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Abstract.  This paper describes a systematic numerical investigation into the nonlinear elastic behavior of 

conical shells, with various types of initial imperfections, subject to a uniformly distributed axial 

compression. Three different patterns of imperfections, including first axisymmetric linear bifurcation mode, 

first non-axisymmetric linear bifurcation mode, and weld depression are studied using geometrically 

nonlinear finite element analysis. Effects of each imperfection shape and tapering angle on imperfection 

sensitivity curves are investigated and the lower bound curve is determined. Finally, an empirical lower 

bound relation is proposed for hand calculation in the buckling design of conical shells. 
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1. Introduction 
 

Geometric imperfections have long been recognized as the main factor influencing the decrease 

of the buckling load for thin walled shells.  

Effect of imperfections on instability of cylindrical shells has extensively been studied by many 

authors. It is well known from buckling experiments of shells that the actual failure load might be 

significantly lower (depending on loading conditions) than the buckling load obtained from linear 

eigenvalue (bifurcation) analysis (Falzon and Aliabadi 2008), due to the presence of local or global 

imperfections in the nominal geometry of the shells. The first significant works by von Kármán 

and Tsien (1941), Donnell and Wan (1950), Koiter (1970) identified deviations from the idealized 

geometry of a shell, known as initial geometric imperfections, as a primary source of variation 

between analytical predictions and experimental results. 

Chadhuri and Kim (2008) studied buckling response of a thin cross-ply cylindrical shell with 

localized imperfection under external pressure.  

It is known that the most important factor in imperfection sensitivity of the shell is the 
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membrane component of strain energy and axial compression is the loading condition allowing the 

shell to develop a high membrane component of the total strain energy, which will result in higher 

imperfection sensitivity (Calladine 1995, Croll 1995). As a result, axial compression is the loading 

condition which has been mostly investigated (Jamal, Lahlou et al. 1999, Jamal, Midani et al. 

2003, Song, Teng et al. 2004, Ali, Jalal et al. 2011, Castro, Zimmermann et al. 2014). Shultz and 

Nemeth (2010) presented an analytical model for assessing the imperfection sensitivity of axially 

compressed orthotropic cylinders and compared the results with those obtained through Finite 

Element (FE) models. Effects of single (Jamal, Lahlou et al. 1999) and multiple (Ali, Jalal et al. 

2011) local dimple-shaped imperfections on the stability of cylindrical shells under axial 

compression were studied, showing that the more is the interaction of geometric imperfections the 

higher is the reduction of the buckling load.  Castro, Zimmermann et al. (2014) performed FE 

analyses to study the effects of different geometric imperfection patterns on buckling of laminated 

cylindrical shells and compare the results with the lower-bound methods NASA SP-8007 

(Peterson, Seide et al. 1968) and the Reduced Stiffness Method (RSM) (Batista and Croll 1980), 

showing that the axisymmetric imperfections give the lowest so-called knock-down factor. 

Effect of imperfections on conical shells is less studied with respect to cylinders. Former 

investigations prove that there is imperfection sensitivity in conical shells subject to axial 

compression (Lackman and Penzien 1960, Spagnoli 2001, Chryssanthopoulos, Pariatmono et al. 

1997, Spagnoli and Chryssanthopoulos 1999). Shiau and Soong (1974) used Galerkin approach to 

determine the dynamic stability of a truncated conical shell with various geometrical imperfections 

and dynamic loading conditions and showed that conical shells are less sensitive to initial 

geometric imperfections than the cylinders. Goldfeld (Goldfeld 2007) considered the sensitivity of 

laminated conical shells to imperfection via the initial post-buckling analysis, on the basis of 

Donnell, Sanders, and Timoshenko shell theories. Maali, Showkati et al. (2012) tested complete 

conical shells having meridional weld-induced imperfections and compared the results with FE 

analyses, and Sofiyev (Sofiyev 2011) studied the influence of  initial imperfection on the buckling 

response of simply-supported truncated conical shells made of functionally graded materials under 

axial compression. Steel conical shells have long been used in various parts of different structures. 

