibinia and Khosravi 2014, Gharehbaghi and Khatibinia 

2015, Tsai et al. 2015, Yuksel and Yarar 2015, Gholizadeh 

2015, Khatibinia et al. 2015, Chitti et al. 2016, Khatibinia 

et al. 2016). The ANN techniques were proposed to predict 

the shear strength of FRP-reinforced concrete flexural 

members without stirrups (Lee and Lee 2014). The 

compressive strength of light weight concrete was 

successfully modeled using regression, ANN and adaptive 

neuro fuzzy inference system (ANFIS) (Sadrmomtazi et al. 

2013). Ozan et al. (2009) investigated the accuracy of ANN 

and fuzzy logic models in order to estimate the long-term 

compressive strength of silica fume concrete. Golafshani et 

al. (2012) predicted the bond strength of spliced steel bars 

in concrete using ANN and fuzzy logic. Compressive 

strength for different concrete types has also been predicted 

using ANNs and ANFIS (Alshihri et al. 2009, Sobhani et 

al. 2010, Słonski 2010, Jalal and Ramezanianpour 2012). 

Bal and Buyle-Bodin (2013) proposed ANN to accurately 

predict the dimensional variations due to drying shrinkage 

of concrete. Perera et al. (2014) predicted the performance 

of RC beams shear strengthened with near-surface mounted 

FRP rods using ANN. In this work, a multi-objective 

optimization problem was solved to generate a design 

formula for easy application and to find the shear strength 

contribution supplied through a near-surface mounted 

system. Plevris and Asteris (2014) used ANN to provide an 

approximation for the failure surface in masonry materials. 

In the work of Bedirhanoglu (2014), the neuro-fuzzy (NF) 

technique was investigated for estimating modulus of 

elasticity of concrete. Also, in this study a new simple NF 

model by implementing a different NF system approach 

was proposed. Recently, Mansouri and Kisi (2015) have 

compared the accuracy of ANFIS with that of ANN for 

prediction of debonding strength for masonry elements 

retrofitted with FRP composites. 

This study proposes an intelligent ANFIS approach in 

order to predict debonding strength of masonry elements 

retrofitted with FRP. To achieve this purpose, particle 

swarm optimization with passive congregation (PSOPC) 

and real coded genetic algorithm (RCGA) as metaheuristic 

techniques are utilized to find the best parameters of the 

ANFIS model from which better bond strength models in 

terms of modeling accuracy can be generated. In this 

proposed method, the subtractive algorithm (SA) (Chiu 

1994) is utilized to find the optimum number of fuzzy rules. 

Furthermore, the fuzzy c-means (FCM) approach (Bezdek 

1981) creates a fuzzy inference system in the simulation of 

the ANFIS model. The effectiveness and accuracy of the 

proposed PSOPC-ANFIS and RCGA-ANFIS are 

investigated based on modeling results of a laboratory 

database form 109 sub-assemblages in two stages. At first, 

the statistical evaluation results of PSOPC-ANFIS and 

RCGA-ANFIS reveal that the PSOPC-ANFIS model in 

comparison with the RCGA-ANFIS model considerably 

enhances the accuracy of ANFIS, the optimal solution and 

the coverage rate. In second stage, the prediction results of 

PSOPC-ANFIS and RCGA-ANFIS are compared with 

those obtained based on the original ANFIS, ANN and 

multiple nonlinear regression (MNLR) approaches. The 

comparison results indicate that the proposed PSOPC-

ANFIS and RCGA-ANFIS are more accurate than ANFIS, 

ANN and MNLR approaches. 

