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1. Introduction 
 

SGE and SGP are believed to link closely to each other, 

and their relation is studied from the viewpoint of elastic 

and plastic length scales. 

Motivated by observed size effects in nonhomogeneous 

plastic deformations on the micron scale such as tests of 

microbend (e.g., Stölken and Evans 1998), indentation (e.g., 

Nix and Gao 1998), and wire torsion (e.g., Fleck et al. 

1994), various SGP theories were developed by considering 

the role of plastic strain gradients in plastic hardening, 

inspired by the Taylor plasticity model that shows that both 

statistically stored dislocation (SSD) and geometrically 

necessary dislocation (GND) come into play. There are 

plenty of SGPs, such as Fleck et al. (1994), Fleck and 

Hutchinson (1997), Gao et al. (1999), Fleck and Hutchinson 

(2001), Gao and Huang (2001), Gudmundson (2004), Fleck 

and Willis (2009), Bertram and Forest (2014). Despite of 

numerous successes that SGP has already achieved, some 

fundamental adjustments are in urgent needs, as discussed 

by for example, Hutchinson (2000), Evans and Hutchinson 

(2009) and Hutchinson (2012). Amongst existing issues, 

one major challenge is that SGP theories are not robustly 

workable in problems with general loading histories, for 

example loading-unloading cycles. Other issues announced 

by Hutchinson (2012), such as unreasonable discontinuous 

changes in higher order stresses upon certain infinitesimal 

load changes and failure in guaranteeing nonnegative 

dissipations, are believed to arise also due to lack of robust 

SGP theory for complex loading histories. 

To eliminate the above thermodynamical issue, Liu and 
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Soh (2014) recently proposed a new SGP reformulation. 

The essential opinion is that the omission of the strain 

gradient elasticity effect directly leads to discontinuous 

changes in total strain gradients during complex loading 

histories, and therefore causes the fundamental issues 

summarized by Hutchinson (2012). Linking together SGE 

and SGP has been described in details by Fleck and 

Hutchinson (1997). Nevertheless, in order to ease the 

complexity in dealing with 5 elastic material characteristic 

length scales appearing in the expression of elastic second 

order strain energy density, Lam et al. (2003) proposed a 

new decomposition strategy of second order strain and, 

hence, reduced the total number of elastic length scales to 3, 

based on the conclusion that the anti-symmetric part of the 

rotational gradient should not enter the expression of the 

second order strain energy density. Liu and Soh (2014) 

combined the above-mentioned theories in a compatible 

manner, and formulated a SGE-SGP framework, which is 

free of the above-mentioned thermodynamical issues. 

In the theory proposed by Liu and Soh (2014), both 

elastic length scales and plastic length scales are included. 

Therefore, we aim to explore the relation between them in 

this study. 

The paper is organized as follows. The SGP theory 

proposed by Liu and Soh (2014) is revisited in Section 2. 

Then in Section 3, the relation between higher order stresses 

and length scales is summarized. The wire torsion is taken 

as an example and solved analytically, based on which the 

relation between elastic and plastic length scales is 

discussed in Section 4. This paper ends with conclusions in 

Section 5. 

 

 

2. SGP Framework 
 
2.1 Stress-strain relations 
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The generalized strain variables are the symmetric strain 

tensor εij and the second order gradient of displacement ηijk, 

which are expressed, respectively, as 

  , ,
2

1
, kijijkjikijkijjijiij uuuu    (1) 

where ui is the i-th displacement component and ∂i is the 

forward gradient operator. 

The major  difference  between  the  conventional 

elasticity and SGE is that the change in elastic strain energy  

density, ,W  depends on the changes in both εij and ηijk due  

to an arbitrary infinitesimal variation of displacement u. In 

the energetic calculation, in order to maintain consistency 

with the following SGP formulations, the superscript “e” 

which denotes “elasticity”, is added onto strains and second 

order strains as well as the strain energy. The change in 

energy is written as 

,e
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e
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eW     (2) 

where the symmetric Cauchy stress σij (=σji) and the higher-

order stress τjik (=τjik) are the work conjugates of 

respectively the elastic strain and second order strain, 

 dte
ij

e
ij    and  dte

ijk
e
ijk   . The higher order stress 

tensor is composed of both couple stresses and double 

stresses. The work statement Eq. (2) gives the following 

elastic constitutive relations 
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In the following we adopt the SGE formulation by Lam et 

al. (2003). 

Firstly, by decomposing the second order strain η into 

symmetric and anti-symmetric parts via the strategy 

proposed by Fleck and Hutchinson (1997), we obtain 
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where χ is the rotational gradient. 

