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Risk assessment of transmission line structures
under severe thunderstorms
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Abstract. To assess the collapse risk of transmission line structures subject to natural hazards, it is
important to identify what hazard may cause the structural collapse. In Australia and many other
countries, a large proportion of failures of transmission line structures are caused by severe
thunderstorms. Because the wind loads generated by thunderstorms are not only random but time-
variant as well, a time-dependent structural reliability approach for the risk assessment of transmission
line structures is essential. However, a lack of appropriate stochastic models for thunderstorm winds
usually makes this kind of anaysis impossible. The intention of the paper is to propose a stochastic
model that could realistically and accurately simulate wind loading due to severe thunderstorms. With
the proposed thunderstorm model, the collapse risk of transmission line structures under severe
thunderstorms is assessed numerically based on the computed failure probability of the structure.
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poisson process; upcrossing rate.

1. Introduction

To assess the risk of structural collapse of transmission lines subject to natural hazards, it is
necessary to identify what hazard may cause the structural failure. A recent survey of failures
of transmission line structures in Australia (Hawes and Dempsey 1993) indicates that a large
proportion of failures (more than 90%) are due to severe thunderstorms, such as tornadoes
and downbursts. It is evident that wind loads that are generated by severe thunderstorms are
poorly defined, despite the fact that quite extensive research on wind loads has been carried
out in Australia over the last 30 years. This is particularly so for the design of transmission
line structures. In fact, severe thunderstorms have not been taken into account in current
Australian design standards for wind loads because of lack of statistical data and a lack of
knowledge as well. It is therefore desirable to develop a stochastic model of wind loads that
could include the features of severe thunderstorms for the design of transmission line
structures.

The survey also shows that more than 76% of failures of transmission line structures under
thunderstorms are structurally initiated. It is obvious that the risk assessment of transmission
line structures is crucial in the process of structural design. Actually, risk analysis of
transmission line structures has been accorded considerable attention in, for example, the
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United States and South Africa. Since wind loadings are not only uncertain but also time-
variant, it is well justified that the risk analysis of transmission line structures under
thunderstorm wind loads should be in the framework of time-dependent reliability theory.
Time-dependent structural reliability problems are those in which either applied loads or
structural resistance, or both, are modelled as stochastic processes. To some extent, the theory
of time-dependent reliability has been well developed, and it is the time to apply this
advanced approach to practical engineering strutures.

The present paper is concerned with the risk assessment of transmission line structures
subject to severe thunderstorms. First, a stochastic model is proposed which may realistically
and accurately simulate wind loadings generated by severe thunderstorms. With the proposed
thunderstorm model, the risk of transmission line structures due to severe thunderstorms is
assessed numerically according to the computed failure probability of the structure. The
failure probability of the structure is based on the failure probability of its structural
components that form a failure mechanism. The major advantage of the proposed
thunderstorm model is that the size effect of thunderstorms on wind load intensity has been
taken into account. Statistical data that are required to support the parameters of the model
may be available from meteorological stations.

2. Modelling thunderstorms
2.1. Severe thunderstorms

Thunderstorms have their genesis in the initial uplift of warm, moisture-laden air (Simiu
and Scanlan 1978). There are several different types of thunderstorms, depending on the
origin and the associated meteorological activities. All types of thunderstorms can
occasionally become severe. Acording to Australian climatology, a thunderstorm is considered
severe if it produces winds in excess of 28.3 m/s (55 knots) (Li and Holmes 1994). In the
United States, it is set at 25.9 m/s (Golden and Snow 1991). The most severe thunderstorm is
a tornado, which is not the major cause of transmission line failures in Australia and therefore
will not be discussed in the paper. Another type of severe thunderstorm is the so-called
downburst. A downburst is an intensive downdraft and gust front system (in some literature,
especially meteorological literature, gust front is separated from downburst, but herein they
are considered to be one system). Downbursts can induce an outburst of damaging winds near
the ground, with near surface speeds in excess of 50 m/s. The strong wind tends to flow
outward radially from where the descending current strikes the earth. The typical physical size
of damaging storms is 6 to 8 km across. At a point beneath the thunderstorm strong winds
may sustain for up to 30 minutes.

