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Abstract.  In this article, a four-variable refined plate theory is presented for buckling analysis of 

functionally graded plates subjected to uniform, linear and non-linear temperature rises across the thickness 

direction. The theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero 

traction boundary conditions on the surfaces of the plate without using shear correction factor. Young’s 

modulus and Poisson ratio of the FGM plates are assumed to remain constant throughout the entire plate. 

However, the coefficient of thermal expansion of the FGM plate varies according to a power law form 

through the thickness coordinate. Equilibrium and stability equations are derived based on the present theory. 

The influences of many plate parameters on buckling temperature difference such ratio of thermal expansion, 

aspect ratio, side-to-thickness ratio and gradient index will be investigated. 
 

Keywords:  thermal properties; buckling; refined plate theory; functionally graded material; thermal 

expansion ratio; analytical modeling 

 
 
1. Introduction 
 

Functionally graded materials (FGMs) are a new class of composite structures that is of great 

interest for engineering design and manufacture. These kinds of materials possess desirable 

properties for specific applications, particularly for aircrafts, space vehicles, optical, 

biomechanical, electronic, chemical, mechanical, shipbuilding and other engineering structures 

under stress concentration, high thermal and residual stresses. In general, FGMs are both 

macroscopically and microscopically heterogeneous advanced composites which are made for 

example from a mixture of ceramics and metals with continuous composition gradation from pure 

ceramic on one surface to full metal on the other (Bouderba et al. 2013, Ould Larbi et al. 2013, 

Bousahla et al. 2014, Al-Basyouni et al. 2015, Belkorissat et al. 2015, Kar and Panda 2015, 
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Pradhan and Chakraverty 2015, Bennai et al. 2015, Ebrahimi and Dashti 2015, Larbi Chaht et al. 

2015, Bounouara et al. 2016, Ehyaei et al. 2016, Ahouel et al. 2016). This is achieved by 

gradually varying the volume fraction of the constituent materials. 

Due to the importance and wide engineering applications of FGMs, the static, vibrational, 

thermomechanical and buckling analyses of FGM plate have been addressed by many 

investigators.  
Javaheri and Eslami (2002) derived equilibrium equations of a rectangular FGP under thermal 

loads based on higher order theory. Na and Kim (2004) investigated the three dimensional 

thermomechanical buckling of an FGP composed of ceramic, FGM, and metal layers. The thermal 

buckling behaviors of FGM composite structures due to FGM thickness ratios, volume fraction 

distributions, and system geometric parameters were analyzed. Praveen and Reddy (1998) 

investigated the response of functionally graded ceramic-metal plate, using finite element method. 

Reddy (2000) presented solutions for rectangular functionally graded plates based on the third-

order shear deformation plate theory. Najafizadeh and Eslami (2002) predicted the buckling 

analysis of clamped and simply supported circular FGM plate using classical plate theory (CPT). 

Latifi et al. (2013) studied the effect of various boundary conditions, using Fourier series 

expansion, on the buckling of thin rectangular functionally graded plates subjected to proportional 

biaxial compressive loadings based on classical plate theory. Yaghoobi and Yaghoobi (2013) 

proposed an analytical investigation on the buckling analysis of symmetric sandwich plates with 

FG face sheets resting on an elastic foundation based on the first-order shear deformation plate 

theory and subjected to mechanical, thermal and thermo-mechanical loads. Shen (2002) presented 

nonlinear bending analysis for a simply supported functionally graded rectangular plate subjected 

to a transverse uniform or sinusoidal load and in thermal environments based on Reddy’s higher-

order shear deformation plate theory. Matsunaga (2009) presented a higher order deformation 

theory for thermal buckling of FGPs. By using the method of power series expansion of 

displacement components, a set of fundamental equations of rectangular FGPs was derived. Akil 

(2014) presented a higher order theory for the buckling and post buckling behavior of sandwich 

beams having FG faces. Ait Amar Meziane et al. (2014) proposed an efficient and simple refined 

theory to investigate the buckling and free vibration responses of exponentially graded sandwich 

plates under various boundary conditions. Bouazza et al. (2016) presented an analytical solution to 

obtain the critical buckling temperature of cross-ply laminated plates with simply supported edge 

by using a refined hyperbolic shear deformation theory. Abdelhak et al. (2016) studied the 

buckling response of FG sandwich plates using a refined shear deformation theory. Abdelhak et al. 

