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Stabilization of pressure solutions in four-node
quadrilateral elements
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Abstract. Mixed finite element formulations for incompressible materials show pressure oscillations
or pressure modes in four-node quadrilateral elements. The criterion for the stability in the pressure
solution is the so-called Babuska-Brezzi stability condition, and the four-node elements based on mixed
variational principles do not appear to satisfy this condition. In this study, a pressure continuity residual
based on the pressure discontinuity at element edges proposed by Hughes and Franca is used to study
the stabilization of pressure solutions in bilinear displacement-constant pressure four-node quadrilateral
elements. Also, a solid mechanics problem is presented by which the stability of mixed elements can
be studied. It is shown that the pressure solutions, although stable, are shown to exhibit sensitivity to
the stabilization parameters.

Key words: stabilization of pressure; pressure oscillations; pressure modes; incompressible materials;
mixed finite elements; volumetric locking.

1. Introduction

The four-node quadrilateral element is the workhorse of nonlinear finite element analysis
because of its simplicity and versatility. However, when the element is implemented with full
quadrature, it locks for incompressible materials in a phenomenon called volumetric locking.
It is also quite stiff in bending, i.e., the displacements are underpredicted unless several layers
of elements are used through the thickness.

One of the first remedies for this difficulty of volumetric locking is selective-reduced
integration, Hughes (1977); Doherty et al. (1969) earlier used selective-reduced integration for
reducing flexural stiffness. When this procedure is applied to volumetric locking, the
hydrostatic, or pressure terms are integrated using a single quadrature point, whereas the
deviatoric terms are evaluated by full quadrature, i.e., 2X 2 Gauss quadrature. It became clear
subsequently through the discovery of the equivalence principle by Matkus and Hughes
(1978), that this corresponds to a formulation of the element by a multi-field principle with a
constant pressure field.

In the past decade, the performance of the quadrilateral element has been enhanced by
using two field (Hellinger-Reissner) and three field (Hu-Washizu) variational principles; cf.
Pian and Sumihara (1984), Belytschko and Bachrach (1986) and Simo and Rifai (1990); see
MacNeal (1993) for an extensive account of the mechanics of overcoming volumetric locking.
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Though not widely recognized, a shared property of all these elements is that for an
incompressible material, the volumetric strain vanishes when the nodal displacements are such
that the total volume of the element is unchanged. As a consequence, when the displacement
of the nodes is such that the volume of the element is preserved, the strain field is
equivoluminal throughout the element, see Belytschko and Bindeman (1991). This is the key
to avoiding volumetric locking, for if the strain field is not isochoric (volume-preserving) at
all quadrature points of the element, very large pressures result and “lock” the element.

Unfortunately, a byproduct of designing this property into the strain field is that the
element then fails to meet the BabuSka-Brezzi conditions; see Babuska (1971) and Brezzi
(1974); Xue, Karlovitz and Atluri (1985) have given a form of this principle for mixed
elements. As a consequence, in some meshes, the pressures alternate in sign in a phenomenon
called ckeckerboarding, wherein the pressures alternate, see Sani ef al. (1981) or Hughes
(1987). This malady is a result of the rank-deficiency of the equations for the pressure, an
excellent explanation is given in Lee, Gresho and Sani (1979). The consequence of this
phenomenon is that whenever a four-node quadrilateral element is designed to avoid locking,
its predictions of pressures become deficient; this is an impasse that is quite bewildering.

Hughes and Franca (1987) have developed a new methodology whereby the pressure
oscillations are eliminated by adding the squares of the equilibrium equations and pressure
discontinuities to the variational principle. The formulation circumvents the Babuska-Brezzi
condition and makes it possible to use a natural combination of displacement and pressure
interpolants. However, in the use of this formulation, the relationship between the accuracy of
displacement and pressure solutions and the stability parameter needs detailed study. Silvester
and Kechkar (1990) have also studied the implementation of this stabilization. Other
developments for the stabilization of pressures are given by Oden et al. (1982), Pitkdranta and
Stenberg (1984), Pitkdranta and Saarinen (1985).