The stability of composite conical shells subjected to dynamic external pressure is investigated 

both numerically and experimentally by (Jalili, Zamani et al. 2014). (Ghazijahani, Jiao et al. 2015) 

provide experimental data on the effect of local imperfections on the buckling capacity of these 

shells under axial compression. The results show changes in the buckling mode and the capacity 

for such damaged thin specimens with an average overall capacity reduction of 11%. However, 

effects of various types of imperfections on buckling strength of conical shells needs more study. 

The main objectives of the present paper are: determine the type of imperfection pattern which 

is most critical in terms of load carrying capacity of conical shells, bearing in mind that in 

cylinders, weld depression is the most critical one (Rotter and Teng 1989); study the effects of 

tapering angle on imperfection sensitivity of the conical shells. 

To this end, buckling and postbuckling behavior of conical shells under axial compression with 

various types of initial imperfection is studied. Three different patterns of imperfections are 

studied using geometrically nonlinear FE analysis. Effects of each imperfection shape and tapering 

angle on imperfection sensitivity curves are investigated and the lower bound curve is found. 

Finally, an empirical lower bound relation is proposed for hand calculation in the buckling design 

of conical shells.  
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Effects of imperfection shapes on buckling of conical shells under compression 

 

Fig. 1 Geometry of conical shell. 

 

 

2. Finite element analysis 
 

2.1 Geometry and material properties 
 

Consider a conical shell with (x, θ, z) coordinates as shown in Fig. 1, where x is the coordinate 

along the cone generator with the origin placed at the top, θ is the circumferential coordinate and z 

is the coordinate normal to the cone surface. R1 and R2 are the radii of the cone at its small and 

large end, respectively,   is the tapering angle of cone and L is the cone slant length along the 

generator. The thickness of the cone is t.  

The uniformly distributed axial load P is applied along the small end of the shell. The material 

is assumed to be isotropic and linear elastic, with a Young‟s modulus E=200 GPa and a Poisson‟s 

ratio  , which are typical values for steel. 

 
2.2 Finite element model 

 

All the numerical analyses were conducted using the ANSYS program (Lawrence 2012). Both 

shell ends were simply supported so that all translational degrees of freedom w, u and v were 

restrained on the bottom edge, while the axial displacement was left free on the top edge 

(               where the axial compressive force is applied. A complete-structure model 

was used to avoid any restriction which may be caused by symmetry assumption as discussed by 

Teng and Song (Teng and Song 2001).  

The geometric parameters being considered in the study include the length, radius and tapering 

angle of cone, as well as the form, amplitude and position of geometric imperfections. The 

geometric imperfections were all represented by a complete definition of the imperfect shape, 

using doubly curved shell elements to capture local shell forms and ensure geometric and 

deformation compatibility between elements. Appropriate care was taken with mesh refinement 

where the imperfect geometry led to high local curvatures. The shell was assumed to be stress free 

in its imperfect geometry, since studies of consistent residual stresses in shells (Holst, Rotter et al. 

2000) suggest that residual stresses are generally small and usually beneficial to the shell buckling 
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strength under axial compression.  

 
2.3 Type of analysis 
 

Following the guidelines of ECCS technical committee (Rotter and Schmidt 2008), linear 

eigenvalue buckling (bifurcation) analyses (LBA) present the reference buckling loads for all 

conditions, as well as they give mode shapes which are in general detrimental when used as 

geometric imperfections. Geometrically nonlinear elastic analyses using different representation of 

geometric imperfections (GNIA) is then carried out to obtain bifurcation and limit load points for 

the imperfect structure. 

The nonlinear load-deflection path was followed using the arc length method (Riks 1979). In  

this method,  the  algorithm  looks  for  successive  points  on  the  load-deformation path  of  the  

loaded  structure. This  method  is  very  powerful  for  studying shell  buckling,  where  these  stiff  

light  structures  support  very  high  loads,  but  can  easily  transform  into rapidly collapsing 

systems. A full  Newton-Raphson  solution  is  conducted  on  an  incremental basis,  and  during  

each  increment,  iterations  are  performed  so  that equilibrium  between  external  and  internal  

forces  is  achieved  at  the  end  of  the  step. Then, the determinant of the stiffness matrix was 

checked at each step to determine if one or more negative eigenvalues had appeared. The 

appearance of a negative eigenvalue indicates that a bifurcation point on the load-deflection path 

has been passed. The buckling loads reported in the nonlinear analyses correspond to the peak 

points along the geometrically nonlinear path.  

