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Abstract.  In this article, a four-variable refined plate theory is presented for buckling analysis of
functionally graded plates subjected to uniform, linear and non-linear temperature rises across the thickness
direction. The theory accounts for parabolic distribution of the transverse shear strains, and satisfies the zero
traction boundary conditions on the surfaces of the plate without using shear correction factor. Young’s
modulus and Poisson ratio of the FGM plates are assumed to remain constant throughout the entire plate.
However, the coefficient of thermal expansion of the FGM plate varies according to a power law form
through the thickness coordinate. Equilibrium and stability equations are derived based on the present theory.
The influences of many plate parameters on buckling temperature difference such ratio of thermal expansion,
aspect ratio, side-to-thickness ratio and gradient index will be investigated.

Keywords: thermal properties; buckling; refined plate theory; functionally graded material; thermal
expansion ratio; analytical modeling

1. Introduction

Functionally graded materials (FGMSs) are a new class of composite structures that is of great
interest for engineering design and manufacture. These kinds of materials possess desirable
properties for specific applications, particularly for aircrafts, space vehicles, optical,
biomechanical, electronic, chemical, mechanical, shipbuilding and other engineering structures
under stress concentration, high thermal and residual stresses. In general, FGMs are both
macroscopically and microscopically heterogeneous advanced composites which are made for
example from a mixture of ceramics and metals with continuous composition gradation from pure
ceramic on one surface to full metal on the other (Bouderba et al. 2013, Ould Larbi et al. 2013,
Bousahla et al. 2014, Al-Basyouni et al. 2015, Belkorissat et al. 2015, Kar and Panda 2015,
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Pradhan and Chakraverty 2015, Bennai et al. 2015, Ebrahimi and Dashti 2015, Larbi Chaht et al.
2015, Bounouara et al. 2016, Ehyaei et al. 2016, Ahouel et al. 2016). This is achieved by
gradually varying the volume fraction of the constituent materials.

Due to the importance and wide engineering applications of FGMs, the static, vibrational,
thermomechanical and buckling analyses of FGM plate have been addressed by many
investigators.