Subsequently, new independent second order strain 

metrics are obtained by splitting the symmetric second 

order strain 
S
ijk  into a trace part 

 0
ijk  and a traceless part 

  ,1
ijk  as follow 
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where 
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Similarly, the rotational gradient, χ, is also decomposed 

into a symmetric and an anti-symmetric part as follow 
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where 
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The trace part of the symmetric second order strain is a 

function of the dilatation gradient and the anti-symmetric 

part of the rotational gradient, i.e. 

,
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2
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where ε is the dilatation strain given by 

.mm   (10) 

For easy reference, ε,i, 
 1
ijk  and 

ij  are called the  

dilatation gradient, the deviatoric stretch gradient and the 

rotational gradient respectively. The lower order elastic 

strain energy rate is the same as the conventional elasticity 

counterpart, whereas, the second order elastic strain energy 

rate can be expressed in terms of the rates of three  

independent second order strains components,   ,0 e
ijk  

 e
ijk
1  

and 
eA

ijk
, , where, the superscript “e” denotes “elastic”, and 

the rates of their corresponding work-conjugates  ,0
ijk   1

ijk  

and ,A
ijk  doubled as follow 
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are the trace and traceless parts of the symmetric portion of 

the higher order stress tensor, respectively. Note that these 

two tensors, i.e.,  0
ijk  and   ,1

ijk  are orthogonal to each 

other. 

Liu and Soh (2014) have proven that the anti-symmetric  

part of the rotational gradient, i.e., A
ij  is not involved in  

the calculation of second order elastic strain energy. This  

supports our hypothesis that the work-conjugate of A
ij  

should vanish, i.e., ,0A
ijm  which gives 

,,eS
ij

S
ij

e
ijij mm     (14) 

since, ,S
ijm  which is the work conjugate of ,,eS

ij  does no 

mechanical work along ,,eA
ij  i.e., 0, eA

ij
S
ijm  . 

Therefore, χij can be replaced by S
ij  in computing  
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second order elastic strain energy density. If the set of  

second order strain metrics ,,
e
i  

 e
ijk
1  and eS
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,  and the 

corresponding work-conjugates pi, 
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ijk  and S

ijm  are  

adopted, the change in the second order elastic strain energy 

density can be expressed as 
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The inverse form is 
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For linear elastic centro-symmetric isotropic solids, the 

total strain energy rate becomes 

 
    ,       

2

3

2

1

,,2
2

112
1

,,
2
0

2

eS
ij

eS
ij

e
ijk

e
ijk

e
i

e
i

e
ij

e
ij

e
kk

e

LL

KLw












 (20) 

and the elastic constitutive relations include the 

conventional elasticity portion which is given by 
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and the second order elasticity portion which is given by 
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There are only three elastic length scales, i.e., L0, L1 and L2. 

Furthermore, no cross terms appear in the expression of the 

new energy rate in Eq. (20), which greatly facilitates the 

upcoming SGP formulation to be carried out in the 

following sections. It is worth noting that the first 

expression in Eq. (22) is adopted instead of e
ii Lp ,

2
02   

used by Lam et al. (2003), in order to achieve a rational 

correspondence between the higher order measures 

 0,0  , LpL i
e
i  and the lower order measures (εmm, σkk) 

where σkk=3Kεmm. 

 

2.2 Flow rule 
 

The flow rule is obtained by generalizing the 

conventional J2 plasticity into the above-mentioned SGE-

SGP framework. 

The strain rate, ,ij  is divided into a volumetric part 

kk  and a deviatoric part .ij   For the second order strain  

rate excluding the anti-symmetric part of the rotational 

gradient, its volumetric part is taken as the dilatation  

gradient rate 
i, , while its deviatoric part is made up of two 

compositions, i.e., the deviatoric stretch gradient rate  1
ijk  

and the symmetric part of rotational gradient rate, S
ij . The 

volumetric strain and second order strain rates 
kk  and i,   

are purely elastic due to the assumed incompressibility of 

plastic deformation and are, respectively, related to the  

hydrostatic stress and higher order stress rates, kk  and 

ip , as 
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The deviatoric strain and second order strain rates are 

decomposed into elastic and plastic parts as 
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where the elastic deviatoric strain and second order strain 

rates are proportional to their deviatoric work-conjugate 

rates respectively, in the form 
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The plastic strain and second order strain rates are 

proportional to their corresponding deviatoric work-

conjugates by the associative rule as 
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where l1 and l2are material’s plastic characteristic length 

