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Abstract. This paper deals with a special class of inverse problems in discrete structural plasticity
involving the identification of elastic limits and hardening moduli on the basis of information on
displacements. The governing equations lead naturally to a special and challenging optimization
problem known as a Mathematical Program with Equilibrium Constraints (MPEC), a key feature of
which is the orthogonality of two sign-constrained vectors or so-called “complementarity’ condition.
We investigate numerically the application of two simple algorithms, both based on the use of the
general purpose nonlinear programming code CONOPT accessed via the GAMS modeling language,
for solving the suitably reformulated problem. Application is illustrated by means of two numerical
examples.

Key words: complementarity; elastoplasticity; inverse problems; mathematical programming; struc-
tural identification.

1. Introduction

The area of nonsmooth mechanics has become, as a result of vigorous research over the
last decade or so (see e.g., Duvaut and Lions 1976, Panagiotopoulos 1985, Moreau et al.
1988, Moreau and Panagiotopoulos 1988, and the numerous references contained therein), an
important and well-established branch of mechanics in its own right. A distinguishing feature
of problems in the area is the fact that the state as a function of the design or control variable
is not everywhere differentiable. In most instances, this is caused by the presence of
variational inequalities or, equivalently, complementarity tonditions.

The work presented in this paper focuses on one such nonsmooth mechanics problem. It
concerns a particular class of structural identification problems for which, in its simplest form,
it is required to identify the material yield limits and/or hardening parameters presuming the
availability of some measured information on the displacement response to a known loading
condition. The primary motivation for studying this problem is that the underlying
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methodology appears to be an elegant and computationally viable approach for identifying
key fracture parameters for quasibrittle materials - a subject of current, intense research
interest. For instance, recent work by Bolzon et al (1997) and Bolzon and Maier (1998)
describe the formulation related to the identification of the fracture parameters associated with
the cohesive crack model.

The generic problem in point was in fact introduced in the early 80s by Maier (Maier 1981,
Maier et al. 1982, Nappi 1982) with reference to simple discretized bar structures that, in fact,
characterize all essential features of the fracture identification problem. We similarly consider
this formally simpler, albeit conceptually almost identical, class of conventional discretized
elastoplastic structures.

The organization of this paper is as follows. In the next section, we review the state or
analysis problem assuming, without undue loss of generality, piecewise linearized holonomic
(reversible or nonlinear elastic) plasticity. In essence, the displacement response is sought for
a structure of known material properties. As is well-known (Maier 1970), the governing
relations lead to a Linear Complementarity Problem (LCP) which involves, as a key
mathematical structure, the orthogonality of two sign-constrained vectors. The inverse
problem is considered next in Section 3. Briefly, we are now given the displacement response
and we wish to obtain some important material properties, in particular both yield limits and
hardening parameters in the present case. It is shown that this identification problem can be
formulated naturally as a special optimization problem involving the minimization of some
error function subject to complementarity and other constraints. This problem falls under the
general class of problems commonly known as Mathematical Programs with Equilibrium
Constraints, MPECs for short (Luo ef al. 1996). In Section 4, we present two simple
algorithms, both based on the use of a standard nonlinear programming code, for its
numerical solution. The first algorithm adopts the classical penalty approach in which the
complementarity term, treated as part of the objective function, is driven to zero by means of
an associated penalty parameter. The second replaces the complementarity conditions by a
nonsmooth equation that is parametrically modified to generate differentiable constraints
suitable for the nonlinear code. The parameter is iteratively updated until a complementary
solution is found. Both algorithms are implemented via the modeling language GAMS
(Brooke et al. 1992). Application of these algorithms is illustrated in Section 5 using two
examples, the first concerning an 11-bar truss (Nappi 1982) and the second a hypothetical
structural identification problem concerning an elastoplastic beam on elastoplastic foundation
(Maier et al. 1982). We conclude with some brief remarks and recommendations for future
work in Section 6.