 
2.4 Shell elements 
 

Due to the quadratic representation of the curved surface, the 8-node isoparametric shell 

element SHELL281 of ANSYS involving both bending and membrane effect is adopted. This kind 

of shell element is such that the membrane and bending locking and spurious energy mode do not 

occur in analysis, e.g., see (Nascimbene 2014). Each element node has in total six translations and 

rotations degrees of freedom (DOFs), and the accuracy is governed by the first order shear 

deformation theory. 

 
2.5 Mesh study 
 

Several mesh convergence studies were conducted. A good approach, base on h-convergence, 

for such studies is to adopt a mesh which provides almost identical results to those from a further 

refined mesh (i.e., the buckling load is changed by less than 1% as a result of the mesh size 

bisection). This study followed this approach. Since we want to undertake parametric studies of 

the buckling and post-buckling behavior of cylindrical and conical shells with and without 

imperfections, the mesh convergence study aimed to find meshes that predict both the buckling 

and the post-buckling behavior accurately, without excessive computing effort. Appropriate 

attention was paid to mesh refinement in the imperfection zones (especially weld depressions), 

since careful definition of the doubly curved geometry of a local imperfection is essential to an 

accurate determination of the buckling strengths of locally imperfect shells. 

Since the deformation path of nonlinear finite element analysis of shell calculated using the arc-

length method can be sensitive to the maximum arc-length increment at each load step (Teng and 

Song 2001) and lower arc-length increments increase the calculation time gradually, the maximum  
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Effects of imperfection shapes on buckling of conical shells under compression 

Table 1 Mesh convergence study for cylinder with L/R1=2, R1/t=500, and t=1 mm 

Mesh name Nodal spacing (circ.,merid.)    
               

  

A (1.5°,3 λcl/8) 761.452 0.921 

B (1°, λcl/4) 759.024 0.842 

C (0.75°,3 λcl/16) 756.483 0.843 

D (0.5°, λcl/8) 755.871 0.843 

 

 

Fig. 2 Load-deflection curves for various mesh sizes of the perfect cylinder under axial compression 

 

 

arc-length increment is set to 2. 

For shell buckling and post-buckling analysis, discretization into finite elements is best 

discussed in terms of the number of elements or nodes per half-wavelength of the relevant bending 

or buckling deformations (which are also considered as characteristic deformation of imperfection 

geometries). In the present study, the (minimum) half-wavelength λcl for a cone with axisymmetric 

buckling mode 

         √                
  

    
                                               (1) 

was considered.  

 
2.5.1 Mesh convergence for cylinders 
At first, finite element analyses were obtained using three different meshes for a cylinder with 

L/R1=2, R1/t=500, and t=1 mm. The meshes are described in terms of the circumferential nodal 

spacing in degrees and the meridional nodal spacing as a fraction of the half-wavelength λcl (Song 

et al. 2004). 
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The linear bifurcation buckling load    
  and the limit point load on the geometrically nonlinear 

path Pmax of the perfect shell are listed in Table 1. The mesh A is not fine enough to predict the 

nonlinear limit load correctly. Since the values change less than 1% on other mesh sizes, meshes 

B, C and D are adequate. In addition, the calculated post-buckling path (Fig. 2) is followed by B, C 

and D, indicating that the mesh B is satisfactory. In Fig. 2, the horizontal axis is the relative 

shortening (i.e., the axial shortening (Δ) divided by the shell thickness), while the vertical axis is 

the load factor (i.e., the axial load P divided by the linear bifurcation buckling load (   
  ).  