(2015) presented a simple n-order four variable refined theory for buckling analysis of FG plates. 

Houari et al. (2013) developed a new higher-order shear and normal deformation theory for the 

thermo-elastic bending analysis of FGM sandwich plates. The same theory was used by Bessaim 

et al. (2013) for the static and free vibration analysis of FGM sandwich plates. Saidi et al. (2013) 

used the new hyperbolic shear deformation theory in which the stretching effect is included to 

investigate the thermo-mechanical bending response of FGM sandwich plates. Again, Kettaf et al. 

(2013) studied the thermal buckling behavior of FGM sandwich plates using the same model. 

Lanhe (2004) investigated the thermal buckling analysis of moderately thick functionally graded 

plates. Based on the Mindlin’s plate theory, he obtained the critical buckling load for a simply 

supported rectangular plate subjected to two types of thermal loading, uniform temperature rise 

and gradient through the thickness. Shariat and Eslami (2005) studied the buckling analysis of 

thick functionally graded rectangular plates under different kinds of mechanical and thermal loads. 

They used third order shear deformation plate theory to obtain the closed form solution for the 
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critical buckling loads of a simply supported rectangular plate. They reported that the plate under 

temperature variation across the plate thickness buckle at higher temperature in comparison with 

the uniform temperature rise and in the case of mechanical loads, the critical buckling mode varies 

with respect to the load ratio and/or the aspect ratio. Using a new four-variable refined plate 

theory, Bourada et al. (2012) investigated the thermal buckling response of sandwich FGM plates. 

Tounsi et al. (2013) presented a refined trigonometric shear deformable plate theory for 

thermoelastic bending of FGM sandwich plates. Bachir Bouiadjra et al. (2013) analysed the 

nonlinear thermal buckling behavior of FGM plates using an efficient sinusoidal shear deformation 

theory. Bachir Bouiadjra et al. (2012) studied the thermal buckling of FG plates based on the 

refined plate theory. Hadji et al. (2014) proposed a higher order shear deformation theory for static 

and free vibration of FG beam. Zidi et al. (2014) studied the bending response of FG plates under 

hygro-thermo-mechanical loading using a four variable refined plate theory. Hamidi et al. (2015) 

presented a sinusoidal plate theory with 5-unknowns and stretching effect for thermo-mechanical 

bending of FG sandwich plates. Belabed et al. (2014) presented an efficient and simple higher 

order shear and normal deformation theory for FG plates. Mahi et al. (2015) developed a new 

hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, 

functionally graded, sandwich and laminated composite plates. Ait Atmane et al. (2015) presented 

a computational shear displacement model for vibrational analysis of FG beams with porosities. 

Ait Yahia et al. (2015) discussed the wave propagation in FG plates with porosities using various 

higher-order shear deformation plate theories. Also, Akbaş (2015) studied the wave propagation of 

a FG beam in thermal environments. Arefi (2015) given an elastic solution of a curved beam made 

of FGMs with different cross sections. Attia et al. (2015) examined the free vibration analysis of 

FG plates with temperature-dependent properties using various four variable refined plate theories. 

Bakora and Tounsi (2015) investigated the thermo-mechanical post-buckling behavior of thick FG 

plates resting on elastic foundations. Tebboune et al. (2015) investigated the thermal buckling 

analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric 

shear deformation theory. Bellifa et al. (2016) presented the bending and free vibration analysis of 

FG plates using a simple shear deformation theory and the concept the neutral surface position. 

Bennoun et al. (2016) proposed a novel five variable refined plate theory for vibration analysis of 

FG sandwich plates. Bourada et al. (2015) developed a novel simple shear and normal 

deformations theory for FG beams. Bouderba et al. (2016) investigated the thermal stability of FG 

sandwich plates using a simple shear deformation theory. Chikh et al. (2016) analyzed the thermo-

mechanical post-buckling of symmetric S-FGM plates resting on Pasternak elastic foundations 

using hyperbolic shear deformation theory. El-Hassar et al. (2016) studied the thermal stability 

analysis of solar FG plates on elastic foundation using an efficient hyperbolic shear deformation 

theory. Tounsi et al. (2016) proposed for the first time a new 3-unknowns non-polynomial plate 

theory for buckling and vibration of FG sandwich plate. 