scales introduced to establish generalized correspondences 

between plastic strain and second order strain, and between 

Cauchy stress and “plastic higher order stress”. The newly  

introduced coefficient   in Eq. (26) is calculated by  

squaring three equations in Eq. (26) and then adding them 

together, as 
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are respectively effective rates of the deviatoric stretch 

gradient, the symmetric part of rotational gradient and the 

“total” effective plastic strain covering contributions of both 

conventional plastic strain and plastic second order strain; 

while 
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are respectively effective values of higher order stresses  
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ijm  and the effective plastic stress. The occurrence of  

plastic loading for work-hardening materials requires 
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Combining Eqs. (24)-(27) gives 
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The above equations can be grouped into a more concise 

form by defining the following 45-component vectors 
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The total work rate done by the generalized stress rate along 

the generalized strain rate can be written as 
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We have   ,,,2 pt
I

pt
I

t
e


   and Eq. (31) is reduced to 

a concise form 
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Similarly, the generalized plastic stress rate vector can 

be defined as 

,2,
















 t
It

e

t
et

I
pt

I 






  (34) 

where 

     

 
   

.         

,         

3
2

33
2
2

3
2

11
2
2

3
1

1
333

2
1

3
1

1
111

2
1

3311

33

2

2
2

11

2

2
21

333

1

2
11

111

1

2
1

3311

























l

mL

l

mL

l

L

l

L

l

L

l

L

l

L

l

L

SS
t
I

SSttt
I










 

The effective total plastic strain t
e  is obtained from 

the effective total plastic strain rate t
e  as 

. dtt
e

t
e    (35) 

The uniaxial stress-strain relation is now extended to 

express in terms of the effective total plastic strain t
e  for 

three-dimension deformations as 
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t
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t
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where the material parameter t
ref  and the yield function 

t
pf  can be different from their uniaxial counterparts fp due  

to the inclusion of new kinds of dislocation mechanism like 

GND, which is produced by inhomogeneous plastic 

deformation. And we have 
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The yield criterion is 
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Differentiating the square of Eq. (38) with respect to time 

leads to the consistency condition 
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Inserting Eq. (31) into Eq. (38) yields 
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Taking account of the possibility of elastic unloading, the 

total plastic strain rate t
e  is given by 

   














 



 .0or   if                                                  0

,0 and  if 

2

2

2,

,

t
e

tt
e

t
e

tt
e

t
p

t
p

t
ref

t
e

t
I

pt
I

t
I

pt
I

t
e ff
















  (41) 

278



 

On elastic and plastic length scales in strain gradient plasticity 

A brief explanation is made on Eq. (26). In Eq. (26), the 

evolutions of p
ij , 

 p
ijkl 1

1  and pS
ijl ,

2  are determined by 

the common coefficient  . Thus, plastic evolution 

happens as long as 0  (or equivalently 0t
e ), even 

though there may exist 0e  or  
01 e  or 0S

e . 

This inference is drawn based on the generalization that 
 p
ijkl 1

1  and pS
ijl ,

2  play equivalent roles as what the 

strain p
ij  does in plastic deformation. While ,e   1

e  

and S
e  are separately not really “effective” in determining 

the plastic evolution as indicated by their subscript “e”, 

their combination t
e  is note that the unrecoverable 

characteristic of plastic deformation requires the non-

negativity of t
e  as 

0t
e  (42) 

which has been guaranteed by its definition in Eq. (28) for  

plastic loading cases, and t
e  is zero for elastic unloading. 

The non-negativity of t
e  can also be guaranteed by Eq. 

(41) because 
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The satisfaction of Ducker’s postulate, i.e., non-negative 

plastic dissipation rule, is studied. According to Ducker’s 

postulate, we should check the plastic dissipation rate, or 

equivalently the mechanical work rate done by the 

generalized stress rate pt
I

,  along the generalized plastic 

strain rate ,, pt
I  which is equal to half of 
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in view of the fact that t
e  is always non-negative for 

hardening materials. An alternative understanding of Eq. 

(44) is to bear in mind that ,t
e

t
e

t
e

t
e     which is non-

negative during plastic loading or neutral loading and is 

equal to zero due to 0t
e  during elastic unloading for  

workhardening materials. Therefore, Ducker’s postulate is 

perfectly satisfied. Hutchinson (2012) has also revived the 

non-negative dissipation requirement but it was only for the 

special cases with the full recoverability of the plastic strain 

gradient-related dislocations; whereas, the present 

formulation does not have this limitation and is workable in 

general cases. 

 

 

3. Which lengths should the higher order stress be 
related to? 

 

This topic remains open and here we summarize 

differences among several representatives in the literature, 

but nothing can be conclusive. 