2. The state or analysis problem

Consider a suitably space-discretized structural system. Under a holonomy assumption,
which is reasonable in view of the assumed proportionally applied loads, we formulate the
single step analysis problem simply by collecting and manipulating the relations describing
the three key ingredients of the structural behavior: statics, kinematics and constitutive laws.
We further assume a small deformation theory, inviscid behavior, and adopt piecewise
linearized yield surfaces. The well-known (Maier 1970) governing relations for the whole
structure are
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F=C'Q 1)
q=Cu 2
q=€+p 3)
Q=S¢ 4)
p=NA4 ©)
¢=NTQ —HA-R <0, 120, ¢TA=0 (6)

As is typical, vector and matrix quantities represent the unassembled contributions of
corresponding elemental entities as concatenated vectors and block diagonal matrices,
respectively. For a structure with d degrees of freedom, m member generalized quantities and
y yield functions, equilibrium between the nodal loads F & R and the natural generalized
stresses Q € R” is expressed by (1) through the compatibility matrix C & R™*“. Eq. (2)
represents linear compatibility of strains g & R” with the nodal displacements u & R“
Relations (3)-(6) embody the holonomic constitutive laws: additivity of elastic £& R"™ and
plastic p & R™ strains in (3); linear elasticity in (4), where S& ®™"" is an elastic matrix of
unassembled positive definite element stiffnesses; plastic strains p defined in (5) by an
associated flow rule and expressed as functions of the plastic multipliers A & R’ through the
constant matrix of outward normals NER ™™ to the yield surface; piecewise linear yield
functions ¢(Q, A): R"”—R” in (6) which accommodate, through H& R’ a class of
hardening models with known yield limits R € R’ and finally, a complementarity relationship
in (6) between the sign-constrained quantities ¢ and A. The latter condition implies that plastic
flow can only occur (A>0) when the yield surface is activated (¢=0), and that there are no
plastic strains (A=0) when the state is elastic (¢<0). We also restrict ourselves to the
practically significant case when no hardening interaction is present, namely H is a diagonal
matrix with all off-diagonal terms equal to zero.

For further details of the above framework and its specific application to finite element
formulation in generalized variables, we refer the interested reader to the numerous works of
the Milan group, e.g., Corradi (1978, 1983), Comi et al. (1992).

A popular approach (Maier 1970) is to simplify relation set (1)-(6) by expressing the
problem in A variables only. This leads to a conventional LCP which, for hardening matrices
H, can be solved by Lemke's algorithm (Cottle et al. 1992) to give a unique solution.

In our work, the modeling is carried out through the powerful GAMS (an acronym for
General Algebraic Modeling System) language (Brooke et al. 1992) and we therefore prefer
to leave the formulation in Q, u, A variables. Without entering into details of the well-known
advantages provided by modeling languages, it suffices to mention that GAMS is a high-level
modeling language especially designed to facilitate construction, solution and maintenance of
large and complicated mathematical programming models. It additionally provides simplicity
and compactness of model construction, a variety of tested industry standard mathematical
programming solvers, and important capabilities such as an internal efficient sparse data
representation and automatic differentiation. In our computational testing we adopted the
mixed complementarity solver PATH (Dirkse and Ferris 1995) for generating pseudo-
experimental data from the solution of a state problem, and the nonlinear programming solver
CONOPT (Drud 1994) for the identification problem.

After some obvious substitutions, the state problem then becomes
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F=C'Q )
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where, as is standard, we use nonnegative vectors in the complementarity condition (9).

3. The identification problem

The inverse problem we wish to investigate will now be briefly described. It is assumed
that some displacements u,, & R* are known (measured) deterministic quantities, whereas the
vector of yield limits R and the diagonal hardening matrix H are unknown, except possibly
for an a priori grouping due to knowledge that certain structural members are identical.

If we now denote by u, & R* the subset of displacement values corresponding to u,, that
would be obtained from the structural model for the same loading, then a natural measure of
the discrepancy (or error) o between the measured and the theoretical displacements is
provided by a suitable norm of the difference between u, and u. The identification problem
obviously requires the global minimum of ® subject to (7)-(9), any prior knowledge that
certain members are identical, and any known bounds on R and H. When measurements are
perfect, w=0 so that it is possible to determine if a global optimum (albeit not necessarily
leading to a unique set of desired parameters) has been reached.