In this paper, the Hughes-Franca stabilization procedure will be studied in the four-node
element QBI, Belytschko and Bachrach (1986), and other mixed elements. The QBI element
formulation for incompressible materials. is derived from the Hu-Washizu variational principle.
The accuracy of the displacement and pressure solutions are compared with those of Simo-
Rifai (1990) and other mixed elements. The sensitivity of the pressure solutions to the
stabilization parameters is also discussed.

2. Incompressible elasticity formulation for the stabilization of pressure
Let £ be an open bounded region in R™“, where n, is the number of space dimensions

(n,,=2 or 3), with piecewise smooth boundary I The standard displacement-pressure
formulation of isotropic incompressible elasticity is:

divo+b =0 in £, (1)
divu=0 in Q, (2)
o=2ue~-pl in Q, 3)
u=u* onTl,, 4)
on =t* on I, %)

Here o is the Cauchy stress tensor, b is body force, u is displacement (or velocity in fluid



Stabilization of pressure solutions in four-node quadrilateral elements 713

mechanics), ¢ is shear modulus (or viscosity in fluid mechanics), p is pressure, I is the
identity tensor, and € is the symmetric part of the displacement gradient. Eq. (2) gives the
incompressibility condition. The boundary I" consists of two subregions, I', and I, which are
the prescribed displacement and traction boundaries, respectively, and

r=r,ur, (6)
¢o=I.N1T;. @)

The unit outward normal vector to I"is denoted by n.

Let U and 7 be the spaces of displacement trial and test functions, and P be the space of
pressures. Let u and du denote displacement trial solutions and test functions, and p and &p
denote pressure trial solutions and test functions, respectively. The weak form for
incompressible materials is

T N _ o~
jg&e on—jg5p(dwu)dQ_jQ§u1b d.Q+Jn5uTt* ar (8)
Eq. (8) can be rewritten for isotropic materials as follows by using Eq. (3)
T _ . T - . — *
JQ&: 2ued Q L)5(d1vu) pdQ jg(sp(dlvu)dg jg&ﬂb dQ+In5uTt dI" (9)

where the trial solutions # and p, and the test functions du and dp are defined as follows:

uel;U={ulueC’, u=u* on I}, (10)
SuecV;V={6u|buecC’ du=0onT,} (11)
pep, pep; p={plpeC'} (12)

The above weak formulation is not stable for pressure solutions unless specific
displacement and pressure interpolations are chosen, see chapter 4 of Hughes (1987). In
particular, pressure oscillations, or pressure modes (often called checkerboarding, which are
caused by singularities in the global equations) occur in the bilinear displacement-constant
pressure four-node quadrilateral element (Q1P0).

Hughes and Franca (1987) modified the weak formulation Eq. (9) as follows to stabilize
the pressure

. T .
jﬁas’zusdg-jgé(dw u) p dQ—JQSp(dlv u)dQ

- TZ[[SP]] [[p]1d I

:jﬁ(auuﬂza(div 0 )b dQ+| Sult*dl (13)

where ¢ and B are nondimensional stabilization parameters (a=0 and B >0) h is the length
parameter of the mesh and [[-]] is the ]ump operator. The “pressure jump™ in p,=pmn; at x is
defined as [[p, ]]-p, n'+p, n, where n;” and n, are the unit normals to the interior side i and
the sign + or - is (arbltrarlly) demgnated to be “+" in one side of I"and to be “~" in the
other. The domain €2 denotes element interiors, and F consists of the element interfaces. The
above weak formulation involves the addition of “least-squares” forms of the following
residuals: the equilibrium equation residual and the pressure continuity residual on element
interfaces. These terms render the formulation to be coercive, in contrast to the classic
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Galerkin formulation, and enable the Babu$ka-Brezzi condition to be avoided. Thus this
formulation can provide stable pressure solutions for seemingly arbitrary combinations of
displacement and pressure interpolations. In the above formulation, however, a careful choice
of the parameters is required to prevent a loss of accuracy in the solution. Note that, in low
order element such as Q1P0, div ¢ almost vanishes and only the pressure continuity residual
is left.