 The present article develops the thermal buckling of a new class of functionally graded 

rectangular plates. The FG plate is assumed to have constant Young’s modulus and Poisson’s 

ratio; however, the coefficients of thermal expansion of the FGM plates is assumed to vary 

continuously through the thickness, according to a simple power law distribution of the volume 

fraction of the constituents. Hence, the novelty of this work is to investigate for the first time the 

thermal buckling of plate with functionally graded coefficient of thermal expansion and keeping 

the other mechanical properties such as Young’s modulus and Poisson’s ratio  constant. The 

theory presented is variationally consistent, does not require shear correction factor, and gives rise 

to transverse shear stress variation such that the transverse shear stresses vary parabolically across  
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Fig. 1 Geometry of the FGM plate having constant Young’s modulus and Poisson’s ratio but 

functionally graded coefficient of thermal expansion 

 

 

the thickness satisfying shear stress free surface conditions. Unlike any other theory, the number of 

unknown functions involved is only four, as against five in case of other shear deformation 

theories. The thermal loads are assumed as uniform, linear and non-linear temperature rises across 

the thickness direction. Illustrative examples are given so as to demonstrate the efficacies of the 

present model. The effects of various variables, such as thickness and aspect ratios, gradient index, 

loading on the critical buckling temperature difference are all discussed. 

 

 

2. Problem formulation 
 

Consider a rectangular plate made of FGMs of thickness h, length a, and width b made by 

mixing two distinct materials (metal and ceramic) is studied here. The coordinates x, y are along 

the in-plane directions and z is along the thickness direction (Fig. 1). 

The properties of FGM vary continuously due to gradually changing the volume fraction of the 

constituent materials, usually in the thickness direction only. Power-law function is commonly 

used to describe these variations of materials properties. However, the material properties of the 

FGM plate are assumed as follows. The Young’s modulus and Poisson’s ratio are assumed to be 

constant and the coefficient of thermal expansion of the FGM plate is assumed to vary 

continuously through the thickness as. 

     
k

ULL zVz )()(    (1a) 

     LUUL    (1b) 

     

k

h

z
zV 












2

1
)(  (2) 

αL 
and αU are the coefficient of thermal expansion at the bottom and the top of the FG plate, 

respectively. k is the material parameter. 
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Unlike the other shear deformation theory, just four unknowns functions are needed in the 

proposed hyperbolic shear deformation theory.  

 

2.1 Basic assumptions 
 

Assumptions of the present theory are as follows (Benachour et al. 2011, Nedri et al. 2014, 

Draiche et al. 2014, Nguyen et al. 2015, Sallai et al. 2015, Bouchafa et al. 2015, Hadji et al. 2015, 

Meradjah et al. 2015, Ould Youcef et al. 2015, Boukhari et al. 2016, Barati et al. 2016): 

(i) The displacements are small in comparison with the plate thickness and, therefore, strains 

involved are infinitesimal. 

(ii) The transverse displacement w includes two components of bending wb, and shear ws. These 

components are functions of coordinates x, y only. 

      ),(),(),,( yxwyxwzyxw sb   (3) 

 (iii) The transverse normal stress σz is negligible in comparison with in-plane stresses σx and σy. 

(iv) The displacements u in x-direction and v in y-direction consist of extension, bending, and 

shear components. 

          sb uuuu  0 ,   sb vvvv  0  (4) 

The bending components ub and vb are assumed to be similar to the displacements given by the 

classical plate theory. Therefore, the expression for ub and vb can be given as 

        x

w
zu b

b



 ,   

y

w
zv b

b



  (5) 

The shear components us and vs give rise, in conjunction with ws, to the parabolic variations of 

shear strains γxz, γyz and hence to shear stresses τxz, τyz through the thickness of the plate in such a 

way that shear stresses τxz, τyz are zero at the top and bottom faces of the plate. Consequently, the 

expression for us and vs can be given as 

           x

w
zfu s

s



 )( ,   

y

w
zfv s

s



 )(  (6) 

where f(z)
 
is given by (Hebali et al. 2014) 
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2.2 Kinematics 
 