 
2.5.2 Mesh convergence for cones 
The same convergence approach is used to study the adequate mesh sizes for a cone with 

L/R1=2, R1/t=500, t=1 mm and β=30°.The results are collected in Table 2. Also, the post-buckling 

path is shown in Fig. 3. It can be seen that the mesh B cannot follow the second path of  C and D. 

This may be due to its coarseness or the maximum arc-length increment chosen for this problem 

(Song et al. 2004). In addition, by applying mesh C the analyses were performed in reasonable 

time but mesh D is very fine and calculation time becomes very high. 

Hence, the mesh size C is appropriate for both cylinders and cones. The following calculations 

are performed using this size. 

 

 
Table 2 Mesh convergence study for cone with L/R1=2, R1/t=500, t=1 mm and β=30° 

Mesh name Nodal spacing (circ.,merid.)    
  (kN)         

  

A (1.5°,3 λcl/8) 570.49 0.871 

B (1°, λcl/4) 569.71 0.842 

C (0.75°,3 λcl/16) 567.24 0.843 

D (0.5°, λcl/8) 566.89 0.843 

 

 

Fig. 3 Load-deflection curves for various mesh sizes of the perfect cone under axial compression 
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Effects of imperfection shapes on buckling of conical shells under compression 

3. Imperfection forms 
 

The load-carrying capacity of an axially compressed conical shell is strongly influenced by the 

distribution and amplitude of geometric imperfections in the shell. As discussed by Teng and 

Rotter (2004), different alternative choices were proposed from time to time by researchers who 

were looking for practical but severe forms of imperfection for axially compressed cylinders. 

Yamaki (1984) explored many different imperfection forms for cylinders. However, a 

comprehensive study of the effects of imperfection forms in the buckling of axially compressed 

cones is still missing. 

The discrepancy between classical buckling stress predictions and experimental buckling 

strengths was first shown to be predominantly caused by geometric imperfections in the shell 

surface by Koiter (1970) in 1945. His perturbation analysis explored the effect on the buckling 

stress of minor deviations in geometry in the form of the axisymmetric buckling mode with 

wavelength λcl. This original analysis for a long cylinder with sinusoidal imperfections throughout 

its length led to the simple asymptotic formula for the buckling load (stress) at bifurcation as  

        
 {  

 

 
  [(  

 

   
)

 

 
  ]}                                        (2) 

where ψ is a constant defined as 

  √                                                                  (3) 

and δ is the relative imperfection amplitude defined as 

  
  

 
                                                                     (4) 

where    is the imperfection value, measured as a normal-to-shell-wall deviation from the 

nominal surface. 

Koiter showed that imperfections in the form of axisymmetric buckling mode for the perfect 

cylinder, may be regarded as the most serious for the strength of the shell, leading to a reduction to 

24% of the classical critical stress for an amplitude of one wall thickness (δ =1). Koiter introduced 

his next formula for imperfection sensitivity including the effects of  non-symmetric modes in 

1970 (Hutchinson and Koiter 1970, Koiter and Heijden 2009) as follows 

   
    

   
  

 

  
 

 
 

    

   
                                                        (5) 

Also, Yamaki (1984) introduced some curves for imperfection sensitivity of long cylinders. In 

this paper we use Eq. (4.7.C) from (Yamaki 1984) as  

   
    

   
  

 

  
 

 
√    *   (  

    

   
 )   +                                       (6) 

where 

        ,                                                              (7) 

In this study, three types of imperfection forms were considered: the first non-axisymmetric 

linear bifurcation mode (FNLB), the first axisymmetric linear bifurcation mode (FALB), and local 

weld depressions (WD). 
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Table 3 Mode number, corresponding meridional and circumferential wave numbers (m,n) and 

corresponding linear buckling loads of FNLB and FALB forms. 

Tapering Angle FNLB FALB PFNLB (kN)             

0 1(14,20) 51(13,0) 756.5 1.004 

15 1(18,20) 43(23,0) 706.1 1.006 

30 1(18,19) 27(19,0) 567.2 1.005 

45 1(16,17) 27(16,0) 378.4 1.004 

60 1(11,14) 21(14,0) 189.3 1.005 

 

 
3.1 Linear bifurcation modes 
 

The linear bifurcation mode of the perfect shell has long been used (Koiter 1963, Koiter 1970, 

Yamaki 1984) as an equivalent imperfection form, because it is easily obtainable and generally 

gives a relatively severe form of imperfection (Rotter and Schmidt 2008). Here, the first 

axisymmetric and non-axisymmetric bifurcation modes are selected to study the effects of the 

imperfection shape on post-buckling path and imperfection sensitivity of cylinders and cones. 