In their seminal work, Maier et al. (1982) considered the case of unknown R only and
proposed essentially an enumerative scheme in their attempt to obtain a global minimum.
Nappi (1982) later extended that work to unknown H as well, however, under the assumption
of perfect measurements. This latter assumption enabled a simple solution scheme to be
adopted, namely minimization, using a nonlinear programming solver, of the sum of error and
complementarity terms. Recent work by Jiang et al. (1997) demonstrated the viability of
using a piecewise sequential quadratic programming approach for the unknown R only case.

For simplicity, assume that only one test to measure displacements is carried out and only
one load level is applied; extension to the case of multiple tests and several load levels is
straightforward (see Maier et al. 1982 for details). The identification problem can then be
formally stated as the following constrained optimization problem:

min ®= ||u» —Bu || (10)
subject to:
F=C'Q (11
Q =SCu —SNA (12)
w=~N"Q +diag(B,h)A+Byr 20, A=0, wTA=0 (13)
h<h<h,, rsr<n (14)

where u=Bu, H=diag(B,h), R=Bsr, with the (n;+n,) unknown parameters to be identified
collected in the vectors A€ R™ and r& R, B, R, B,& R, B,& R are
obvious selective Boolean matrices. The lower (subscript /) and upper (subscript u) bounds on
h and r are given in (14); these are typically estimable from the particular application.
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Optimization problem (10)-(14) is a special case of the so-called Mathematical Program
with Equilibrium Constraints or MPEC (Luo et al. 1996) for which the variables to be
identified do not appear in the objective function, and the equilibrium system takes the form
of a complementarity condition. We reformulate problem (10)-(14) in the next section and
describe two simple algorithms for solving it.

4. Solution algorithms

The most prominent feature of an MPEC, and one that distinguishes it from a standard
nonlinear program, is the presence of complementarity constraints such as (13). These
constraints classify this class of mathematical programs as a nonlinear disjunctive (or
piecewise) program and therefore carries with it a “combinatorial curse”. This makes it very
difficult to solve; the various methods proposed to date (see Luo et al. 1996) are categorized
by the way the complementarity condition is handled.

In the following, we describe two intuitive reformulations of (10)-(14) as standard nonlinear
programs. A primary motivation for this treatment is to exploit the availability of
sophisticated nonlinear programming solvers such as CONOPT (Drud 1994), especially via
the GAMS modeling language. This is in spite of the fact that traditional constraint
qualifications are never satisfied, with the implication that the usual numerical methods for
solving nonlinear programming problems may be expected to have some difficulties in their
solution. We must note, however, that most practical problems in nonsmoooth mechanics (and
we believe the present identification problem as well) do not have a large number of points
which are nondifferentiable. It is therefore likely that standard algorithms, possibly with
modest modifications, may work. Further, whilst there is no guarantee that the solution
obtained represents a local minimum to MPEC (10)-(14), we wish to investigate numerically
if our simple algorithms can provide reasonable solutions in practice.

We now briefly describe the two algorithms. At variance with Maier et al. (1982) and
Nappi (1982), we adopt an /; norm instead of the square of the Euclidean norm for the error.
Theoretical justification for a slight modification of this approach can be found in
Mangasarian and Pang (1997).

4.1. Algorithm 1: penalty approach
The basic idea underlying the penalty approach for solving MPEC (10)-(14) consists in

choosing a penalty parameter p, and converting the MPEC into the following nonlinear
programming problem:

min e’ e, + pwT A (15)
subject to:
F=C'Q (16)
Q =SCu —SN A 17)
w=-N"Q +diag(Bh)A+B,r 20, 120 (18)

h<h<h,, rn<r<n (19)
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—Uerr SUm — B\ Sterr, Uerr 20 (20)

where e is an appropriate size vector of ones and u,,& R* measures the absolute difference
between recorded and calculated measurements.