Based on the assumptions made in the preceding section, the displacement field can be 

obtained using Eqs. (3)-(7) as 

       

),(),(),,(

)(),(),,(

)(),(),,(

0

0

yxwyxwzyxw

y

w
zf

y

w
zyxvzyxv

x

w
zf

x

w
zyxuzyxu

sb

sb

sb





















  (8a) 
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(8c) 

The non-linear von Karman strain-displacement equations are as follows 
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2.3 Constitutive relations 
 

The plate is subjected to a thermal load T(x,y,z). The linear constitutive relations are 
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where ( x , y , xy , yz , yx ) and ( x , y , xy , yz , yx ) are the stress and strain components, 
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respectively. The stiffness coefficients, Qij, are expressed by 
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2.4 Stability equations 
 

The total potential energy of the FG plate may be written as 
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The principle of virtual work for the present problem may be expressed as follows 
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Using Eq. (11) in Eq. (15), the stress resultants of the FG plate can be related to the total strains 

by 
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where Aij, Dij, etc., are the plate stiffness, defined by 
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and 
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The stress and moment resultants, 
T

y

T

x NN  , 
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loading are defined by 
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(19) 

The stability equations of the plate may be derived by the adjacent equilibrium criterion. 

Assume that the equilibrium state of the FG plate under thermal loads is defined in terms of the 
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displacement components ( 0

0u , 0

0v , 0

bw , 0

sw ). The displacement components of a neighboring 

stable state differ by ( 1

0u , 1

0v , 1

bw , 1

sw ) with respect to the equilibrium position. Thus, the total 

displacements of a neighboring state are  
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(20) 

where the superscript 1 refers to the state of stability and the superscript 0 refers to the state of 

equilibrium conditions. 

Substituting Eqs. (9) and (20) into Eq. (14) and integrating by parts and then equating the 

coefficients of 1

0 u , 1

0 v , 1 bw  and 1 sw  to zero, separately, the governing stability equations 

are obtained for the shear deformation plate theories as 
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with  
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where the terms 0

xN  and 
0

yN  are the pre-buckling force resultants obtained as 
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The stability equations in terms of the displacement components may be obtained by 

substituting Eq. (16) into Eq. (21). Resulting equations are four stability equations based on the 

present refined shear deformation theory for FG plates.  
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2.5 Trigonometric solution to thermal buckling 
 

Rectangular plates are generally classified in accordance with the type of support used. We are 

here concerned with the exact solution of Eq. (21) for a simply supported FGM plate. The 

following boundary conditions are imposed for the present refined shear deformation theory at the 

side edges 
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The following approximate solution is seen to satisfy both the differential equation and the 

boundary conditions 
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(26) 

where 
1

mnU , 
1

mnV , 
1

bmnW , and 
1

smnW  are arbitrary parameters to be determined and am /   and 

bn /  . Substituting Eq. (26) into Eq. (24), one obtains 
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and [K] is the symmetric matrix given by 
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By applying the static condensation approach to eliminate the coefficients associated with the 

in-plane displacements, Eq. (27) can be rewritten as 
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Eq. (31) represents a pair of two matrix equations 

    0  212111  KK                                                         (33a) 

    0 222112  KK
T

                                                       (33b) 

Solving Eq. (33a) for Δ
1
 and then substituting the result into Eq. (33b), the following equation 

is obtained 
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For nontrivial solution, the determinant of the coefficient matrix in Eq. (34) must be zero. This 

gives the following expression for the thermal buckling load  
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2.5.1 Buckling of FG plates under uniform temperature rise 
The plate initial temperature is assumed to be Ti. The temperature is uniformly raised to a final 

value Tf in which the plate buckles. The temperature change is ΔT=Tf−Ti. Using this distribution of 

temperature, the critical buckling temperature change ΔTcr becomes b5 using Eqs. (22) and (36) 
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2.5.2 Buckling of FG plates under linear temperature rise 
For FG plates, the temperature change is not uniform. The temperature is assumed to be varied 

linearly through the thickness as follows 
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(38) 

where the buckling temperature difference ΔT=TC−TM 
and TC and TM are the temperature of the top 

surface which is ceramic-rich and the bottom surface which is metal-rich, respectively. 