 

 

2. Existing shear bond strength model of FRP 
 

Failure in masonry elements externally bonded with 

FRP is usually accompanied by debonding of reinforcement 

due to shear stress. The shear behavior of reinforcement 

bonded to the support and under a force parallel to the bond 

surface can be modeled based on the shear stress-tangential 

slip law (Ceroni et al. 2014) which par excellence can occur 

in conjunction with a normal stress-displacement law (Pan 

and Leung 2007, De Lorenzis et al. 2010). Thus, the 

maximum transmissible force is related to the mechanical 

characteristics of the support. This can be also evaluated 

using cohesive fracture mechanics methods. In the case of 

masonry, this is largely dependent upon the elements 

making the masonry itself, i.e., the tensile strength of 

masonry bricks and mortar. In general, for FRP bonded on 

supports consisting of brittle materials and infinite 

anchorage length, the maximum transmissible load is given 

by 

 max

0

fP b x dx


    (1) 

where bf represents the reinforcement width, x is the 

longitudinal axis and τ(x) is the bond shear stress 

distribution along the interface.  

 The fracture energy related to the area below the 

interface bond shear stress-slip law (see Fig. 1) corresponds 

to the energy needed to bring a local bond element to full 

shear fracture. The fracture energy is given as following 

 
0

c fG b s ds


    (2) 

 In the case of a bond-slip model based on an interface 

bond shear stress-slip law τ(x), the following relation holds 

between the maximum transmissible force 𝑃max  (i.e., 

debonding load) and the fracture energy (Gc) of the 

interface law (Ferracuti et al. 2006, De Lorenzis et al. 2010) 

max 2f p p cP b E t G  (3) 

where Ep and tp represent elastic modulus and thickness of 

FRP, respectively. The fracture energy is expressed as 

follows 

c b G c utG K K f f  (4) 

where Kb is a width factor coefficient for the effect of the 

reinforcement width on Pmax, KG is a parameter to be 

calibrated through experimentation in bond tests, fc is the 

compressive strength and fut is the tensile strength of the 

brittle support. 
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Fig. 1 Geometry of a masonry element retrofitted with 

FRP (Mansouri and Kisi 2015) 

 

 

 Numerous models have been introduced for the bond 

strength between FRP and concrete. Some of these models 

consist of parameters which is not applicable for masonry 

while for others sufficient information were not available to 

incorporate the models in the analysis (Kashyap et al. 

2012). A number of bond strength models proposed for 

masonry were presented in the study implemented by 

Mansouri and Kisi (2015).  

 

 

3. Experimental database 
 
 In order to obtain a general model based on soft 

computing for reliable debonding resistance of FRP 

retrofitted masonry elements, a database of laboratory 

testing results for 109 sub-assemblages expressed in the 

wok of Mansouri and Kisi (2015) is selected. The database 

is shown in Table 1. 

 

 

Table 1 Experimental database 

Input Unit Min Max Mean Variance 

Lb mm 50 420 186.136 12013.43 

bp mm 6.35 50 28.832 151.573 

tp mm 0.12 6.35 1.048 1.219 

Ep MPa 22300 230000 95655.05 5.19 109 

bm mm 200 400 257.018 4050.981 

fut MPa 1.3 3.57 2.517 0.702 

Pmax kN 2.850 84.500 18.345 4.53 108 

 

 

 The input variables are thickness of the FRP strip (tp), 

width of the FRP strip (bp), Young’s modulus of the FRP 

(Ep), bonded length (Lb), tensile strength of the masonry 

block (fut), width of the masonry block (bm) and the 

maximum debonding force (Pmax). 

 

 

4. The concept of ANFIS model 
 
 A fuzzy inference system (FIS) has been introduced as a 

nonlinear mapping from the input space to the output space 

(Jang et al. 1997). The mapping mechanism is based on the 

conversion of inputs from numerical domain to fuzzy 

domain with using the three functional components: a rule 

base, which contains a selection of fuzzy rules; a database, 

which defines the membership functions (MFs) used in the 

fuzzy rules and a reasoning mechanism, which performs the 

inference procedure upon the rules to derive an output. The  

 
Fig. 2 The architecture of the ANFIS model 

 

 

ANFIS approach is proposed a FIS implemented in the 

framework of adaptive networks (Jang et al. 1997). For 

simplicity a typical ANFIS shown in Fig. 2 consists of two 

fuzzy if-then rules based on Takagi and Sugeno’s type (Jang 

et al. 1997) 

1 1 1 1 1 1

2 2 2 2 2 2

1: If is and is , then

2 : If and , then

Rule x A y B f p x q y r

Rule x is A y is B f p x q y r

  

  
 (5) 

where A1, A2, B1 and B2 are labels for representing MFs for 

the inputs x and y, respectively. Also, pi, qi and ri (i=1,2) are 

parameters of the output MFs (consequent parameters). 