The simple algorithm solves the penalized problem for successively higher values of p to
force the complementarity term, which is nonnegative at feasible points, to zero. The
attraction of this method is that each penalty subproblem is a standard nonlinear program and
general purpose codes such as CONOPT can be used. The following pseudo-code further
clarifies the algorithm:

Set: initial p (e.g., 10 *), maximum number of iterations (maxiter), and w'A=100.
for i=1 to maxiter

if wA<10"° exit

solve nonlinear program (15)-(20)

p=10p
end

We also provide in the Appendix a short GAMS model, based on the penalty approach,
that implements Dempe's MPEC example (refer Luo et al. 1996, page 354). The GAMS
modeling language used should be clear, even to someone who as never seen such models
before. Paucity of space precludes us from listing more sophisticated, albeit realistic, models.

4.2. Algorithm 2: parametric approach

This second algorithm reformulates the MPEC via a smoothing approach on the
complementarity constraints. This reformulation is similar to that described in Facchinei et al.
(1996). The conditions (13) are replaced by the n equations

0= 0. A =,(wi. 4) @1)

The function ¢, has the property that ¢,(a, b)=0 if and only if >0, b>0, ab=y, and hence
can be used to replace the complementarity constraints by an equation. There are many such
functions in the literature; in this paper we use the following smoothing of the Fischer
function originally proposed in Kanzow (1996):

dfa, by=a+b —Na2+b*+2u (22)

A key advantage of using u>0 is that the resulting Eq. (21) is differentiable and hence a
standard nonlinear programming solver can be used. However, to satisfy the conditions (13)
we must parametrically decrease u(i) to zero, each decrement making the equations more ill
conditioned. Thus our reformulation is

min e7 e, (23)

subject to:
F=C"Q (24)
Q =SCu -SNA (25)

w =—N"Q +diag (B;h)A+Byr 20, A20, @u(w, A)=0 (26)
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h<h<h,, r<r<rn (27)
~Uerr SUm — Bt Sterr, Uerr 20 (28)

In essence, we now try to satisfy complementarity by decreasing the parameter u(i) in (26)
in a controlled manner through a series of major iterations, each of which corresponds to
solving the nonlinear program given above. Although the nonnegativity constraints are not
required in (26) we found them to be advantageous in practice. The key fact in the procedure
is that the previous solution can be used to start the next iteration. The following pseudo-code
elucidates this procedure:

Set: initial i (e.g., 1), maximum number of iterations (maxiter), and w'A=100.
for i=1 to maxiter

if wA<10 ° exit

solve nonlinear program (23)-(28)

u@i+1)=0.1 u(i)
end

The initial value of u and its decrease for each major iteration is of course problem
dependent. Obviously, too small a decrease will lead to slow convergence but possibly to. a
better optimum. Furthermore, there are difficulties associated with choosing an initial value
either too large (in which case there may be no solution of the nonlinear program) or too
small (which leads to a much more ill conditioned initial nonlinear program).

5. Numerical examples

We present two examples in this section to illustrate application of the algorithms. Both
examples have been used in the literature (Maier et al. 1982, Nappi 1982) to illustrate the
parameter identification problem. The models are too small for us to report in detail on
computational times; all runs were carried out on a Pentium Pro 200. In any case, we were
primarily interested in the robustness and predictive accuracy of the algorithms, rather than on
their efficiencies. A criterion of <10 ° was adopted for complementarity.

5.1. Example 1

This example concerns the 11-bar truss (Nappi 1982) shown in Fig. 1. Assumed properties
(kN, cm units) for generating the pseudo-experimental data with GAMS/PATH are: vertical
and horizontal bars —S$=900, r=309, h=90; diagonals —S$=400, r=180, h=40. Further, each
bar has the same properties in tension and compression, and hardening is of the
noninteractive type (leading to a diagonal hardening matrix).