Table 3 shows the mode number, corresponding meridional and circumferential wave numbers 

(m,n) and corresponding buckling loads of FNLB and FALB forms. The meridional wave number 

(m) is the number of half wavelengths in meridional direction while the circumferential wave 

number (n) is the number of full wavelengths in circumferential direction. As can be seen, the first 

mode is the non-axisymmetric mode for all the tapering angles. The first axisymmetric mode is not 

the overall first mode, but its buckling load is extremely close to the first mode of buckling. This is 

due to the cluster of simultaneous buckling modes in cylinders and cones that has thoroughly been 

discussed elsewhere (Spagnoli 2001, Spagnoli 2003, Shakouri et al. 2014).   

 

3.1.1 First non-axisymmetric linear bifurcation mode (FNLB) 
For the range of geometries being considered, the FNLB mode is always the first buckling 

mode of the shell according to Table 3. Fig. 4 shows the initial post-buckling curves for a cylinder 

and cones with L/R1=2, R1/t=500, t=1 mm and different values of tapering angles. 

The imperfection sensitivity curve of cones and the comparison with the results for the 

cylinders obtained by Koiter (Hutchinson and Koiter 1970, Koiter 1970) and Yamaki (1984) are 

shown in Fig. 5. Accordingly, it can be concluded that the cone response to imperfection is similar 

to that of cylinders, so that the use of “equivalent cylinder” concept appears to be reasonable. In 

this concept, the design procedure for a cone or truncated cone is transformed into the buckling 

strength verification of an equivalent cylinder of length le and radius re, as has  confirmed  by  

many  researchers including Esslinger and Ciprian (1982), Pariatmono  and  Chryssanthopoulos 

(1995) for elastic and also Blachut (2011) for elasto-plastic behavior of conical shells under axial 

compression. 

In most of the cases, as seen in Fig. 4, the load-displacement curve reaches a peak value which 

can be selected as the failure state and chosen as the maximum load factor. In some cone 

geometries and imperfection amplitudes, there is no a distinct peak value to be chosen as the 

maximum load factor and identifying the failure in these cases needs more care. Three possible 

criteria of failure are introduced in ECCS guideline (Rotter and Schmidt 2008) (see sec. 8.1.1.17) 

as limit load, bifurcation point and the largest  tolerable  deformation. These conditions are used to 

find the correct values for load factors. 
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Fig. 4 Initial post-buckling curves of the imperfect cylinder and cones with various tapering angles and 

different relative amplitude of imperfections 
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Fig. 5 Imperfection sensitivity curves for imperfect cones with FNLB mode 

 

 

Fig. 6 Effect of tapering angle of the cone on imperfection sensitivity of cone analyzed using FNLB mode 

 

 

The effect of tapering angle on load bearing capacity of the cones with various values of 

imperfection amplitude is shown in Fig. 6. As can be seen, the tapering angle produces a negligible 

influence on the imperfection sensitivity. 
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Fig. 7 Initial post-buckling curves of the FALB imperfect cones with various tapering angles and 

different relative amplitude of imperfections 
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Fig. 8 Imperfection sensitivity curves for imperfect cones with FALB mode 

 

 

3.1.2 First axisymmetric linear bifurcation mode (FALB) 
According to Table 3, the first axisymmetric mode is used as initial imperfection on the shell. 

Fig. 7 shows the initial post-buckling curves for a cylinder and cones with L/R1=2, R1/t=500, t=1 

mm and various values of tapering angles. 

The imperfection sensitivity curve of cones and the comparison with the results for the 

cylinders obtained by Koiter (Hutchinson and Koiter 1970, Koiter 1970) and Yamaki (1984) are 

shown in Fig. 8.  