3. QBI element formulation using y-projection operator
3.1. Hu-Washizu variational principle
For isotropic incompressible materials, the stress 6 can be split into two parts as

C; =T, ~pY; (14)

Here, 7, denotes the deviatoric stress given by 7,=2ug,=2ue; where ¢; is the deviatoric strain,
p is the hydrostatic pressure defined as p =— 1 0, and g, is the Kronecker deita (5,=1 if i=j,
fsd

and 9,=0 otherwise).
The three-field Hu-Washizu variational principle for this material is

1 ext
T J’Q [—2—8,.}. 2ug; — T (& —uep)—pu ;| dQL-W (15)

The matrix form of Eq. (15) with a pressure continuity residual for stabilization of pressure
is

" @, &1p)= JQ[%ETD‘I“VE—‘L’T(s—V_\-u)—p(divu)]d.Q
_g jﬁ [[p12d T -we" (16)

where = Bh/2u. The above functional, when the pressure residual term is excluded, is the
standard Hu-Washizu form for incompressible materials where p is the Lagrange multiplier on
the isochoric constraint u,,=0. For nearly incompressible materials, a perturbed Lagrangian

approach is taken (see Oden and Carey, 1983) where an additional term, ?1/1— p2, 1s added to

the functional. Taking stationary condition then gives the following weak form:

jQ [6€ (D* £—1)— 6T (- V,u)—p (div u)+&V,u) - &divu) p)ld 2

-B ff[[517]] [lp1d =W =0 a7

3.2. Finite element formulation for QBI-HF

We develop here the equations for the QBI element (Belytschko and Bachrach 1986)
stabilized by the Hughes-Franca techniques, and it will be called QBI-HF. Using a projection
operator suggested by Belytschko and Bachrach (1986), u, € and 7 fields can be decoupled
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with constant and linear parts to overcome locking problems. The displacement field for a
bilinear, isoparametric quadrilateral can be written

u=(A"+xb/+ybl+4 y")d = Nd (18)
where
A" = [a7~(@7x)b{~(a’y)b/] (19)
Y = 1B = )b7 - (6" y)b 20)
bT_ 1 T — 1

i = —2;"[)’24.)’31.)’42,}’13], b/ = ﬁ[x‘tz, X 13, X 245X 31 (21)
f=En (22)

Here. the translation vector a and the hourglass vector k are defined by
a’=[1,1,1,1], k' =[1,-1,1,-1] (23)

x and y denote element nodal coordinate vectors, x;, denotes x,-x;, A is element area, and &
and 7 are the referential coordinates, EE[-1, +1] and n&(-1, +1].

The symmetric part of displacement gradient and divergence of displacement derived from
Eq. (18) are

bl +h . y" 0

XX dx
V.u = u,, = 0 b/ +# ,, y" {d } =Bd (24)
Y
Uy Uy, bl +h,y" bI+h 7y
T T d.
divu =u,, +u,, =[bl+a,7 bI+h,7] d =Hd (25)
8
The strain, deviatoric stress, and pressure fields for QBI element can be defined as
€ x
100 A, -Vha, £,
E=|010 -vh, 4, 28 o(=Ee (26)
001 0 0 qx
qy
Tx
1004, O T,
=010 0 A, | 2Ty =Ss (27)

001 0 O O
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p=N'p | (28)
where v=v for plane stress and v—v/(l v) for plane strain. Note that €, €, and 2¢, are the
constant portions of the strain fields; 7,, 7,, and 7, are the constant portions of the deV1at0r1c
stress fields. The pressure interpolation function N” is [1] for constant pressure field. For
detailed definition and explanation, see Belytschko and Bachrach (1986).