As in Nappi (1982), four load cases were used in the identification process as follows:

Case A: [500, - 600, 0, — 500, 0, 0, 0, 0]
Case B: [500, — 600, 0, —500, 0, - 550, 0, 0]
Case C: [500, —500, 0, —500, 0, 0, 0, 0]
Case D: [600, — 600, 0, — 600, 0, 0, 0, 0]

The same starting point was adopted for all runs, viz. r=10, =10, w=1, A=1, Q=1, u.=u,,

u,=0.1.
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Fig. 1 Example 1: eleven bar truss

Table 1 summarizes the results obtained with both Algorithms 1 and 2; the times indicated
are total GAMS/CONOPT times. These results indicate the comparable performance of both
algorithms for this specific example. In particular, both algorithms find global solutions of the
MPEC and identify the same parameters correctly. Algorithm 1 is somewhat faster than
Algorithm 2. The accuracy of the identified parameters are to be expected in view of their
“identifiability”, which is only possible if the appropriate modes are “active”. In particular,
we expect that: (a) for load case A, with members {3, 4}, {8, 10, 11} activated, it is likely
that both vertical/horizontal and diagonal parameters will be identified; (b) for load case B,
with members {3}, {8, 9, 10, 11} activated, it is likely that only diagonal parameters will be
identified; (c) for load case C, with members {3}, {8, 11} activated, diagonal parameters may
be identified; and (d) for load case D, with members {1, 2, 3, 4}, {8, 10, 11} activated, it is
likely that both vertical/horizontal and diagonal parameters can be identified. The results
obtained confirm these predictions.

Table 1 Computational results for Example 1

Ié(:lzg Algorithm Vert. / Horl}zl. - Diagonal - Tter i 25‘22:) o
Exact - 309 90 180 40 - - -
A 1 309.0 90.0 180.0 40.0 1 0.14 0
A 2 309.0 90.0 180.0 40.0 8 1.34 0
B 1 279.9 96.1 180.0 40.0 1 0.17 0
B 2 500.0 49.9 180.0 40.0 8 1.06 0
C 1 307.7 90.5 180.0 40.0 1 0.11 0
C 2 500.0 249 180.0 40.0 8 1.31 0
D 1 309.0 90.0 180.0 40.0 1 0.38 0
D 2 309.0 90.0 180.0 40.0 8 1.12 0




Nonlinear programming approach for a class of inverse problems in elastoplasticity 865

6.39a 6.39a 8.520 (kN)
/ \ \
123 6 11 21 26
Q (kN cm) Q (kN cm)
125} 1.6}
Beam s =3.43e3 Spring |[/s=1.6
q (rad) q (cm)
L-125

Fig. 2 Example 2: elastoplastic beam on elastoplastic foundation

5.2. Example 2

This example (Maier et al. 1982, Nappi 1982) concerns an elastoplastic beam on
elastoplastic foundations (Fig. 2). The beam model consists of 24 identical lumped
elastoplastic hinges at springs 2-25; the foundations are represented by 26 identical
elastoplastic springs spaced at 32cm. Material properties (sagging and compression positive)
are as indicated in Fig. 2; note that whilst a tensionless spring (i.e., r=0, A=0) is illustrated,
some of our runs did not assume this. In order to simulate measured displacements, we again
first ran a GAMS/PATH analysis model of the structure for the following yield limits and
hardening parameters: r=[125, 125, 1.6, 0], A=[171.5, 171.5, 0.08, 0], with the first two
elements of these vectors referring to beams and the last two to springs. Two load cases were
used: a=1 and a=3.

A series of runs were made with GAMS/CONOPT models of Algorithms 1 and 2. Each
run can be described by a 4 character code WXYZ with the following meanings:

W (measured freedoms): a=all, b=1, 3, .., 25, ¢=17, 19, ..., 25

X (load level): 1=0=1, 3=a=3

Y (accuracy of measurement): (O=exact measurements, S=increase u by 5%
Z (bounds on r and h): t=tight, s=semi-tight, /=loose

t=r=[100, 100, 1.3, 0], r,=[150, 150, 2, 0], h=[150, 150, 0, 0], ,=[200, 200, 0.1, 0]
s=r=[30, 30, 0, 0], r,=[300, 300, 5, 0], ~=[0, 0, 0, 0], £,=[300, 300, 5, 0]
I=r=[0, 0, 0, 0], r,=[1€3, 1€3, 1€3, 1e3], h=[0, 0, 0, 0], h,=[1e3, 1e3, 1e3, 13]

Table 2 and Table 3 display the computational results obtained with Algorithm 1 and
Algorithm 2, respectively. We will not discuss these results in detail but will only make the
following general comments.