Downbursts include microbursts and macrobursts (Fujita 1985). Microbursts are smaller and
more concentrated downbursts, the physical size of which is about 4 km or less in horizontal
extent. The record observed wind speed in a microburst is 67 m/s. A macroburst is a large
downburst. The physical size of thunderstorm activities in Australia is shown in Table 1
(Holmes 1993).

Downbursts are identified in this paper directly from their signatures on anemometer charts
of severe storms which produce high speed winds with a relatively short duration. This is
different from those that were identified by thunderdays (Gomes and Vickery 1976). The
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Table 1 Types of thunderstorm winds in Australia (from Holmes 1993)

Type Horizontal scale Duration
Microburst 1-4 kilometers 2-4 minutes
Macroburst 4-10 kilometers 4-30 minutes
Ourflows (gust fronts, squall lines) 10-100 kilometers 1-10 hours

records of meteorological stations indicate that downbursts may not necessarily associate with
thunders. On the other hand, thunderstorms with thunderdays do not always produce
downbursts with high wind speeds.

2.2. Stochastic model

The difficulty of stochastically modelling thunderstorm wind loads for transmission line
structures lies in the fact that when thunderstorms occur, they do not necessarily strike a
transmission line and hence the supporting structures, because the scale of thunderstorms is
usually small and localised. This is quite different from large scale storms to which the whole
reference area is subject to storm winds. This is why stochastic models for severe
thunderstorms are rarely available for transmission line designs.

In the modelling of wind loads due to severe thunderstorms, the following stochastic
features of the storm need to be recognised: 1) thunderstorms change from time to time
during the whole life time of transmission line structures; 2) at a given time, it is not definite
whether thunderstorms occur or not, i.e., the occurrence time of thunderstorms (i.e., wind
loads) is a random variable; 3) when thunderstorms do occur, the intensity of the storm, i.e.,
the magnitude of the wind load is uncertain. This means that the wind load due to
thunderstorms is a time-variant random variable; and 4) when a thunderstorm occurs, it is not
certain how long it will last, i.e., the duration of the wind load is a random variable too.
Based on these characteristics of thunderstorms, it is appropriate to assume that the wind
loading due to thunderstorms be modelled as a Poisson renewal process. A Poisson renewal
loading process is a pulse process Q(f) (see Fig. 1), in which the occurrence time of the
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Fig. 1 Poisson loading process
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loading pulse, its duration and intensity are all treated as random wvariables (see, e.g.,
Melchers 1987). Generally, independence is assumed between the load intensities and the
duration in each occurrence of loading pulses as well as there being independence from one
occurrence to another. A pulse process is described by a mean occurrence rate A, a random
variable duration d (with mean u,) and an intensity random variable Q (magnitude of the load)
with probability distribution function Fy(q). The product A - u, represents the proportion of
time that the load pulse is acting. In practice, transient loads have A-p, values much less than
1. When A-p,> 0, the pulses are likely to overlap, leading to a so-called ‘compound Poisson
process. A detailed application of the Poisson loading model is available in Li and Melchers
(1992).
A Poisson loading process can be expressed as

0, when it occurs

Q(A" d7 qi7 t’ tl): 0

otherwise @)

where i refers to ith loading pulse and ¢ denotes time (usually year). One more feature
associated with transmission lines is that when the thunderstorm occurs (represented by each
pulse in the process), it does not necessarily strike the transmission line structures, which
means that there is no wind loading. Therefore each loading pulse in the process should be
allowed for by the probability that each occurrence of thunderstorms has struck the
transmission line and hence the structures.

The probability that a thunderstorm strikes a transmission line structure may be determined
by employing geometrical probability, and by introducing a reference area. The reference area
may be defined in such a way that both thunderstorm activities and transmission line damage
can be taken into account. One way may be to define an area in which the thunder is audible.
Now assume that such a reference area has been given. The geometrical feature of
transmission lines, in the reference area, is that only one dimension, i.e., the length of the
transmission line is of significance. Accordingly, the geometrical size of a thunderstorm is
measured by a path length. The path length, denoted by b, of a thunderstorm is defined as the
reference distance that the thunderstorm passes with a certain speed. It is the trace of the
storm not the physical size of the storm (in meteorological terms, it is known as run of
wind ). Some data required to estimate the path length may be available from, for example,
anemometer charts of meteorological stations. Assume that the ith thunderstorm occurs with a
path length b, According to the principles of geometrlcal probability, the probablllty of any
point of the transmission line being hit, denoted by H, is

b/L if b <L
H®)=14 it b 2L @)

where L is the significant design length of the transmission line in the reference area, along
which the damage is most likely to occur. Eq. (2) is similar to that derived by Milford and
Goliger (1995) for tornado risk in South Africa when their reference area is represented by L
XL.