Javaheri and Eslami (2002) derived equilibrium equations of a rectangular FGP under thermal
loads based on higher order theory. Na and Kim (2004) investigated the three dimensional
thermomechanical buckling of an FGP composed of ceramic, FGM, and metal layers. The thermal
buckling behaviors of FGM composite structures due to FGM thickness ratios, volume fraction
distributions, and system geometric parameters were analyzed. Praveen and Reddy (1998)
investigated the response of functionally graded ceramic-metal plate, using finite element method.
Reddy (2000) presented solutions for rectangular functionally graded plates based on the third-
order shear deformation plate theory. Najafizadeh and Eslami (2002) predicted the buckling
analysis of clamped and simply supported circular FGM plate using classical plate theory (CPT).
Latifi et al. (2013) studied the effect of various boundary conditions, using Fourier series
expansion, on the buckling of thin rectangular functionally graded plates subjected to proportional
biaxial compressive loadings based on classical plate theory. Yaghoobi and Yaghoobi (2013)
proposed an analytical investigation on the buckling analysis of symmetric sandwich plates with
FG face sheets resting on an elastic foundation based on the first-order shear deformation plate
theory and subjected to mechanical, thermal and thermo-mechanical loads. Shen (2002) presented
nonlinear bending analysis for a simply supported functionally graded rectangular plate subjected
to a transverse uniform or sinusoidal load and in thermal environments based on Reddy’s higher-
order shear deformation plate theory. Matsunaga (2009) presented a higher order deformation
theory for thermal buckling of FGPs. By using the method of power series expansion of
displacement components, a set of fundamental equations of rectangular FGPs was derived. Akil
(2014) presented a higher order theory for the buckling and post buckling behavior of sandwich
beams having FG faces. Ait Amar Meziane et al. (2014) proposed an efficient and simple refined
theory to investigate the buckling and free vibration responses of exponentially graded sandwich
plates under various boundary conditions. Bouazza et al. (2016) presented an analytical solution to
obtain the critical buckling temperature of cross-ply laminated plates with simply supported edge
by using a refined hyperbolic shear deformation theory. Abdelhak et al. (2016) studied the
buckling response of FG sandwich plates using a refined shear deformation theory. Abdelhak et al.
(2015) presented a simple n-order four variable refined theory for buckling analysis of FG plates.
Houari et al. (2013) developed a new higher-order shear and normal deformation theory for the
thermo-elastic bending analysis of FGM sandwich plates. The same theory was used by Bessaim
et al. (2013) for the static and free vibration analysis of FGM sandwich plates. Saidi et al. (2013)
used the new hyperbolic shear deformation theory in which the stretching effect is included to
investigate the thermo-mechanical bending response of FGM sandwich plates. Again, Kettaf et al.
(2013) studied the thermal buckling behavior of FGM sandwich plates using the same model.
Lanhe (2004) investigated the thermal buckling analysis of moderately thick functionally graded
plates. Based on the Mindlin’s plate theory, he obtained the critical buckling load for a simply
supported rectangular plate subjected to two types of thermal loading, uniform temperature rise
and gradient through the thickness. Shariat and Eslami (2005) studied the buckling analysis of
thick functionally graded rectangular plates under different kinds of mechanical and thermal loads.
They used third order shear deformation plate theory to obtain the closed form solution for the
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critical buckling loads of a simply supported rectangular plate. They reported that the plate under
temperature variation across the plate thickness buckle at higher temperature in comparison with
the uniform temperature rise and in the case of mechanical loads, the critical buckling mode varies
with respect to the load ratio and/or the aspect ratio. Using a new four-variable refined plate
theory, Bourada et al. (2012) investigated the thermal buckling response of sandwich FGM plates.
Tounsi et al. (2013) presented a refined trigonometric shear deformable plate theory for
thermoelastic bending of FGM sandwich plates. Bachir Bouiadjra et al. (2013) analysed the
nonlinear thermal buckling behavior of FGM plates using an efficient sinusoidal shear deformation
theory. Bachir Bouiadjra et al. (2012) studied the thermal buckling of FG plates based on the
refined plate theory. Hadji et al. (2014) proposed a higher order shear deformation theory for static
and free vibration of FG beam. Zidi et al. (2014) studied the bending response of FG plates under
hygro-thermo-mechanical loading using a four variable refined plate theory. Hamidi et al. (2015)
presented a sinusoidal plate theory with 5-unknowns and stretching effect for thermo-mechanical
bending of FG sandwich plates. Belabed et al. (2014) presented an efficient and simple higher
order shear and normal deformation theory for FG plates. Mahi et al. (2015) developed a new
hyperbolic shear deformation theory for bending and free vibration analysis of isotropic,
functionally graded, sandwich and laminated composite plates. Ait Atmane et al. (2015) presented
a computational shear displacement model for vibrational analysis of FG beams with porosities.
Ait Yahia et al. (2015) discussed the wave propagation in FG plates with porosities using various
higher-order shear deformation plate theories. Also, Akbas (2015) studied the wave propagation of
a FG beam in thermal environments. Arefi (2015) given an elastic solution of a curved beam made
of FGMs with different cross sections. Attia et al. (2015) examined the free vibration analysis of
FG plates with temperature-dependent properties using various four variable refined plate theories.
Bakora and Tounsi (2015) investigated the thermo-mechanical post-buckling behavior of thick FG
plates resting on elastic foundations. Tebboune et al. (2015) investigated the thermal buckling
analysis of FG plates resting on elastic foundation based on an efficient and simple trigonometric
shear deformation theory. Bellifa et al. (2016) presented the bending and free vibration analysis of
FG plates using a simple shear deformation theory and the concept the neutral surface position.
Bennoun et al. (2016) proposed a novel five variable refined plate theory for vibration analysis of
FG sandwich plates. Bourada et al. (2015) developed a novel simple shear and normal
deformations theory for FG beams. Bouderba et al. (2016) investigated the thermal stability of FG
sandwich plates using a simple shear deformation theory. Chikh et al. (2016) analyzed the thermo-
mechanical post-buckling of symmetric S-FGM plates resting on Pasternak elastic foundations
using hyperbolic shear deformation theory. El-Hassar et al. (2016) studied the thermal stability
analysis of solar FG plates on elastic foundation using an efficient hyperbolic shear deformation
theory. Tounsi et al. (2016) proposed for the first time a new 3-unknowns non-polynomial plate
theory for buckling and vibration of FG sandwich plate.