Similar to the previous loading case, the critical buckling temperature difference ΔTcr can be 
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determined as  
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2.5.3 Buckling of FG plates subjected to graded temperature change across the 
thickness 

We assume that the temperature of the top surface is TM and the temperature varies from TM, 

according to the power law variation through-the-thickness, to the bottom surface temperature TM 

in which the plate buckles. In this case, the temperature through-the-thickness is given by 
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where the buckling temperature difference ΔT=TC−TM and γ is the temperature exponent (0<γ<∞). 

Note that the value of γ equal to unity represents a linear temperature change across the thickness. 

While the value of γ excluding unity represents a non-linear temperature change through-the-

thickness. 

Similar to the previous loading case, the critical buckling temperature change ΔTcr becomes by 

using Eqs. (23) and (36) 
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3. Results and discussion 
 

3.1 Comparative studies 
 

In order to prove the validity of the present hyperbolic shear deformation theory, results were 

obtained for isotropic plates (k=0) and compared with the existing ones in the literature. 

The material properties used in the present study are: 

Ceramic EU=380 GPa , αU=7.410
-6

/C
 

Metal EL=70 Gpa, αL=2310
-6

/C. 
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Table 1 Critical buckling temperature change Tcr of FGM plate under uniform temperature rise for different 

values of aspect ratio a / b. (k=0) (a=100 h) 

Theory a/b=1 2 3 4 5 

SPT 17.0894 42.6876 85.2554 144.6500 220.6729 

HPT 17.0894 42.6875 85.2551 144.6490 220.6706 

FPT 17.0894 42.6875 85.2551 144.6489 220.6704 

CPT 17.0991 42.7477 85.4955 145.3424 222.2883 

present 17.0894 42.6876 85.2553 144.6496 220.6721 

 
Table 2 Critical buckling temperature change Tcr of FGM plate under linear temperature rise for different 

values of aspect ratio a / b. (k=0) (a=100 h) 

Theory a/b=1 2 3 4 5 

SPT 24.1789 75.3753 160.5109 279.3000 431.3459 

HPT 24.1789 75.3751 160.5102 279.2980 431.3412 

FPT 24.1789 75.3751 160.5102 279.2979 431.3409 

CPT 24.1982 75.4955 160.9910 280.6848 434.5767 

present 24.1789 75.3752 160.5107 279.2993 431.3442 

 

 

The correlation between the present four variable plate theory and different higher-order (HPT 

and SPT) and first-order shear deformation theories (FPT) and classical plate theory (CPT) is 

illustrated in Tables 1 and 2. Theses tables give the effects of aspect ratio a/b on critical buckling 

temperature change Tcr of isotropic plate under uniform and linear temperature rise across 

thickness respectively.  

From the results presented in Tables 1 and 2, it is observed that results have a good agreement. 

In considering the results presented in Tables 1 to 2, it should be noted that the quantity of 

unknown variables in the present formulation is four, whereas the number unknown function in 

HPT, SPT and FPT is five. It can be concluded that the present theory is not only accurate but also 

comparatively simple and quite elegant in predicting the thermal buckling response of FGM plates. 

 

3.2 Parametric investigations 
 

In this parametric study, the general approach outlined in the previous sections for thermal 

buckling of FGM plates has been illustrated through numerical examples. For this, we consider a 

FGM plate with the following properties:  

The Poisson’s ratio and Young’s modulus are taken as v=0,3 and E=205, 8 GPa, respectively. 

The coefficient of thermal expansion at the bottom (z=-h/2) of the FGM plate is αL=10
-5

/°C and 

that at the top of the plate varies according to the ratio αU / αL, whereas the coefficient of thermal 

expansion of the FGM plate is assumed to vary continuously through the thickness (Yen-Ling C 

and Hao-Xuan C 2008). 

Fig. 2 shows the variation of the critical buckling temperature difference tcr of FG plate (k=2 

and a=10h) versus the aspect ratio a/b under uniform, linear and non linear temperature rise across 

the thickness for different values of αU / αL ratio. 