 The general structure of ANFIS shown in Fig. 2 consists 

of fixed square nodes and adaptive circle nodes whose 

parameters are changed during the training process. A 

hybrid learning algorithm of ANFIS is employed by the 

parameters of MFs of input variables and linear parameters 

of the output variable. These parameters are optimized 

using gradient descent (GD) approaches. The final output of 

the given network with two inputs and one output in terms 

of the above parameters can be calculated as follows 

2

1

2

1

, for 1,2
i ii

i i
i

ii

w f
f w f i

w





  





 (6) 

( ) ( ) for 1,2i i iw A x B x i     (7) 

where wi is the firing strength of rule i, μAi(x)
 
and μBi(x) are 

the membership degrees of x and y in Ai and Bi, 

respectively. Gaussian functions with maximum equal to 1 

and minimum equal to 0 are selected for the membership 

degrees as 

2

1
( )

1 ( ) i

i
bi

i

A x
x c

a

 




 
(8) 

 

2

1
( )

1 ( ) i

i
gi

i

B y
y d

e

 




 
(9) 

where {ai, bi, ci} and {di, ei, gi} is the premise parameter set 

used to adjust the shape of MF.  

 

 

5. Particle swarm optimization with passive 
congregation 
 

 Particle swarm optimization (PSO) algorithm is inspired 

by the social behavior of animals such as fish schooling, 
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insects swarming and birds flocking (Kennedy and Eberhart 

2001). The PSO method was introduced by Kennedy and 

Eberhart (2001) to simulate the graceful motion of bird 

swarms as a part of a socio-cognitive study. It involves a 

number of particles that are initialized randomly in the 

search space of an objective function. The particles are 

referred to as swarm. Each particle of the swarm represents 

a potential solution of the optimization problem. The ith 

particle in tth iteration is associated with a position vector,

X
t

i
, and a velocity vector,V t

i
, as following 

1 2

1 2

{ , ,..., }

{ , ,..., }

t t t t

i i i i D

t t t t

i i i i D

x x x

v v v





X

V
 (10) 

where D is dimension of the solution space. 

 The particle fly through the solution space and its 

position is updated based on its velocity, the best position 

particle (pbest) and the global best position (gbest) that 

swarm has visited since the first iteration as 

1

1 1 2 2( ) ( )t t t t t t t

i i i i ic r c r     V V pbest X gbest X  (11) 

1 1t t t

i i i

  X X V  (12) 

where r1 and r2 are two uniform random sequences 

generated from interval [0, 1]; c1 and c2 are the cognitive 

and social scaling parameters, respectively and ω is the 

inertia weight that controls the influence of the previous 

velocity. Shi and Eberhart (1998) proposed that the 

cognitive and social scaling parameters c1 and c2 should be 

selected as c1=c2=2 to allow the product c1r1 or c2r2 to have 

a mean of 1. The performance of PSO is very sensitive to 

the inertia weight (ω) parameter which may decrease with 

the number of iteration as follows (Shi et al. 2001) 

max min

max

max

t
t

 
 


   (13) 

where ωmax and ωmin are the maximum and minimum values 

of ω, respectively; and tmax is the limit numbers of 

optimization iteration.  

 He et al. (2004) proposed a hybrid of PSO and passive 

congregation called PSOPC in order to improve the 

performance of PSO as follows 

1

1 1

2 2 3 3

(

( ) ( )

t t t t t

i i i i

t t t t

i i i

c r )

c r c r

    

  

V V pbest X

gbest X R X
 (14) 

where Ri is a particle selected randomly from the swarm, c3 

is the passive congregation coefficient, and r3 is a uniform 

random sequence in the range (0, 1). 

 

 

6. Real coded genetic algorithm with SBX crossover 
 

 Generally, genetic algorithms (GAs) consist of five 

components as follows (Mitsuo and Runnei 2003): 

• A genetic representation of solutions for the problem. 