The present article develops the thermal buckling of a new class of functionally graded
rectangular plates. The FG plate is assumed to have constant Young’s modulus and Poisson’s
ratio; however, the coefficients of thermal expansion of the FGM plates is assumed to vary
continuously through the thickness, according to a simple power law distribution of the volume
fraction of the constituents. Hence, the novelty of this work is to investigate for the first time the
thermal buckling of plate with functionally graded coefficient of thermal expansion and keeping
the other mechanical properties such as Young’s modulus and Poisson’s ratio constant. The
theory presented is variationally consistent, does not require shear correction factor, and gives rise
to transverse shear stress variation such that the transverse shear stresses vary parabolically across
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Fig. 1 Geometry of the FGM plate having constant Young’s modulus and Poisson’s ratio but
functionally graded coefficient of thermal expansion

the thickness satisfying shear stress free surface conditions. Unlike any other theory, the number of
unknown functions involved is only four, as against five in case of other shear deformation
theories. The thermal loads are assumed as uniform, linear and non-linear temperature rises across
the thickness direction. Illustrative examples are given so as to demonstrate the efficacies of the
present model. The effects of various variables, such as thickness and aspect ratios, gradient index,
loading on the critical buckling temperature difference are all discussed.

2. Problem formulation

Consider a rectangular plate made of FGMs of thickness h, length a, and width b made by
mixing two distinct materials (metal and ceramic) is studied here. The coordinates X, y are along
the in-plane directions and z is along the thickness direction (Fig. 1).

The properties of FGM vary continuously due to gradually changing the volume fraction of the
constituent materials, usually in the thickness direction only. Power-law function is commonly
used to describe these variations of materials properties. However, the material properties of the
FGM plate are assumed as follows. The Young’s modulus and Poisson’s ratio are assumed to be
constant and the coefficient of thermal expansion of the FGM plate is assumed to vary
continuously through the thickness as.

a(z)=a +ayV (Z)k (1a)
Ay =ay — (1b)

z 1)
V(2) =(h+2j @)

oL and ay are the coefficient of thermal expansion at the bottom and the top of the FG plate,
respectively. k is the material parameter.
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Unlike the other shear deformation theory, just four unknowns functions are needed in the
proposed hyperbolic shear deformation theory.

2.1 Basic assumptions

Assumptions of the present theory are as follows (Benachour et al. 2011, Nedri et al. 2014,
Draiche et al. 2014, Nguyen et al. 2015, Sallai et al. 2015, Bouchafa et al. 2015, Hadji et al. 2015,
Meradjah et al. 2015, Ould Youcef et al. 2015, Boukhari et al. 2016, Barati et al. 2016):

(i) The displacements are small in comparison with the plate thickness and, therefore, strains

involved are infinitesimal.

(ii) The transverse displacement w includes two components of bending w;,, and shear w;. These

components are functions of coordinates x, y only.

W(X, Y, Z) = W, (X, ¥) + W (X, ) ®3)

(iif) The transverse normal stress o, is negligible in comparison with in-plane stresses o, and ay.
(iv) The displacements u in x-direction and v in y-direction consist of extension, bending, and
shear components.