Substituting Egs. (24)-(28) into Eq. (17), the weak formulation becomes

JQ[&T E"(D"“Ee —Ss)—6s7S" (Ee —Bd)—6p"N"H d

+8d"(B"Ss ~H'N'p)dQ-3p™Rp =&d" f™ (29)
where f“ is the external force vector, and R is the pressure continuity residual matrix as
R =P Nz [N dr (30)
Using similar notation as Stolarski and Belytschko (1983), let
D“ = [E'D“EdQ (1)
Q

E = JQSTE dQ (32)
B = stTB dQ (33)
H = JQN”H dQ (34)

Substituting Egs. (31)-(34) into (29) gives the following relations:
B's-H'p=f" (35)
Hd +Rp =0 (36)
D“e-E's =0 (37)
Bd —Ee =0 (38)

Eliminating e and s from Eqs. (35)-(38) gives the following matrix equation
K —f_IT d fext

~dev 321 35

K=B"E'D“E'B (40)

where

4. Numerical examples

The accuracy and the stability of displacement and pressure solutions in QBI-HF will be
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studied for various values of the stability parameter 8. Note that when the parameter f is
equal to zero, i.e., B =0, the weak form Eq. (17) becomes the conventional formulations
which fail the Babuska-Brezzi stability condition.

For the convergence study, the displacement norm (L, norm) can be calculated as

displacement norm = [ I (u —u) (u —u')d QV> 41)
[

and the energy norm (H, norm) for compressible or nearly incompressible materials can be
calculated by

energy norm = [% _[ (e-€")Y D(e-£")d Q)V? (42)
Q

For incompressible plane strain, Eq. (42) can not be used because the stress-stain matrix D
is not defined when v is 0.5. the energy norm can be decomposed into the deviatoric energy
norm and the pressure norm as

deviatoric energy norm = [% _[Q(e—s” YD (e-€)d Q)" (43)
pressure norm = [ jg(p —p")Y' (p -pr)d " (44)
Both errors in the deviatoric strain energy and pressure are considered.
4.1. Timoshenko beam problem
The test problem is a linear, elastic cantilever with a load P at its end as shown in Fig. 1

(Timoshenko and Goodier 1970). Assume there is no body force, and that the boundary
conditions are given as follows:

(displacement)
(0, 0) =1, (0, 0)=0, 1, (0, £c)=0 @5)
(traction)
Lx,tc)=t(x,2c)=0, xe€ (0,L) (46)
tL(L,y)=0, (47a)
b0.y)=5 =y, x=L.y e(c.c) @70)
£(0,y) = P—?— (48a)
60,y)=-2-(c2-y) £ =0,y € (-, 0U(0,¢) (48b)

where the moment of inertia, I=d’/12.

The traction boundary conditions are those encountered in simple bending theory for a
cantilever beam with root section at x=0, with parabolically varying end shear and linearly-
varying bending stress at the root. The displacement boundary conditions allow the root
section to warp.

The exact solution of this problem is
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E=3.0x 10 psi
Ay
v=05
B P =40 Kips
c . |
d=12 - - - = X
: '
C
b i
L=48"
Fig. 1 Linear elastic Timoshenko beam bending problem
uee,y) = X [(6L —3x ) +Q2 4T ) (2= ~d?)] 49)
6E1 4
P . _ 1 2
u(x,y)=—=BvyAL —x)+—@4+5v )d'x +(3L —x)x?] (50)
6E] 4
O« =—EIX(L -X) (51)
o, =0 (52)
P 1
Oy = —(—d?~-y?2 53
oy = (a5 (53)
and the pressure solution for incompressible case is
Py
=—( —x). 54
P =% -x) (54)

Here, E=FE and v=v for plane stress, and E=E/(1-v*) and v=v/(1-v) for plane strain.

In the convergence study of this beam problem, incompressible material or nearly
incompressible materials are considered because both volumetric locking and pressure
oscillations (or pressure modes) occur in this case. A state of plane strain is assumed.