• A operator for creating an initial population of 

solutions. 

• An mechanism for evaluation function rating solution 

in terms of its fitness. 

• A mechanism for selecting parent and genetic 

operators that alter the genetic composition of children 

during reproduction. 

• The parameters that influence on GAs. 

 Real coded GA (RCGA) has been introduced as a good 

method for optimization problems with continues variables. 

Real number encoding performs better than binary or gray 

encoding for these problems. In RCGA, the tournament 

selection is utilized as a selection operator. Simulated 

Binary Crossover (SBX) and polynomial mutation are also 

adopted as other operators of RCGA. 

 

6.1 Simulated binary crossover 
 

 In SBX crossover operator, two children solutions are 

created from two parents (Subbaraj et al. 2011). For this 

purpose, first, a random number, ui∈[0,1], is chosen, and 

βqi 
is calculated as given in the following equation 

 

 

1

1

1

1

2 0.5

1
otherwise

2 1

c

c

i i

qi

i

u u

u














  
    

 (15) 

where ηc 
is the crossover index. A spread factor βqi 

is also 

defined as the ratio of the absolute difference in offspring 

values to that of the parents. Then, two children solutions 

are obtained as follows 

     

     

1, 1 (1 ) (2 )

2, 1 (1 ) (2 )

0.5 1 1

0.5 1 1

t t t

i qi i qi i

t t t

i qi i qi i

 

 

  

  

     

     

X X X

X X X

 (16) 

 
6.2 Polynomial mutation 
 

Newly generated offspring undergoes polynomial 

mutation operation. Like in the SBX operator, the 

probability distribution can also be a polynomial function,  

instead of a normal distribution. The new offspring 
 1, 1

Y
t

i


is 

determined as follows (Deb 2001) 

     1, 1 1, 1t t U L

i i i i i


 
  Y X X X  (17) 

where U

i
X and L

i
X are the upper and lower limit values. The  

parameter δi 
is obtained from the polynomial probability 

distribution 

    0.5 1 1
m

m
P



      (18) 

 

 

7. The proposed intelligent ANFIS method 
 

 The ANFIS approach utilizes both the advantages of 

neural networks and fuzzy systems. However, training the 

parameters of the ANFIS model is considered as a main 

challenge when ANFIS is employed for the real-world 

problems. Furthermore, the GD approaches are utilized as 

the training methods of ANFIS, which are known to be 

local search approaches and their performances generally  
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depend on initial values of parameters. Since the optimal 

design of fuzzy systems (FSs) can be considered as an 

optimization problem, many researchers have proposed 

metaheuristic approaches such as genetic algorithms (Juang 

2002, Mansoori et al. 2006, Khoshbin el al. 2016) and PSO 

(Araujo et al. 2008, El-Zonkoly et al. 2009; Das Sharma et 

al. 2009) for the optimal design of FSs.  

 The performance and accuracy of the ANFIS model 

depend on the premise parameters and the consequent 

parameters which need to be trained. In order to improve 

and increase the accuracy of the ANFIS model in this study, 

the premise parameters i.e., {ai, bi, ci} are estimated by the 

PSOPC and RCGA methods, which considered as the 

design variables of optimization problem. Furthermore, the 

consequent parameters are calculated by the least squares 

estimation (LSE). To evaluate the accuracy of the PSO-

ANFIS and RCGA-ANFIS approaches, the root mean 

squared error (RMSE) between actual output and desired 

output is considered as the objective function, which can be 

expressed as follows 

2

1

( )
n

i i
i

y y

RMSE
n








 
(19) 

where y and y  are the measurement values and the 

predicted values, respectively; and n is the total number of 

test data. In fact, RMSE can calculate the variation of errors 

in the proposed model and is very useful when large errors 

are undesirable. 