It is noted from these figures that the critical buckling temperature increases with the increase 

of the aspect ratio a/b and this report for the three thermal loading. In addition, the highest critical  
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(e) 

Fig. 2 Critical buckling temperature difference tcr due to uniform, linear and non-linear temperature rise 

across the thickness versus the aspect ratio a/b for different values of αU / αL ratio (k=2) (a) αU / αL=1, (b) 

αU / αL=2, (c) αU / αL=5, (d)
 
αU / αL=10, (e)

 
αU / αL=50 
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Fig. 3 Critical buckling temperature difference tcr due to uniform temperature rise across the 

thickness versus the aspect ratio a/b for different values of αU / αL ratio (k=2) 

 

 

buckling temperature values are obtained for the case of a non-linear thermal loading. 

Fig. 3 depict the critical buckling temperature difference tcr due to uniform temperature rise 

across the thickness versus the aspect ratio a /b for different values of αU / αL ratio. It is seen from 

this figure that the critical buckling temperature decreases with the increase of the αU / αL ratio. In 

other words, the FG plates with coefficients of thermal expansion of the upper and lower faces 

close are such that provide the highest critical buckling temperature. In addition, when the ratio of 

thermal expansion αU / αL is close to 50, the critical buckling temperature difference becomes 

insensitive to the aspect ratio a /b. 
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Fig. 4.Critical buckling temperature difference tcr due to uniform, linear and non-linear temperature 

rise across the thickness versus the side-to thickness ratio a /h for different values of αU / αL ratio (k=2) 
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Fig. 4 Continued 

 

 

The effect of the side-to-thickness ratio on the critical buckling temperature difference tcr of FG 

square plate (k = 2) is shown in Figs. 4 and 5 for different values of αU / αL ratio. It can be seen that 

the increase of side to thickness ratio a / h leads to a decrease of the critical buckling temperature 

difference of the FG plate. In addition, these results reveal that the variation of the critical buckling 

temperature difference tcr is very sensitive to the variation of the αU / αL ratio for values less or 

equal to 10. Moreover, when this ratio takes higher values, the critical buckling temperature 

difference becomes insensitive to the side to thickness ratio a / h. 

Fig. 6 demonstrates the critical buckling temperature difference tcr versus the material graded 

index k for linear temperature rise. From this figure we can see that for all cases of αU / αL ratio, the 

critical temperature difference demonstrates an increasing trend with increasing gradient index. It 

can be seen that the critical buckling temperature difference changes very slowly. 

The critical buckling temperature difference tcr versus the aspect ratio a/b of FG plates under 

various thermal loading types is exhibited in Fig. 7. It can be seen from these figures that,  
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Fig. 5 Critical buckling temperature difference tcr due to uniform temperature rise across the 

thickness versus the side-to thickness ratio a/h for different values of αU / αL ratio (k=2) 
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Fig. 6 Critical buckling temperature difference tcr due to linear temperature rise across the 

thickness versus the power law index k (a=10h, a=b) 

 

 

regardless of the loading type and αU / αL ratio, the critical buckling temperature difference tcr 

increases as the aspect ratio a/b increases. It is also observed that the tcr increases with the increase 

of the non-linearity parameter γ. 
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Fig. 7 Critical buckling temperature difference tcr due to uniform, linear and non-linear temperature rise 

across the thickness versus the aspect ratio a/b and for different values of the non-linearity parameter γ. 

(k=2 and a/h=10) (a) αU / αL=1, (b) αU / αL=5, (c) αU / αL=10 

 

 

4. Conclusions 
 

In the present study, thermal buckling behavior of functionally graded plates subjected to 

uniform, linear and non-linear temperature rises across the thickness direction has been 

investigated. The FG plate is assumed to have constant Young’s modulus and Poisson’s ratio; but, 

the coefficients of thermal expansion of the FGM plates is assumed to vary continuously through 

the thickness, according to a simple power law distribution of the volume fraction of the 

constituents. A refined plate theory is successfully developed. The theory accounts for a quadratic 

variation of the transverse shear strains across the thickness, and satisfies the zero traction 

boundary conditions on the top and bottom surfaces of the plate without using shear correction 

factors. 

The accuracy of the present theory is ascertained by comparing it with other higher-order shear 

deformation theories where an excellent agreement was observed in all cases. Furthermore, the 
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influences of plate parameters such as coefficients of thermal expansion ratio, power law index, 

aspect ratio, the side to thickness ratio and thermal loading types on the critical buckling 

temperature difference of FG plate have been comprehensively investigated. 
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