Since b, is a random variable, the probability of a strike at a point along the transmission
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line by the ith thunderstorm in Eq. (2) is (Li and Holmes 1994):

ps=[H(®) f(b)db )

where f(b) is the probability density function of path length b. Thus the probability
distribution function governing each loading pulse should be modified as

Fy'(q)=Fy(q)p; 4)

3. Verification of the model

The feature of the proposed wind load model, which is distinguished from other models for
large scale winds, is that the probability of a thunderstorm strike on transmission line
structures (i.e., Eq. (3)) is used to allow for the fact that when a thunderstorm occurs it does
not necessarily strike the transmission line. Eq. (3) can be further expressed, by substituting
Eq. (2) and ignoring the almost impossible case of b,> L, as

b By 1 1
po=] T f@ b=~ 10 3 ©)
where the path length b may be obtained from anemometer charts of meteorological stations,
as schematically shown in Fig. 2. In Eq. (5), k is the number of thunderstorms that were
recorded in the reference area. It can be seen that only the mean of path length, 1, is of
significance.

To calibrate the thunderstorm model, in particular, Eq. (3), the results of a study on severe
wind in New South Wales, Australia, which was carried out by Australian Bureau of
Meteorology (ABM, 1992) may be used. The results are expressed in terms of return period,
R, versus extreme wind speed, i.e.,

Shaded area = path length, b

TIME
Fig. 2 Path length of a thunderstorm
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1
R=—
1-F, (v)

where V is the annual maximum wind speed and F(v) is the probability distribution function
of V. In the case of thunderstorm winds Eq. (6) needs to be modified for two reasons: (1) the
extreme wind speed is with respect to per thunderstorm rather than per year, i.e., it is not
annual maximum wind speed. Therefore a mean occurrence rate of thunderstorms, A, should
be applied; (2) the probability distribution function of wind speed should be weighted by the
probability of a strike. Thus Eq. (6) becomes

R= 1 _ L
M1=-F, Wlp.  AM1-Fy(Wlu,

Data required in Eq. (7) are available from meteorological station and herein a typical station
at Moree in New South Wales, Australia is selected, which are shown in Table 2. As can be
seen, 19 storms were identified as severe thunderstorms in 27 years' records, with a mean
occurrence rate of A=0.7. From the wind speed data of Table 2, an extreme value anaysis is
straightforward, which shows that wind speeds generated by thunderstorms in Moree area are
of Gumbel distribution with 1/0=3.199 and u=27.596 (m/s). Also it may be noted that in
Table 2, more than one storm were recognised as severe thunderstorms in one year, for
example, in 1965, 1972, etc., which again illustrates that the extreme value of wind speed is
not annual maximum but is associated with thunderstorms only.

The mean path length is obtaind from anemometer charts which y,=54.06 km. Using L=100
km, a return period vs wind speed can be plotted and compared with the results from the
Bureau (ABM 1992), which is shown in Fig. 3. It can be seen that the results from both the

(6)

(7

Table 2 Moree thunderstorm winds 1965-1991

Date Gust (knots) Gust (m/s) Direction
10/1/65 50 257 225
30/9/65 50 25.7 270
28/10/67 50 25.7 2925
22/1/71 58 29.8 157.5
24110/72 71 36.5 225
12/11/72 70 36.0 225
9/1/73 56 28.8 202.5
1/11/76 60 30.9 202.5
26/3/77 59 30.3 315
24/2/80 51 26.2 2475
4/12/80 58 29.8 247.5
14/12/80 50 25.7 202.5
29/12/82 68 35.0 157.5
31/12/82 63 324 202.5
9/12/83 51 26.2 202.5
11/11/84 51 26.2 320
21/1/88 57 29.3 210
7/2/90 53 273 40

29/11/91 55 28.3 240
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proposed model and the Bureau's study are consistent.