U=u,+U, +Ug, V=V,+V,+V 4)

The bending components u, and v, are assumed to be similar to the displacements given by the
classical plate theory. Therefore, the expression for u, and v, can be given as
U, =~z My V, =12 W, (5)
b ox b oy
The shear components us and v give rise, in conjunction with ws, to the parabolic variations of
shear strains y,,, 7, and hence to shear stresses z,, 7, through the thickness of the plate in such a
way that shear stresses zy,, 7,, are zero at the top and bottom faces of the plate. Consequently, the
expression for us and v, can be given as

ow, oW,
u=—f(@2)—, v,=-f :
: (2) ' (z) (6)
where f(z) is given by (Hebali et al. 2014)
(h/ 7)sinh (” zj— z
h ()

f(2) =

[cosh(z/2)-1]

2.2 Kinematics

Based on the assumptions made in the preceding section, the displacement field can be
obtained using Egs. (3)-(7) as
8\NS
OX

U(x,y.2) = Uy (x,y)— 2 2 £ (2) (8a)
OX
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ow, ow,
V(X Y,2) =V, (X, y)—z2—2— f(2) — (8b)
i oy oy
W(X, Y,2) =W, (X, Y) + W, (X, Y) (8c)
The non-linear von Karman strain-displacement equations are as follows
e | e ks ky ;
g, b=18" Lezd kP L+ F(2){ kS 1, {“}:g(z){yf} ©)
0 kb ks ]/XZ 7)(2
7/><y 7/><y Xy Xy
where
2
%+1(%+%j ow,
0 ox 2 ox  0Ox kP x>
&y 2 X 2
; v, 1[awb awSJ Ko lo) o,
gy = —+ = —+ P Ky =y T
: o 20y o o oy
Twl o, oy, (awb aWSJ o, ow, vl 00w,
— 4+ —+ + +
oy ox \ox  oax \oy oy OXoy
_o%w,
k: 82x2 S oW,
ks _ _8 WS , {yyz}: ay (108.)
o oy’ Vi) | OWs
v, o°w, OX
oxoy
and
df (2)
7)=1-—=" 1
9(2) ™ (10b)
2.3 Constitutive relations
The plate is subjected to a thermal load T(x,y,z). The linear constitutive relations are
Oy Q. Q, 0 [lg—aT and 7| Q. O Vv
o,1=1Qu Qp 0 & —al 1o (11)
sz Q55 7/zx
3 0 O QGG yxy

Xy

where (o,, o, 7, 7,,, T,) and (&,, &,, 7., ¥y,» 7 ) @re the stress and strain components,
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respectively. The stiffness coefficients, Qj;, are expressed by

E
Qu=0Q,= 1-,2° (12a)
vE
Q12 = 1_p2" (12b)
Qu = Qs =Qu =
55 — 66 (1+V) (12c)
2.4 Stability equations
The total potential energy of the FG plate may be written as
= —”j g, —aT)+o ( T)+ TV T Ty T Tul ]dzdydx, (13)
The principle of virtual work for the present problem may be expressed as follows
[[IN,G 2+ NS 8+ N 575+ MISKE + MESKE + MBS KY, + MSk: ”
MK +MESKS +S5,8 75, +S58 % Jdxdy =0
where
NX’ NY’ NXY h/2 1
ME M M= [ (0,007, 0 2 tdz, (15a)
S S S -h/2
M;, M, M, f(2)
h/2
(SXZ’S ) J‘( xz’ yz )g(z)dz (15b)

-h/2

Using Eq. (11) in Eq. (15), the stress resultants of the FG plate can be related to the total strains
by

N A 0 B¢ NT
MPt=| 0 D D°[kPi—qM°T}, S=A%y (16)
MS BS DS HS kS MST

where

N={N,N,NJ', MP={M2 Mo ME Mo = (M me, M | (17a)
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NT ={NT,NT.0f, M* ={M", M 0f, M ={MS M of (17b)
e=lelegnf K =lkeke L ke =k kg (7o)
Ay A, 0 D, D, 0
A=A, A, 0|, D=|D, Dy 0 (17d)
0 0 A 0 0 Dy
B, B, 0 D, D, O Hy, Hp O
B°=/B, B;,, 0| D°=/D, Dy 0| H'=/Hj H; 0 (17e)
0 0 Bg 0 0 Dg 0 0 Hg
s s It t S Aj‘l 0
S:{SYZ’SXZ}’ y:{j/yliyxz}’ A =|:O A55i| (17f)
5