In a conventional fuzzy inference system, the number of 

fuzzy rules is determined by the user’s experience who is 

familiar with the target system to be modeled. In the 

 

 

simulation of ANFIS, no expert is available and the number 

of MFs assigned to each input variable is chosen by trial 

and error. Hence, in the proposed method the subtractive 

algorithm (SA) (Chiu 1994) is utilized to find the optimum 

number of the fuzzy rules. The fuzzy c-means (FCM) 

approach (Bezdek 1981) also creates a fuzzy inference 

system for the antecedents and consequents. The details of 

the SA and FCM approaches can be found in the work of 

Khatibinia et al. (2012). The flowchart of the proposed 

intelligent ANFIS method is shown in Fig. 3. 

 
 
8. Numerical results 
 

8.1 Scaling and dividing database 
 

 To evaluate the effectiveness and accuracy of the 

proposed approach, the debonding resistance of FRP 

retrofitted masonry elements is estimated using the PSOPC-

ANFIS and RCGA-ANFIS approaches. In order to achieve 

this purpose, the database of laboratory testing results for 

109 samples outlined in Table 1 is selected. In the database, 

the input variables consist of thickness of the FRP strip (tp), 

width of the FRP strip (bp), Young’s modulus of the FRP 

(Ep), bonded length (Lb), tensile strength of the masonry 

block (fut), width of the masonry block (bm). The maximum 

debonding force (Pmax) is also considered as the output 

variable. Before scaling and dividing database, the values of 

the input variables are normalized between 0.2 and 0.8 as 

follows 

min

1 2

max min

i

i

x x
x b b

x x


 


 (20) 

 

Fig. 3 Flowchart of the proposed intelligent ANFIS method 
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where 
i

x , xmax and xmin are the normalized, maximum and 

minimum values of the input variables, respectively. In this 

study, b1 and b2 are assumed to be equal to 0.6 and 0.2, 

respectively. Then, the database is randomly divided into 

training and testing sets including 87 and 22 samples, 

respectively. 

 

8.2 The PSOPC and RCGA design 
 

 The performance and the accuracy of PSOPC-ANFIS 

and RCGA-ANFIS depend on the main parameters of 

PSOPC and RCGA, respectively. These parameters are 

utilized in the PSOPC and RCGA design. Hence, in this 

study the values of these parameters are determined using a 

trial and error procedure as given in Tables 2 and 3. 

 

 

Table 2 Parameters of the PSOPC algorithm 

Parameters Value 

Number of particles 25 

Number of iterations 1000 

Passive congregation coefficient 0.5 

Initial inertia weight 0.4 

Final inertia weight 0.9 

 

Table 3 Parameters of the RCGA algorithm 

Parameters Value 

Population Size 25 

Number of iterations 1000 

Crossover percentage 0.8 

Mutation percentage 0.3 

Crossover index 5 

Mutation index 20 

 

 

8.3 Estimating accuracy evaluation 
 
To explore and evaluate the accuracy of the proposed 

PSOPC-ANFIS and RCGA-ANFIS in estimating the 

debonding strength, different statistical criterions are 

utilized. The accuracy is computed as a function of the 

debonding strength. Mean Absolute Error (MAE), Mean 

Absolute Percentage Error (MAPE) and Coefficient of 

Determination (R
2
) are considered as the statistical criteria. 

The MAE is a quantity adopted to measure how closely a 

prediction matches the outcome. The MAE is expressed as 

follows 

1

1 n

i i

i

MAE y y
n 

   (21) 

Small denominators are problematic for the MAPE 

because they generate higher MAPE values impacting the 

overall value. The MAPE is given as follows 

1

1
100

n
i i

i i

y y
MAPE

n y


   (21) 

The R
2
 represents the degree to which two variables are 

linearly related and is expressed as 

2

12

2 2

1 1

( )( )

( ) ( )

n

i ave i ave

i

n n

i ave i ave

i i

y y y y

R

y y y y



 

 
  

 


 



 
 (21) 

where
ave

y and 
ave

y are the mean of the measurement and 

predicted values in the data samples. 

According to the statistical criteria, the statistic results 

from PSOPC-ANFIS and RCGA-ANFIS are summarized in 

Table 4 for the training and testing processes. 