4. Probability of structural failure

Since wind loads generated by severe thunderstorms are the dominant time-variant loading
on the transmission line structures, it is the only load that is considered in the risk analysis of
transmission line structures in this paper. The risk assessment is based on the probability of
structural failure. Consider first the failure probability of structural components of a
transmission line structure. The design criterion, known as limit state, for the structural
components to be safe can be expressed as

S,(OSR,(1), j=1,2, ... m )

where S(6)=S[0(f)] is the so-called load effect function’ for each structural component, Q(f)
is the thunderstorm wind loading which is modelled as a stochastic process, and R, is the
resistance of the jth structural component. In Eq. (8) m is the number of components, the
failure of which will lead to a failure mechanism, such as the collapse of the structure as a
whole. When the structural analysis is linear, the load effect function can be expressed as

S;(t)=c;Q(t), j=1, 2, .m 9)

where ¢; is a coefficient from structural analysis. So that the statistics of the load effect
process S(f) may be readily calculated using stochastic process theory. When the structural
analysis is nonlinear, obtaining the statistics of load effect process S(f) is more
computationally involved. Fortunately, in practice, structural analysis for transmission line
structures is usually linear.

For reliability problems involving stochastic processes, the structural failure depends on the
time that is expected to elapse before the first occurrence of the stochastic process upcrossing
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a threshold (barrier level), determined by limit state functions, sometime during the lifetime [0,
1] of the structure. Equivalently, the probability of the first occurrence of such an excursion
is the probability of structural failure p,(f) during that time period. Under some assumptions
(Melchers 1987), the so-called first passage probability’ can be evaluated by

pi)=p, O+ vD)dT (10)

where p;(0) is the probability that the structure fails on first loading, i.e., at time #=0.
Evidently p,(0) is time-independent and can be calculated using, e.g., First Order Second
Moment (FOSM) method (which will not be described herein). The main difficulty in
application of Eq. (10) to realistic engineering problems is the determination of the upcrossing
rate W(t).

When the load effect S, is a scalar Poisson renewal process (such as the wind load herein),
the upcrossing rate W(f) in Eq. (10) can be obtained, for a given R,=r; and using the limit state
function in Eq. (8), as follows (see Melchers 1987 for details)

V()= IA,JE(} {Zl? [P (upcrossing in At |}

=Lim [P {[S,() <7, ()] NS, +40) > 7,012
= Fy Ir, (141 =Fs, [, ()]} (1)

where v,; is the upcrossing rate of load effect S; in the jth structural component relative to R,
the structural resistance (threshold) to be upcrossed, Fy(s;) is the probability distribution
function of the load effect S, and A is the occurrence rate of the load process. Taking into
account the ‘strike” effect (i.e., Eq. (4)), and for high reliability structures, Eq. (11) becomes

vcj :st (rj )pnl (12)

where Gy, (r;)=[1-Fs,(r;)]. The solution is the same as that in Li and Holmes (1994), derived
in a different way. Substituting Eq. (5) into (12), the time-variant failure probability for each
structural component can be computed using Eq. (10).

5. The risk of structural collapse

When the failure probability of structural components is known, the risk of structural
collapse under severe thunderstorms depends on the mechanism of the collapse. For some
structures the failure of one structural component results in the structural collapse, e.g.,
statically determinate structures; while for other structures, the failure of one or two structural
components does not constitutes a structural collapse, e.g., redundant structures. In structural
reliability analysis, the former is modelled as a series system and the latter a parallel system.
The failure probability of a series system is

n

pr= jk:] Dji (13)

and the failure probability of a parallel system is
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m

pr= Q] Dsi (14)

where p; is the failure probability of the jth component in the structure, © and N denote the
union and intersection of events, n is the number of structural components of a series
structures and m is the number of structural components that are required to form a
mechanism. Within the FOSM theory, both the series system and the parallel system
structures are tractable. Generally, the series system can be dealt with more easily in
conjunction with bounding techniques, whereas the parallel system poses some difficulties in
reliability analysis. For this reason, even for redundant structures, it is usual to attempt to
convert a parallel system to a series one. This is possible, for example, if the progressive
collapse modes of the redundant structure can be identified. In this case, each mode of
structural collapse can be represented by a limit state function. The attainment of any one of
the various limit state functions is equivalent to failure of the structure.