where Aj;, Dj;, etc., are the plate stiffness, defined by

A, D, B D Hj|l I 1
As Dy By Dh Hi= Q7% f@.2f@) @) v ez (18a)
s s s -V
Aee D66 Bee Dee Hee *% T
and
(A221 D,,,B;,,Ds,, stz): (Aw D.;. B, Dy, Hlsl) (18b)
h
4 E(Z) 2
A=A = 2)|"dz ,
us = P J.2(1+V)[g( )] (18c)

N

The stress and moment resultants, N = N;, MPT = M;’T, and M7 = MjT due to thermal
loading are defined by

T h

lO2E(z
ME: =J;£a(z)T z dz, (19)
M f(2)

The stability equations of the plate may be derived by the adjacent equilibrium criterion.
Assume that the equilibrium state of the FG plate under thermal loads is defined in terms of the
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displacement components (ug, Vo, Wf)’, Wf). The displacement components of a neighboring

stable state differ by (ug, vy, Wy, W.) with respect to the equilibrium position. Thus, the total
displacements of a neighboring state are

Uy =UJ +Ug, Vo =Vg +Vg, W, =W, +W,, W, =W +W. (20)

where the superscript 1 refers to the state of stability and the superscript O refers to the state of
equilibrium conditions.
Substituting Egs. (9) and (20) into Eqg. (14) and integrating by parts and then equating the

coefficients of Su}, vy, Sw, and & ! to zero, separately, the governing stability equations
are obtained for the shear deformation plate theories as

oN, 0N,

=0
OX oy
1 1
ON,, N ON; 0o
OX oy 1)
2 bl aZM bl aZM bl o
8M2X +2 T+ —1+N=0
OX Oxoy oy
2 sl aZM sl aZM sl s1 as sl o
aMZX +2 T+ — + B, Z+N=0
OX oxoy oy OX oy
with
— az(wl+wl) 62(W1+W1)
0 s 0 S
N =N, —abxz +N, —abyz (22)
where the terms N? and N;’ are the pre-buckling force resultants obtained as
h
ta(2)E()T
N3=N§=—j%£)dz, (23)

N |

The stability equations in terms of the displacement components may be obtained by
substituting Eq. (16) into Eq. (21). Resulting equations are four stability equations based on the
present refined shear deformation theory for FG plates.

2 1 2 2 1 3,1 3,1
o°u o°W, 0°W,
A:Ll Aee (Al Aee/ 8y -By 8X3S _(Blsz 2866)a Xoy’ =0 (24a)

0%V, o%v, , 0w, s s\ o'W,
(A12 + Aee/ Aee + A, oy2 - By oy _(Blz + 2B )% =0 (24b)
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4,1 4 4 4,1
_Dlla—vzb_z(D12+2D66) aZWéz _Dzza Dlsla b
X ox2oy oy’ ox*
it 4 1 - (24c)
2(bg,+205, )2 ps, 2 N =0
ox2oy’® oy*
s O°UD (o o’u; . .\ O, s Oy L 0wy . .\ 0w
Bll ox° (Blz ZBee)aXay (Blz 2566)a 5’y Bzz 3)/ D11 ox* _2(D12+2D66)8X278;;2 (24d)
4,01 4 4 2,11 2,1
_py, 2% TR Y (FERAP IR R OW, s OW ASSaW A 0% N0
oy ox ax*oy* oy* oy*

2.5 Trigonometric solution to thermal buckling

Rectangular plates are generally classified in accordance with the type of support used. We are
here concerned with the exact solution of Eq. (21) for a simply supported FGM plate. The
following boundary conditions are imposed for the present refined shear deformation theory at the
side edges

1
1 1 1 OW,

Vo=Wp=W.=—==N!=M"=M"=0at x=0, a, (25a)
oy
ow ;

U; =W, =W, = > =N;=M'=M=0at y=0, b. (25h)