Table 4 indicates that, as compared with the RCGA-

ANFIS model, the PSOPC-ANFIS model shows the best 

performance with the highest R
2
. Furthermore, Table 4 

reveals the direct relationship between R
2
 and the MAE and 

MAPE criteria. The performance and the accuracy of the 

PSOPC-ANFIS and RCGA-ANFIS models are graphically 

shown in Figs. 4 through 7. 

 

 

Table 4 The statistical results of the PSOPC-ANFIS and 

RCGA-ANFIS models 

Model 
Training process Testing process 

MAE MAPE R2 MAE MAPE R2 

PSOPC-ANFIS 1.1623 10.1540 0.9947 1.5573 12.5809 0.9915 

RCGA-ANFIS 1.5305 11.517 0.9895 2.3818 14.2869 0.9882 

 

 

It is observed from Figs. 4 through 7, the PSOPC-

ANFIS model in comparison with the RCGA-ANFIS model 

predicts the debonding strength at high accuracy rate. Figs. 

4(c) to 7(c) show the distribution of error values from the 

prediction using the PSOPC-ANFIS and RCGA-ANFIS 

models. The histograms represented by the models are close 

to the normal distribution, which illuminate the robust 

prediction using these models. 

Fig. 8 shows the scatter diagrams for the actual values 

and the predicted values of the testing data of the PSOPC-

ANFIS and RCGA-ANFIS models, respectively. As 

obvious from the figure, the debonding strength estimates 

of the models are closer to the corresponding measured 

values although the PSOPC-ANFIS model performs better 

than the RCGA-ANFIS model.  

Using the simulated results of PSOPC-ANFIS and 

RCGA-ANFIS, the worst, mean, average, best and standard 

deviation are evaluated from the twenty simulated runs with 

the computational times given in Table 5. 

 

 

Table 5 Statistical results of 20 independent runs for the 

proposed models 

Method Worst Best Mean Standard deviation 

PSO-ANFIS 2.357 1.714 2.103 0.6188 

RCGA-ANFIS 3.865 2.234 3.169 1.0151 

 

 

The standard deviation of the results of PSOPC-ANFIS 

in the twenty independent runs is smaller than that of 

RCGA-ANFIS. Thus, the PSOPC-ANFIS model is more 

stable. Also, the convergence curves of both PSOPC- 
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ANFIS and RCGA-ANFIS are depicted in Fig. 9. As can be 

seen in Fig. 9, the PSOPC-ANFIS obtains the best solution 

at 684 iterations. Meanwhile, the RCGA-ANFIS requires 

804 iterations. Therefore, the convergence rate of the 

PSOPC-ANFIS is faster than that of the RCGA-ANFIS. 

 

8.4 Comparison of results with other techniques  

 

This section presents the comparison of PSOPC-ANFIS 

and RCGA-ANFIS with other prediction techniques 

including the original ANFIS, ANN and MNLR approaches. 

 

 

 

The results of the PSOPC-ANFIS and RCGA-ANFIS 

models were obtained as explained in the previous section. 

In order to clarify an overall comparison, all statistical 

criteria used in training and testing data are combined to 

create a normalized reference index (RI) as follows (Chou 

et al. 2011) 

2

RMSE MAPE
RI


  (24) 

 Table 6 shows the results from the proposed methods, 

the original ANFIS, ANN and MNLR techniques for 

 
Fig. 4 Results of PSOPC-ANFIS in the training process: (a)Comparison between the measurement and predicted 

debonding strength, (b)Error value between the measurement and predicted debonding strength and (c)The histogram for 

distribution of error values 

 
Fig. 5 Results of PSOPC-ANFIS in the testing process: (a)Comparison between the measurement and predicted debonding 

strength, (b)Error value between the measurement and predicted debonding strength and (c)The histogram for distribution 

of error values 
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comparison purposes. Based on the RI index obtained for 

testing process, the proposed methods outperform the other 

techniques. It can also be observed from Table 6 that the 

PSOPC-ANFIS model is a powerful technique with high 

accuracy as compared with the other techniques. 