In the mechanism-based strain gradient (MSG) plasticity 

(Gao et al. 1999), the higher order stress is proportional to 

the mesoscale representative cell size, le, which is believed 

to be usually on the order of 10~100 nm. From the 

viewpoint of orders of magnitude, the τ~lε relation in MSG 

happens to be similar as the τ~li relation in the present 

study, but the purpose of introducing le in MSG is 

completely different. le and li have different physical 

meanings and should not be taken as the same stuff. It is a 

coincidence that the MSG-type higher stress and the present 

higher stress get to the same order of magnitude. 

In the incremental SGP recently developed by Fleck et 

al. (2014)  which  is  later  called  FHW  theory  for  

convenience,  the  higher  stress  is  proportional  to 
2
Pl , 

where lp is the unique characteristic plastic length scale in 

the formulation with a purpose to describe features of 

micron-scale plasticity by introducing the minimum new 

parameters. li appearing in the present theory and lp adopted 

by the FHW theory should have the same physical meaning 

and therefore should be on the same order. Notably, the 

FHW higher stress is assumed to be fully recoverable. The 

undergoing physics picture is that strain gradient is 

dominantly achieved by recoverable dislocations. 

In the SGP formulation proposed by Gudmundson 

(2004), when the higher order stress can be directly 

determined from the free energy which depends on an 

isotropic and quadratic form in the “plastic strain 

gradients”, the higher order stress is related to the square of  

the length scale, 
 ,I
eL  which is introduced to calculate the 

free energy. Furthermore, Gudmundson (2004) pointed out 

that 
 I
eL  is usually significantly smaller than the 

characteristic plastic length scale. Such a set of free-energy-

related length scale, 
 ,I
eL  is believed to have a physical  

meaning equivalent to the characteristic elastic length scale, 

Li, in the present study. 

In the SGP theory by Anand et al. (2005), the higher 

order stress which was called “microstress” by Anand et al. 

(2005) is decomposed into an energetic part which is related 

to the “energetic length scale” and a dissipative part which 

is related to the “dissipative length scale”. It indicates that 

the “dissipative length scale” is equivalent to the 

characteristic plastic length scale. Furthermore, we suppose 

that the “energetic length scale” must be very close to the 

characteristic elastic length scale. 

Besides above similarities and differences, it is worth 

noting that the FHW theory, the formulation by 

Gudmundson (2004), their earlier archetype, i.e., SGP in 

Fleck and Hutchinson (2001), and the theory by Anand et 

al. (2005) all belong to the “gradient of strain” models 

where the plastic part of the strain gradient is taken to be the 

gradient of plastic strain (Forest and Sievert 2003). MSG 

relatively has a different derivation, but its conventional 

form in Huang et al. (2004) apparently also has the 

“gradient of strain” nature. However, the present SGP 

theory has not been built based on the “gradient of strain” 

hypothesis, and the plastic strain gradient is produced by the 

elastic-plastic decomposition of strain gradient. 

 
 
4. Torsion of a circular cylindrical bar 

 
Torsion of a circular wire is selected as an example to 
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illustrate the proposed SGP model. 

 

4.1 Theoretical formulation 
 

Assume that the wire axis is lying along the x3 axis of a 

Cartesian co-ordinate system (x1, x2, x3). For convenience, a 

cylindrical polar co-ordinate system (r, θ, x3) is also 

introduced, with the radius of the wire as .a  Let κ be the 

twist per unit length of the wire, which is taken to be 

positive without loss of generality. 

Since the loading and unloading cycles will be studied, 

we solve the problem by incremental formulations. We 

begin with assuming the same displacement field as that in 

the conventional torsion 

.0 , , 3312321  uxxuxxu    (45) 

The associated non-vanishing components of strain 

increment ,ij  strain gradient increment 
ijk  and 

rotational gradient increment S  are respectively 

;
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It is notable that 0, i  and 
  01 ijk  for the case of 

torsion. In every increment ,  both the strain and the  

rotational gradient are composed of an elastic and plastic 

part, and the following denotation is adopted 
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with the subscript “ε” denoting “strain” and the subscript 

“χ” denoting “gradient”. Then 
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where p
  and p

  are given according to the associative 

rule as 
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The non-vanishing stress components are 
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and the non-vanishing couple stress components are 
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Therefore the total effective stress can be expressed as 

   
.