The following approximate solution is seen to satisfy both the differential equation and the
boundary conditions

up UL cos(A x)sin( u y)
1 1 H
v, 2 & |V, Sin( A x) cos(u y)
w [~ ZZ sin( A x)sin( (26)
b m=1 n=1 bmn H y)
! 2 sin( 2 x)sin( 4 y)
where U> . V> W, and W are arbitrary parameters to be determined and A =mz/a and
4 =nzx/b. Substituting Eq. (26) into Eq. (24), one obtains

[KJa}=o0, 27)
where {A} denotes the column

{A} = {U Vl Wblmn’Wer-nn }t (28)

mn? “mn?
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and [K] is the symmetric matrix given by
[K]= , (29)

in which
a; = _(Aulz + Aeeluz)
& :_/I,U(Alz +A66)
a,=0
a, =4 [Blsl/lz +(By, +2Bg) 1]

Ay = _(Aee/iz + A22,u2)
ay;=0 (30)

a,, = u[(B;, +2B) A* + B, %]
8y, = —(DyyA' +2(Dy, + 2Dy) 2 4” + Dyppi + NSA + N2
85, = (DA +2(D5, +2D3) A% 2 + D3, p* +NOA +N°4?)
8, = —(H3A +2(HS, +2HE) P p? + Hu' + N A% + Aoy p? + N2 N2 )

By applying the static condensation approach to eliminate the coefficients associated with the
in-plane displacements, Eq. (27) can be rewritten as

) -

R bl 10 PN SO S 29

alZ a22 24 a34 a44

1 U;m 2 blmn
M=y A= (32b)

Eq. (31) represents a pair of two matrix equations

KA+ K2 |A% =0 (33a)

where

[ke] A+ [K2]a2 =0 (33b)

Solving Eq. (33a) for A* and then substituting the result into Eq. (33b), the following equation
is obtained
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[RZZJAZIO 34)
where
[R”]=[K”]—[K“T[K“HK“FF“ 53“} (352)
ass3 b44
and

ds3 = Ay, Az =3dy,

- b b
asi =a,,, b,=a,-a, é‘au é
b, =a,,a,, - a122’ b1 =y,8y, — a8y, bz = a8y, —a,dy, (35b)

For nontrivial solution, the determinant of the coefficient matrix in Eq. (34) must be zero. This
gives the following expression for the thermal buckling load

2
0 _ 1 aa3b44 —dy,

N?=N
' TN+ u agt+ay, 28,

(36)

2.5.1 Buckling of FG plates under uniform temperature rise

The plate initial temperature is assumed to be T;. The temperature is uniformly raised to a final
value T; in which the plate buckles. The temperature change is AT=T¢T;. Using this distribution of
temperature, the critical buckling temperature change AT, becomes b5 using Egs. (22) and (36)

2
AT — 1 a33b44 a’34 (373)

i ﬁl(/lz +,U2) g3 +8,, — 28y,

where

h/2
El —_ wdzl (37h)
1-v

-h/2

2.5.2 Buckling of FG plates under linear temperature rise
For FG plates, the temperature change is not uniform. The temperature is assumed to be varied
linearly through the thickness as follows

T@)=aT| v t]eT 38
(2)= FJFE + Ty, (38)

where the buckling temperature difference AT=Tc—Ty and T¢ and Ty, are the temperature of the top
surface which is ceramic-rich and the bottom surface which is metal-rich, respectively.
Similar to the previous loading case, the critical buckling temperature difference AT, can be
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determined as

T = 8gshy, —ag, + Ty /81(12 + ﬂzxass T8y — 2334)

A cr - 2 2 (39a)
Bo(X +u”)ag; +a,, —2a,,)
where
— "Ca()E(x)(z 1
=— | 2| -+=0d 39b
P ﬁ"/z 1-v (h+2j : (390)

2.5.3 Buckling of FG plates subjected to graded temperature change across the
thickness

We assume that the temperature of the top surface is Ty and the temperature varies from Ty,
according to the power law variation through-the-thickness, to the bottom surface temperature Ty,
in which the plate buckles. In this case, the temperature through-the-thickness is given by

T(2) =AT(%+%) T, (40)

where the buckling temperature difference AT=T¢—Ty and y is the temperature exponent (0<y<co).
Note that the value of y equal to unity represents a linear temperature change across the thickness.
While the value of y excluding unity represents a non-linear temperature change through-the-
thickness.