 Furthermore, the comparison of the PSOPC-ANFIS, 

RCGA-ANFIS, ANN, ANFIS, MNLR and existing bond 

strength models is established for 109 experimental data in 

Table 7. The mean, median, maximum, minimum and  

 

 

 

standard division (SD) statistics for each model are 

normalized based on the suggestion proposed by Mansouri 

and Kisi (2015). A value close to 1 for these criteria 

demonstrates desirable accuracy. It is obvious from Table 8 

that the criterions obtained by the PSOPC-ANFIS and 

RCGA-ANFIS models are closer to the measured values. 

Thus, the proposed models are reliably utilized for 

modeling debonding strength of masonry elements 

retrofitted with FRP. 

 
Fig. 6 Results of RCGA-ANFIS in the trainig process: (a)Comparison between the measurement and predicted debonding 

strength, (b)Error value between the measurement and predicted debonding strength and (c)The histogram for distribution 

of error values 

 
Fig. 7 Results of RCGA-ANFIS in the testing process: (a) Comparison between the measurement and predicted debonding 

strength, (b) Error value between the measurement and predicted debonding strength and (c) The histogram for distribution 

of error values 
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Table 7 Statistical results of Pmax for ANN, ANFIS, MNLR 

and the proposed models 

Model Mean Median Max Min SD 

Measured 17,155 8470 70,360 2850 17,623 

ANN 1.013 1.025 1.042 1.292 1.024 

ANFIS 0.976 1.017 1.042 1.355 1.016 

MNLR 0.997 0.982 0.934 1.105 0.97 

PSOPC-

ANFIS 
1.073 0.971 1.040 1.027 1.195 

RCGA-

ANFIS 
1.052 0.977 0.986 0.975 1.152 

 

 

 
 
 
9. Conclusions 
 

This study develops intelligent the ANFIS approach to 

model debonding strength of masonry elements retrofitted 

with FRP. In the proposed approach, the PSOPC and RCGA 

are employed to find the optimal parameters for 

membership functions and fuzzy rules in ANFIS which can 

generate a model for the debonding strength with high 

accuracy. The comparison of results from the proposed 

PSOPC-ANFIS and the RCGA-ANFIS indicates that the 

PSOPC-ANFIS model is significantly more accurate than 
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Fig. 8 The scatter plots of the measured and estimated debonding strength values in the testing process 

 

Fig. 9 Convergence curves of the best results for the RCGA-ANFIS and PSOPC-ANFIS 

Table 6 Performance measurement results of various prediction techniques 

Model 
Training process Testing process 

MAPE RMSE R
2 

MAPE RMSE RI
 

R
2 

PSOPC–ANFIS 10.154 2.2930 0.9947 12.5809 1.7142 1.0 0.9915 

RCGA–ANFIS 11.517 2.6579 0.9895 14.2869 2.2338 0.7621 0.9882 

Original ANFIS 8.24 2.784 0.984 16.6 2.771 0.4787 0.977 

ANN 7.85 2.773 0.984 14.9 2.423 0.6761 0.981 

MNLR 12.5 4.121 0.967 19.9 3.856 0.0 0.950 
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the RCGA-ANFIS model. Also, PSOPC-ANFIS 

outperforms RCGA-ANFIS in terms of coverage rate due to 

the stronger global search ability of the PSOPC algorithm. 

Finally, from the validation test results, it can be found that 

the modeling accuracy based on the proposed approach is 

significantly higher than the one based on the ANN, ANFIS 

and MNLR approaches in terms of Mean Absolute 

Percentage Error (MAPE), Coefficient of Determination 

(R
2
), and the normalized reference index (RI). Hence, the 

presented results validate the proficiency of the proposed 

approach in debonding strength prediction. Therefore, the 

proposed PSOPC-ANFIS method had better performance 

than the RCGA-ANFIS model and the conventional ANFIS 

trained with the gradient decent method due to the stronger 

global search ability of the PSOPC algorithm. Although the 

computational cost of the PSOPC-ANFIS method is higher 

than that for the conventional ANFIS. In future research, 

another optimization techniques may be developed to 

replace the PSOPC and RCGA techniques used in this study 

for further comparison. 
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