Transmission line structures are typical complex structures with a large number of structural
components and high degrees of redundancy. It is obvious that the generation of limit state
functions for this kind of structures is extremely difficult and it might be understandable that
accurate computation of the failure probability of this type of structures is an illusive task. In
this paper, two criteria are used to define the failure of the structure. One is for critical
components, such as leg members, in which the failure of any leg member is equivalent to
the failure of the structure, i.e., it is modeled as a series sytem. The other is for non-critical
components, such as bracing members, in which only a certain number of members fail can
the structure fail, i.e., it is modelled as a parallel system. The failure of a parallel system may
be identified by losing stability of the structure or part of the structure.

For a series system, the computation of the failure probability is relatively easier, using
bounding techniques, such as Cornell's upper and lower bounds (Cornell 1969)

max (p;)SPf<1- 1171 (1-pg) (15)

For parallel system, the failure sequence method (Li and Melchers 1994) may be employed.
The basic idea of the method is to identify the failure sequence of structural components, and
instead of generating limit state functions, the following formula is used for the evaluation of
failure probability of the structure

Py =P(§Ffj=P(F1)'P(F2|F1>~-P(Fm |F 1 Fp) (16)

where P(F)) is the failure probability of jth structural component and is computed using Egs.
(10) and (12) of the previous Section.

6. Application example

For the risk analysis of transmission line structures, using the stochastic model of
thunderstorm winds, the following parameters need to be determined from thunderstorm
records of the meteorological station in a given reference area: 1) the mean occurrence rate A.
Occurrence rates vary from areas to areas. But for a given area a constant A may be assumed;
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2) the probability distribution function of wind load Fy(q) for each loading pulse
(thunderstorm). This may be obtained from statistical analysis of the meteorological records

within the reference area; 3) the path length b. With these parameters known, the upcrossing
rate can be computed using Eq. (12) by substituting Eq. (5)
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Fig. 5 Time-variant failure probability
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1
V= Z.G"‘ (r) Al (17)

It should be noted that for different reference areas the parameters used in the model may
have different values. It is obvious that the availability and accuracy of data for the
parameters of Eq. (17) are essential to the risk assessment of transmission line structures.
Herein data from Moree station (Table 2) are used for illustration, i.e., A=0.7, 11,=54.06 km, L
=100 km.

For the computation of time-variant failure probability, a transmission tower from Haldar
(1986), shown in Fig. 4, is taken as a simple example. From the statistical analysis of
metcorological data of Moree area, the wind load follows a Gumbel distribution. Since a
linear structural analysis is used the load effects (axial force) in structural components (legs)
are also of Gumbel. The wind load Q has a mean of 30 (kN) and standard deviation of 5. For
simplicity, the structural resistance (buckling capacity) is assumed to be deterministic with
R, =180, R;,=150, R, =120 so that Eq. (17) could be used directly. If structural resistance is
a random variable, Eq. (17) needs to be modified to take into account the uncertainty of
structural resistance. In this case, a simulation algorithm may be employed (see, e.g., Li and
Melchers 1994).

The failure of the structure is defined as a series system, i.e., failure of any one of leg
members 1 to 6 results in the failure of the tower. So that Eq. (15) is used for computation of
failure probability of structural system. For each leg member, Eqs. (10) and (12) are used to
calculate the failure probability, assuming p,(0)=0. Typical results are shown in Fig. 5. As can
be seen the failure probability of the transmission tower is linearly proportional to the
upcrossing rate over time (i.e., Eq. (12)). Therefore the accuracy of the risk assessment is
largely dependent on the accuracy of the thunderstorm model developed, in particular, the
availability of the parameters of the model. That is why stochastic models are essential to risk
analysis of transmission line structures subject to natural hazards like thunderstorms. This
conclusion is consistent with other investigations of transmission line structures, such as a
studyv on tornado risk by Milford and Goliger (1995), whereby accuracy of the tornado model
is important. Also, the computed failure probabilities using Cornell upper and lower bounds
are very close.

7. Conclusions

A stochastic model for severe thunderstorm winds has been proposed and necessary
parameters required in the model has been studied. The validity of the proposed model has
been checked using available data from a meteorological station. Based on the thunderstorm
model, the risk of transmission line structures under severe thunderstorms has been assessed
numerically based on the computed failure probability of the structure. The major advantage
of the model is that the size effect of thunderstorms on wind load intensity has been taken
into account.
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