The effect of tapering angle on imperfection sensitivity of the cones with various values of 

imperfection amplitude is shown in Fig. 9. As can be seen, the tapering angle has negligible 

changes on the imperfection sensitivity. 

 
3.2 Weld depressions 
 

This weld (sinusoidal) imperfection was explored by Muggeridge and Tennyson (1969), who 

found that the critical imperfection wavelength varies with the imperfection amplitude. 

Imperfections in the form of linear bifurcation modes, nonlinear buckling modes and post-buckling 

deformed shapes are all idealized forms that are generally not encountered in real shell structures. 

Imperfections in real structures take different forms, the simplest and most easily recognizable of 

which is probably the axisymmetric weld depression (Rotter and Teng 1989). Teng and Rotter 

(1992) studied this form with a rigorous nonlinear analysis and found that the critical wavelength 

for amplitude equal to the thickness is 25% longer than the linear bending wave-length. Berry et 

al. (2000) measured the form of the weld imperfection in their fabricated specimens and found that 

the actual half-wavelength, with 90% confidence limits was given by 
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Effects of imperfection shapes on buckling of conical shells under compression 

 

Fig. 9 Effect of tapering angle of the cone on imperfection sensitivity of cone analyzed using FALB mode 

 

 

                                                                        (8) 

where λb is the linear elastic bending half-wavelength defined as 

   √          √                                                        (9) 

The shape of the typical weld depression and its effect on the buckling strength under uniform 

axial compression has been studied using both theoretical and experimental methods by many 

authors (Rotter and Teng 1989, Ding, Coleman et al. 1996, Berry, Rotter et al. 2000, Pircher, 

Berry et al. 2001). Rotter and Teng (1989) proposed two limiting cases for the geometry, based on 

linear shell bending theory: the weld was either rotationally stiff during shrinkage (Type A) or 

rotationally free during shrinkage (Type B). The expression for the Type A weld depression was 

formulated using the above assumption and elastic shell bending theory for a long cylinder, 

namely (Rotter and Teng 1989) 

    
 (

  

  
)
    

  

  
    

  

  
                                                (10) 

The Type A weld depression form is used in this study and the location of weld depression is 

assumed to be in the middle of the shell. Note that a weld depression imperfection could be placed 

in general anywhere throughout the meridian of conical shell. Under uniform compression for 

cylinders, the location is unimportant unless adjacent depressions cause interactions, or the weld is 

so close to an end boundary that the boundary conditions provide restraint, but in cones where a 

varying compressive stress field is involved, the location can strongly affect the strength (Rotter 

1996). Accordingly, to obtain any general conclusion, information concerning the effect of weld  
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Fig. 10 Initial post-buckling curves of the weld depression imperfect cones with various tapering 

angles and different relative amplitude of imperfections 
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Effects of imperfection shapes on buckling of conical shells under compression 

 

Fig. 11  Imperfection sensitivity curves for imperfect cones with WD mode 

 

 

Fig. 12 Effect of tapering angle of the cone on imperfection sensitivity of cone analyzed using WD mode 

 

 

depression location in conical shells should be further investigated. 
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t=1 mm and various values of tapering angles with weld depression imperfection. 
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cylinders obtained by Koiter (Hutchinson and Koiter 1970, Koiter 1970) and Yamaki (1984) are 

shown in Fig. 11.  

The effect of tapering angle on imperfection sensitivity of the cones with various values of 

imperfection amplitude is shown in Fig. 12. As can be seen, the effect of tapering angle is 

negligible for small angles and become more effective with increase of this value. 

 
3.3 Imperfection measurement 
 

Since the buckling strength is very sensitive to the amplitude and form of geometric 

imperfections, amplitude of imperfections must be controlled by tolerance measures as part of the 

design process. However, a major difficulty arises here, as it is not easy for the designer to predict 

the level of imperfections which may be found in the structure, or for the fabricator to control the 

magnitude and shape of the imperfections being produced. Most design rules have been developed 

on the basis of empirical lower bounds of experimental results. Standards that have adopted this 

approach include API 620 (Standard 1977), AWWA D100 (Association 1984), ECCS (Rotter and 

Schmidt 2008) and DIN 18800 (Norm 1990). An effort to correlate this lower bound with 

appropriate tolerance measurements was made in the ECCS (Rotter and Schmidt 2008) and DIN 

(Norm 1990) standards, although a quantitative basis of the match has been publishedn elsewhere 

(Teng and Rotter 2004). 