(a) Both algorithms performed well. CONOPT managed to solve all the subproblems. In all
cases, the same starting points (r=1, k=1, w=1, A=1, Q=1, u=u,, u,=0.1) were adopted.
Other nonlinear programming solvers that were tried had significant difficulties solving
some of the subproblems.

(b) Obviously, the identification of any parameter is only possible if the corresponding yield
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Table 2 Algorithm 1: computational results for Example 2

Run | n1) 2 3 r@ | k1) k2 kB k@) | Ieri | o
Exact | 125 125 1.6 0 1715 1715  0.08 0 - -
al0r | 1262 1000  1.60 - 1500 1500  0.08 - 1 0
alos | 1176 530  1.60 - 300.0 0 0.08 - 1 0
alol | 846 530  1.60 0 | 8741 0 0.08 0 1 0
b10t | 1260 1000  1.60 - 1552 1500  0.08 - 1 0
p10s | 1176 530  1.60 - 3000 0 0.08 - 1 0
c10r | 1262 1000  1.60 - 1500 1500  0.08 - 1 0
cl0s | 1351 300 142 - 47 3000 019 - 7 | 0.034
alst | 1233 1000 153 - 2000 1500  0.10 - 7 | 0358
alss | 1171 550 153 - 3000 0 0.10 - 7 | 0358
a30s | 1250 1250 160 - 171.5 1715 0.8 - 1 0
a30l | 1250 1250  1.60 0 1715 1715 0.8 0 1 0
b30: | 1250 1250  1.60 - 1715 1715  0.08 - 1 0
b30s | 1109 1658 131 - 175.3 0 0.09 - 6 3.16
b30I | 195 0 3.83 0 le3 0 0 0 6 | 2418
306 | 1005 1232 160 - 189.0 1828  0.08 - 1 0
30s | 784 718 0 - 183.1 0 0.13 - 1 0
a3ss | 1246 1248 160 - 162.8 1635 0.8 - 7 | 0322
a3l | 1232 1263 160 0 1631 1604  0.08 0 7 | 0268

mode is activated. For the a=1 case, the loading level activates one beam (in sagging)
and 17 springs (7 in compression, 10 in tension). The xLxx results confirm that we can
only identify, even for the tight bounds case, the spring parameters. On the other hand,
for o=3, 10 beams (3 sagging, 7 hogging) and 25 springs (16 compression, 9 tension) are
activated. The identification process for the x3xx series, as observed, is correspondingly
much more successful.

(c) Proper bounds are of great importance in the identification process. Fortunately, in
practice, guidance is provided by an a priori knowledge of the engineering structure. For
instance, the loose bounds applied in the xxx!/ series are not physically very meaningful
and are meant to test the behavior of the algorithms only; clearly we need to take
advantage of the tensionless nature of the foundation.

(d) The number and position of measurements affect the accuracy of the identification process.
For instance, very accurate identification is still possible, as for b30s, even when not all
measurements are made. Obviously, an insufficient number of measurements, as in ¢30¢,
even with tight bounds, can lead to partial success only. Fortunately, in practice, the
location of the loads will provide guidance as to where to best measure the displacements.

(e) Both algorithms appear to be able to provide reasonable values for the parameters even in
the presence of imprecise measurements (a35s and a35/).

(f) It is interesting to note (compare the c¢30¢ results for Algorithms 1 and 2) that different
sets of parameters may be obtained for the same global optimum @=0.