Similar to the previous loading case, the critical buckling temperature change AT, becomes by
using Egs. (23) and (36)

AT = a33b44 B 8.324 +TM ﬂl(/lz + /Uz Xaas +a,, — 2a34) (41a)

i Es (}b2 + ﬂz)(ass +a,, —23y,)

where

a(z )E(2) (5+ 1jydz (41b)

Es:_J. 1-v h 2

-h/2

3. Results and discussion
3.1 Comparative studies

In order to prove the validity of the present hyperbolic shear deformation theory, results were
obtained for isotropic plates (k=0) and compared with the existing ones in the literature.
The material properties used in the present study are:

Ceramic E,=380 GPa , 0,=7.410°/C

Metal E,=70 Gpa, 0,=2310°/C.
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Table 1 Critical buckling temperature change T, of FGM plate under uniform temperature rise for different
values of aspect ratio a / b. (k=0) (a=100 h)

Theory a/b=1 2 3 4 5
SPT 17.0894 42.6876 85.2554 144.6500 220.6729
HPT 17.0894 42.6875 85.2551 144.6490 220.6706
FPT 17.0894 42.6875 85.2551 144.6489 220.6704
CPT 17.0991 42,7477 85.4955 145.3424 222.2883

present 17.0894 42.6876 85.2553 144.6496 220.6721

Table 2 Critical buckling temperature change T, of FGM plate under linear temperature rise for different
values of aspect ratio a / b. (k=0) (a=100 h)

Theory a/b=1 2 3 4 5
SPT 24.1789 75.3753 160.5109 279.3000 431.3459
HPT 24.1789 75.3751 160.5102 279.2980 431.3412
FPT 24.1789 75.3751 160.5102 279.2979 431.3409
CPT 24,1982 75.4955 160.9910 280.6848 434.5767

present 24.1789 75.3752 160.5107 279.2993 431.3442

The correlation between the present four variable plate theory and different higher-order (HPT
and SPT) and first-order shear deformation theories (FPT) and classical plate theory (CPT) is
illustrated in Tables 1 and 2. Theses tables give the effects of aspect ratio a/b on critical buckling
temperature change T, of isotropic plate under uniform and linear temperature rise across
thickness respectively.

From the results presented in Tables 1 and 2, it is observed that results have a good agreement.
In considering the results presented in Tables 1 to 2, it should be noted that the quantity of
unknown variables in the present formulation is four, whereas the number unknown function in
HPT, SPT and FPT is five. It can be concluded that the present theory is not only accurate but also
comparatively simple and quite elegant in predicting the thermal buckling response of FGM plates.

3.2 Parametric investigations

In this parametric study, the general approach outlined in the previous sections for thermal
buckling of FGM plates has been illustrated through numerical examples. For this, we consider a
FGM plate with the following properties:

The Poisson’s ratio and Young’s modulus are taken as v=0,3 and E=205, 8 GPa, respectively.
The coefficient of thermal expansion at the bottom (z=-h/2) of the FGM plate is a,=10"/°C and
that at the top of the plate varies according to the ratio ay/ oy, whereas the coefficient of thermal
expansion of the FGM plate is assumed to vary continuously through the thickness (Yen-Ling C
and Hao-Xuan C 2008).

Fig. 2 shows the variation of the critical buckling temperature difference t, of FG plate (k=2
and a=10h) versus the aspect ratio a/b under uniform, linear and non linear temperature rise across
the thickness for different values of ay/ o, ratio.