Inspired by the ECCS (Rotter and Schmidt 2008), to obtain the imperfection depth in conical 

shells, the following two measurements should be performed 

1- Due to meridional compressive stresses, measurements of the depth Δw0x should be made. 

These tolerance measurements are chiefly conceived in the context of the buckling wavelength 

of the perfect shell, which has a half wavelength in each direction of 2λcl or about 13.5 t . 

Since the value to be measured is not so precise, the normal measuring stick should have a 

length of 

     √                                                                 (11) 

to reflect the classical eigenmode as shown in Fig. 13(a). 

2- Additionally,  measurements  across  welds  of the  depth  Δw0w  should  be  made using the 

gauge length Lgw given by  

                                                                      (12) 

This measurement is additionally used across welds in view of the possibility of a local plastic 

failure if deep local deviations occur as shown in Fig. 13(b). 

The measured imperfections are made dimensionless as 

    
    

   
,       

    

   
                                                   (13) 

and the values of U0 are limited to fall below the tolerance U0,max. The gauges are devised so as to 

be related to the size of buckles that are expected to form under each of the different basic load 

cases. The length is chosen in the light of the sensitivity of buckling strengths to imperfections in 

the form of the lowest classical eigenmode. This may not be the most serious imperfection, but it is 

one of the most serious, so it provides a moderately good control (Rotter and Schmidt 2008). 

The value of the U0,max depends on the fabrication accuracy and three different fabrication  
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(a) Measurement on a meridian (b) Additional measurement across a weld 

 

Fig. 13 Measurement of depths w0 of initial dimples 

 
Table 4 Values for imperfection tolerance U0,max and quality parameter Q (Teng and Rotter 2004) 

Fabrication tolerance quality class Description Value of U0,max Q 

Class A Excellent 0.006 40 

Class B High 0.01 25 

Class C Normal 0.016 16 

 

 

quality classes are defined, as indicated in Table 4, allowing highly controlled fabrication to 

exploit the highest strength, but allowing less controlled construction to assume a lower buckling 

load. 

 
3.4 Hand Calculation rule to accounting for imperfection effects 
 

In the design of conical shells, following the ECCS (Rotter and Schmidt 2008) (see section 

10.2) and after adapting the equations to cones by using the lowest radius of curvature, the 

characteristic imperfection amplitude Δwx is  

    
 

 
√

  

 
                                                               (14) 

where Q is the meridional compression fabrication quality parameter reported in Table 4.  

 
 
4. Imperfection sensitivity of cones and implications to their buckling design 

 

In the light of the above, it is clear that different forms of imperfections have different effects, 
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so both the form and the amplitude must be considered to be used in design applications. To this 

end, the following two alternatives can be pursued 

1. Finding the „worst‟ imperfection pattern; 

2. Applying the theoretical lower bound strength that makes the design independent of the form 

and amplitude of imperfections 

 
4.1 The ‘worst’ imperfection pattern 
 

This approach seeks to identify the worst imperfection mode, and has the advantage that the 

search is formal and mathematical, so it is potentially achievable provided that the problem 

statement and failure criteria have sufficient generality. It has the great advantage that, potentially, 

it can be generalized for all shell forms and load cases, so problems can be studied for which no 

test data exist (as in most real design configurations) (Teng and Rotter 2004). 

The most widely used interpretation of this concept is that an imperfection in the form of the 

linear bifurcation (buckling) modes of the perfect shell is close to the worst form. Teng and Song 

(Teng and Song 2001) discussed about a number of issues that needs particular care in nonlinear 

finite element analysis of elastic shells with eigenmode (linear buckling mode) imperfections and 

tackled some recommendations about four different kinds of models. Deml and Wunderlich (1997) 

developed a fully nonlinear finite element method for the evaluation of the imperfection-sensitivity 

of elastic and elastic-plastic shells that directly gives the „worst‟ imperfection shape connected to 

the ultimate limit load.   