6
2

2
2

22
22

l

L
r

e

et
e





   (55) 

We adopt the yield function 
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where E, σY and N are, respectively, the Young’s modulus,  

the initial yield stress and the hardening exponent, and t
e   

is given as 
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The twist  decomposition in Eq.  (49)  can be 

accomplished by iterative calculations, i.e., checking the  

effective stress, ,t
e  in Eq. (55) against the yield surface  

constraint in Eq. (56). 

According to the equilibrium and boundary conditions, 

by performing some basic mathematical derivations (refer 

to Liu and Soh 2014 for more details), the torque applied on 

the wire can be expressed as 
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4.2 Results and discussions 
 

Firstly, size effects related to the ratio of a/l2 are shown 

in Fig. 1. A “smaller is stronger” effect is illustrated. 

Namely, the smaller the wire radius, the bigger yield 

strength is. This has been a well-known phenomenon and it 

has been investigated frequently (Fleck et al. 1994, Aifantis 

1999, Dunstan et al. 2009). The inhomogeneity of plastic 

deformation has often been considered as the physics 

mechanism behind such size effects. Interestingly, we can 

find that curves with varying a/l2 have already become 

different considerably during the linearly elastic stage. 

Therefore, one reasonable conclusion is that the observed 

size effect in plastic hardening is achieved by the 

inhomogeneities of both elastic and plastic deformations in 

the specimen where L2 and l2 are on the same order of 

magnitude. 

Then, we mainly discuss what the ratio of L2/l2 can lead 

to Fig. 2 shows the torque-twist curves under different 

values of L2/l2. An increase in L2/l2 obviously leads to an 

increase in yield strength. Nevertheless, it is interesting to 

note that the size effect has become very profound during 

the initially linearly elastic stage: The slope of the curve for 

the biggest L2/l2 is the biggest among three ratios studied. 

Therefore, effects of strain gradient elasticity and effects of 

strain gradient plasticity actually coupled with each other. 

Thus, it is interesting to differentiate these two effects. 

Actually, when L2 and l2 are of the same order, the size 

effect in yield hardening is dominantly inherited from the  
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Fig. 1 The normalized torque, T/a

3
, versus the normalized 

surface strain, ,a  for various ratios of wire radius to 

plastic length scale, a/l2=1,2,4,8,16. The hardening 

exponent N=0.25, the elastic characteristic length scale 

L2=l2=1μm the shear modulus μ=48 GPa, the yield stress 

σY=50 MPa, the Poisson’s ratio υ=0.34 

 

 

size effect in elasticity. Notably, the size effect in elastic 

responses found in both Fig. 1 and Fig. 2 shows the same 

trends as experimental observations by Lam et al. (2003), 

while that in plastic responses coincides with experimental 

trends by Fleck et al. (1994), Kiener et al. (2010), Liu et al. 

(2013). 

This topic still seems widely open. The plastic length 

scale l2 is usually believed to be of the order of microns. 

However, the order of the elastic length scale is relatively 

less conclusive. Lam et al. (2003) studied the proxy and 

found its elastic length scale should be a few microns. But 

this has been questioned by many other investigators who 

argued that the elastic length scale should be much smaller 

than micron. Of course, the answer is essentially material-

dependent. For structured materials, the elastic length scale 

is closely related to the interstructures. For example, for 

metallic foams, it is expected to be of the same order of the 

pores. Our future plan is to design appropriate experiments 

to calibrate the elastic length scales by conducting the 

purely linear elastic tests, then carry on the elasto-plastic 

tests on the same specimens. The main challenge that we 

are still working on is how to separate contributions from 

inhomogeneities of elastic and plastic deformations, or 

equivalently contributions of elastic and plastic length 

scales. 

 

 

5. Conclusions 
 

The relation between elastic length scales and plastic 

length scales has been investigated. As already mentioned 

in Section 3 the definition of higher order stresses varies 

among different SGPs. Thus, it is worth noting that the 

discussion is based on the SGP framework recently 

established by Liu and Soh (2014). When the elastic length 

scale is of the same order of magnitude as the elastic length 

scale, considerable size effects have arisen during the 

initially linear elastic stage. These elastic size effects will be 

brought into the follow-up elastic-plastic deformation. The  

 
Fig. 2 The normalized torque, T/a

3
 versus the normalized 

surface strain, κa, for various ratios of elastic length scale 

to plastic length scale, L2=l2=1,0.25,0.1. The wire radius 

a=2μm, the hardening exponent N=0.25, the plastic 

characteristic length scale l2=1μm, the shear modulus μ=48 

GPa, the yield stress σY=50 MPa, the Poisson’s ratio υ=0.34 

 

 

relative magnitude of the elastic length scale can 

significantly determine the intensity of the size effects in 

plastic hardening. 
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