It is noted from these figures that the critical buckling temperature increases with the increase
of the aspect ratio a/b and this report for the three thermal loading. In addition, the highest critical
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Fig. 2 Critical buckling temperature difference t., due to uniform, linear and non-linear temperature rise
across the thickness versus the aspect ratio a/b for different values of ay/ a, ratio (k=2) (a) ay/ o =1, (b)
Otul o=2, (C) Otul o =5, (d) Otul o, =10, (E) Otul o, =50



328

/o=l
mem i oo =2

Uniform temperature rise

Abdelmoumen Anis Bousahla, Samir Benyoucef, Abdelouahed Tounsi and S.R. Mahmoud

Fig. 3 Critical buckling temperature difference t., due to uniform temperature rise across the
thickness versus the aspect ratio a/b for different values of ay / o ratio (k=2)

buckling temperature values are obtained for the case of a non-linear thermal loading.

Fig. 3 depict the critical buckling temperature difference t., due to uniform temperature rise
across the thickness versus the aspect ratio a /b for different values of ay/ o ratio. It is seen from
this figure that the critical buckling temperature decreases with the increase of the ay/ oy ratio. In
other words, the FG plates with coefficients of thermal expansion of the upper and lower faces
close are such that provide the highest critical buckling temperature. In addition, when the ratio of
thermal expansion ay / o is close to 50, the critical buckling temperature difference becomes

insensitive to the aspect ratio a /b.
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Fig. 4.Critical buckling temperature difference t., due to uniform, linear and non-linear temperature
rise across the thickness versus the side-to thickness ratio a /h for different values of ay/ o ratio (k=2)
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Fig. 4 Continued

The effect of the side-to-thickness ratio on the critical buckling temperature difference t., of FG
square plate (k = 2) is shown in Figs. 4 and 5 for different values of ay/ ay ratio. It can be seen that
the increase of side to thickness ratio a / h leads to a decrease of the critical buckling temperature
difference of the FG plate. In addition, these results reveal that the variation of the critical buckling
temperature difference t., is very sensitive to the variation of the ay/ oy ratio for values less or
equal to 10. Moreover, when this ratio takes higher values, the critical buckling temperature
difference becomes insensitive to the side to thickness ratio a / h.

Fig. 6 demonstrates the critical buckling temperature difference t., versus the material graded
index k for linear temperature rise. From this figure we can see that for all cases of ay/ «, ratio, the
critical temperature difference demonstrates an increasing trend with increasing gradient index. It
can be seen that the critical buckling temperature difference changes very slowly.

The critical buckling temperature difference t.. versus the aspect ratio a/b of FG plates under
various thermal loading types is exhibited in Fig. 7. It can be seen from these figures that,
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Fig. 5 Critical buckling temperature difference t, due to uniform temperature rise across the
thickness versus the side-to thickness ratio a/h for different values of ay/ oy ratio (k=2)
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Fig. 6 Critical buckling temperature difference t,. due to linear temperature rise across the
thickness versus the power law index k (a=10h, a=b)

regardless of the loading type and ay / oy ratio, the critical buckling temperature difference t,
increases as the aspect ratio a/b increases. It is also observed that the t, increases with the increase
of the non-linearity parameter y.
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4. Conclusions

In the present study, thermal buckling behavior of functionally graded plates subjected to
uniform, linear and non-linear temperature rises across the thickness direction has been
investigated. The FG plate is assumed to have constant Young’s modulus and Poisson’s ratio; but,
the coefficients of thermal expansion of the FGM plates is assumed to vary continuously through
the thickness, according to a simple power law distribution of the volume fraction of the
constituents. A refined plate theory is successfully developed. The theory accounts for a quadratic
variation of the transverse shear strains across the thickness, and satisfies the zero traction
boundary conditions on the top and bottom surfaces of the plate without using shear correction
factors.

The accuracy of the present theory is ascertained by comparing it with other higher-order shear
deformation theories where an excellent agreement was observed in all cases. Furthermore, the
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influences of plate parameters such as coefficients of thermal expansion ratio, power law index,
aspect ratio, the side to thickness ratio and thermal loading types on the critical buckling
temperature difference of FG plate have been comprehensively investigated.
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