 
4.2 Theoretical lower bounds on strength 
 

In this approach, the goal is to find lower bounds on the strengths of the shell using the results 

obtained from theoretical analyses. Using this approach makes the design process free from 

concerns about the form and amplitude of the imperfections and the problems of tolerance 

measurement and control are greatly reduced. This approach was formerly used by Esslinger and 

Geier (1976), Croll and Ellinas (1985), Yamada and Croll (1999) for cylindrical shells, but to the 

authors‟ knowledge, it is not adopted for the conical shells yet. 

 
4.2.1 Finding the lower bound for conical shells 
Fig. 14 shows the imperfection sensitivity of the cone with all imperfection forms and tapering 

angles being considered. It can be seen that the weld depression (located in the middle of the 

cone), has the less effect on the buckling load and the lower bound of imperfection sensitivity of 

cones is approximately from FALB mode. The lower bound curve, based on the minimum values 

of load factors in any imperfection amplitude is also shown in Fig. 14. 

The characteristic imperfection is then used to find an empirical relationship for the elastic 

buckling strength (αx) dependency on relative imperfection amplitude (     ) that is in the form 

of  

   
    

             
                                                        (15) 

The above imperfection amplitude is also shown in Fig. 14. Using Eq. (15), the designers can 

be guaranteed that all types of imperfection shapes are considered in their designs. 
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Effects of imperfection shapes on buckling of conical shells under compression 

 

Fig. 14 Summary of imperfection sensitivity curves of cones for different types of imperfections 

 

 

Fig. 15 The measured imperfection values and the αx curve for FNLB and FALB types of imperfections 

 
 

4.3 Rescaling of amplitudes 
  

An important point of view about all above graphs is that the imperfection amplitudes are 

referred to the deviation from the nominal geometry. However, as described in section 3.3, when 

the imperfections are measured on-site, a ruler is used which has a certain length and the 
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amplitudes of imperfections are measured as the deviation from the ruler which is placed on the 

imperfect shell wall. This means that there is a difference between the mathematical amplitude of 

imperfection and that measured with the gauge. Since the function describing imperfection shape 

is known (see Table 3 for meridional wave numbers), the relation between imperfection amplitude 

measured with the ruler and that corresponding to deviation from nominal geometry can be 

obtained analytically. 

Fig. 15 shows the imperfection sensitivity curve and the elastic buckling strength for the cone, 

where the x axis is the measured imperfection amplitude obtained for FNLB and FALB 

imperfection forms. This figure ensures that the elastic buckling strength (αx) introduced in Eq. 15 

is a good relation between the elastic imperfection reduction and the measured imperfection 

amplitudes. 

 
 
5. Conclusions 

 

The imperfection sensitivity of conical shells under axial compression is thoroughly estimated 

for three different imperfection shapes through FE nonlinear analyses, having in mind the 

theoretical curves for the cylindrical counterparts. It is shown that there is little influence of the 

tapering angle of cone on the imperfection sensitivity and that imperfections of shape 

corresponding to the first axisymmetric bifurcation modes seem to be the most detrimental among 

the ones being investigated. All the imperfection curves for cones tend to stabilize as imperfection 

amplitude increases. This seems to occur when the imperfection bulge fully develops under 

loading along the length of the shell (this trend is particularly evident for weld depression).  Such 

stabilized imperfection sensitivity curves for cones appear to deviate from those of cylinders (and 

from the theoretical curves, related to cylinders of infinite length, due to Koiter and Yamaki), 

where this kind of saturation in the imperfection bulge under loading is less likely to occur (note 

that in cones the condition of infinite length can never be achieved as the slant length is governed 

by the       ratio and the tapering angle  ). On the basis of the whole set of results obtained from 

FE nonlinear analysis, a lower bound expression of the knock-down factor for cones, in a form 

compatible with current buckling design recommendations, is proposed. 
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