(g) While it is premature to compare the two algorithms, we must mention that, from the
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Table 3 Algorithm 2: computational results for Example 2

Run | 1) 2 r3) r@ | k1) HRZ)  hB) k@) | lter i ©
Exact | 125 125 1.6 0 1715 1715  0.08 0 - -
al0r | 1262 1000  1.60 - 1500 2000  0.08 - 8 0
alds | 1349 537 160 - 0 0 0.08 - 8 0
alol | 1349  1e3 1.6 0 0 5648  0.08 0 8 0
b10: | 1262 1000  1.60 - 1500 2000  0.08 - 8 0
b10s | 1349 536  1.60 - 0 0 0.08 - 8 0
cl0r | 1262 1000  1.60 - 150.0 2000  0.08 - 13 0
cl0s | 1349 535  1.60 - 0 3000  0.08 - 8 0
alSt | 1233 1000  1.53 - 2000 2000  0.10 - 8 0.358
alss | 1171 593 153 - 3000 3000  0.10 - 8 0.358
a30s | 1250 1250 1.60 - 1715 1715  0.08 - 9 0
a30/ | 1250 1250  1.60 0 171.5 1715  0.08 0 8 0
b30¢ | 1250 1250  1.60 - 1715 1715  0.08 - 9 0
b30s | 1250 1250  1.60 - 1715 1715 008 - 8 0
b30/ | 1250 1250  1.60 0 171.5 1715 0.8 0 9 0
306 | 1013 1330 161 - 1882 1560  0.08 - 8 0
30s | 1005 2033  1.67 - 186.8 0 0.08 - 9 0
a35s | 1246 1248  1.60 - 162.8 1635  0.08 - 8 0.322
a3s! | 1231 1263 1.59 0 163.1 1604  0.08 0 8 0.268

results displayed in Tables 1 to 3, Algorithm 1 is significantly faster than Algorithm 2.
The latter, however, while requiring more iterations, seems to give consistently better
(smaller @) optimum values. We also note that the correct choices of parameter settings
in a particular problem instance may significantly affect the quality of the objective value
found.

6. Conclusions

This paper briefly introduces a practically useful inverse problem of identifying both yield
limits and hardening parameters for an important class of structural problems. On the basis of
information on displacement response to given loads, the identification problem can be
formulated as a special mathematical program known as an MPEC, involving
complementarity constraints.

Two simple and promising algorithms based on a reformulation of the MPEC as standard
nonlinear programs are proposed to take advantage of the availability of general purpose
nonlinear optimization solvers. Our numerical experiments tend to validate the suitability of
this approach. We point out that the nonlinear solvers we used were sophisticated
implementations and furthermore that the GAMS environment allowed us to exploit the
restarting capabilities of these codes.

However, in spite of these encouraging results, further work and improvements are still
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needed. In particular, extensive application to actual realistic examples, especially in the area
of quasibrittle fracture, are required; the robustness of both schemes should be improved; and
there is also a need to obtain results which could, for instance, indicate how close the solution
obtained is to a local minimum of the original MPEC. Of course, efficiently finding a global
minimum to the inverse problem will remain a challenging research goal.

Ongoing research is aimed at providing tools to attain this goal. In particular, MPEC
modeling formats within GAMS (Dirkse and Ferris 1997a) and an interface to the MATLAB
programming environment (Dirkse and Ferris 1997b) are tools that will aid research in this
frontier between algorithmic design and application to realistic structural problems.
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Appendix: Example GAMS model

* Illustrate Penalty Method for Solving an MPEC

* Dempe's Example (Luo, Pang and Ralph 1996, 354)
* Solution of this model in 5 iterations

* £=31.250, x=1.002, y=0, w=0.998, z=1.001

variables f, x, y, z, w;

* Set lower bounds on y and w
y.lo=0; w.1o=0;

scalar ro 'Penalty parameter' / 1e-3 /;
equations obj, c1, c2;

* Define objective and constraints

obj .. f =e= sqr(x-3.5)+sqr(z+4)+ro*wy;
cl .. z-342*z*w =e= 0;

c2 .. z*z-x+y =e= (;

model dempe / all /;
option nlp=conopt;

* Set starting values
x.I=1; y.I=1; w.l=1; z1=1;

scalar comp / le4 /
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* Iterate until complementarity satisfied
set iter / iterl *iter50 /;
loop(iter$(comp gt 1e-8),
solve dempe using nlp minimizing f;
comp=w.1*y.];
ro=10*ro;

display f.1, comp, x.1, y.I, w.l, z.];