For various values of § (from 0.0001 to 10.0), the y-deflections at point A by QBI-HF and
Q1P0-HF (standard bilinear displacement-constant pressure four-node quadrilateral element
with the stabilization term) are given in Tables 1 and 2, respectively. The convergence rates

Table 1 Deflections of QBI-HF in Timoshenko beam problem with the traction boundary condition

No. of Deflections at point A (Upzp/U,..) according to the variation of B
element  0.0001 0.001 0.005 0.01 0.05 0.1 0.5 1.0 10.0
8 0.983 0.985 0.997 1.011 1.100 1.175 1.382 1.445 1.521
32 0.995 0.996 0.997 0.999 1.013 1.029 1.131 1.224 1.636
128 0.998 0.999 0.999 1.000 1.002 1.005 1.020 1.033 1.191
512 1.000 1.000 1.000 1.000 1.000 1.001 1.004 1.007 1.031
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Table 2 Deflections of Q1P0-HF in Timoshenko beam problem with the traction boundary condition

No. of Deflections at point A (ug/Ut,..,) according to the variation of
element  0.0001 0.001 0.005 0.01 0.05 0.1 0.5 1.0 10.0

8 0.885 0.887 0.896 0.906 0.974 1.031 1.182 1.226 1.279
32 0.964 0.964 0.966 0.968 0.981 0.995 1.089 1.176 1.550
128 0.990 0.990 0.990 0.990 0.993 0.995 1.010 1.022 1.177
512 0.997 0.997 0.997 0.997 (0.998 0.998 1.001 1.004 1.028

of displacement norms are shown in Figs. 2 and 3. The y-deflections in Tables 1 and 2 show
that the stiffness matrix becomes more flexible as the stability parameter § increases. In the
accuracy of displacement solutions, as shown in Figs. 2 and 3, the QBI-HF is superior to the
QI1PO-HF. The rates of convergence of displacement norms are approximately O(h%). For
large B values (>0.1), the rate of convergence is slightly greater than 2 and the accuracy of
displacement solutions decreases significantly. The convergence rates of deviatoric energy
norms and pressure norms by QBI-HF are shown in Figs. 4 and 5, respectively. The rate of
convergence is approximately O(h'). It is also shown that for large B, the errors in energy
norms and pressure norms increase.

In Figs. 6 and 7, the errors in displacement norm and the energy norm of the QBI-HF are
compared with those of other several elements; QM6 element by Taylor et al. (1976), Simo
and Rifai's element (1990), and ASQBI element by Belytschko and Bindeman (1991).
Poisson's ratio v=0.4999 in QM6, Simo and Rifai's element, and ASQBI; whereas v=0.5 in
QBI-HF and Q1P0-HF. The QBI-HF element shows the best accuracy in the displacement.

1.0 b B T T T 1 i.0 T T T T
0.0 - ] 0.0 f :
E 1.0 - b E 1.0 - 1
2 3
= 2
% 2.0 - % 20 r
g - 1.9 g
2 B =
5 2
& 10+ —&— QBI-HF(0.0001) - 2 S0k —g&— QIPO-HF(0.0001) |
—&—— QBI-HF(0.001) —<— QIPO-HF(0.001)
—x— QBI-HF(0.01) [ —x%— QIPO-HF(0.01)
40t —a— QBIHF(O.l) | a0 b —a— QIPO-HF(0.1)
’ —~— QBI-HF(1.0) o —~— QIPO-HF(1.0)
—e— QBI-HF(10.0) - r —e&— QIPO-HF(10.0)
.50 | n | 1 i .5‘0 [ i 1 ——
0 0.3 0.6 0.9 1.2 0 0.3 0.6 0.9 1.2
log(element size) log(element size)
Fig. 2 Convergence rates of displacement norms  Fig. 3 Convergence rates of displacement norms
in QOBI-HF; quantity enclosed in parenthesis in Q1PO-HF

is the parameter 8
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Fig. 4 Convergence rates of deviatoric energy
norms in QBI-HF
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Fig. 5 Convergence rates of pressure norms in
QBI-HF

The pressure solutions of QBI-HF for the prescribed displacement boundary conditions are
shown in Fig. 8, where the pressure distributions at x=22.5 for various values of J are
compared with exact pressures. The pressure solutions of Simo-Rifai are also presented. The
pressure solutions show an oscillation for $<0.0001, and the solutions become erratic for 8>
0.1. In other words, the pressure solutions are unstable for small f values, and they seem to

04 — T
i ]
| /
08 F - )
E /
£ 12+ )
=]
g
E 16 r )
]
el
‘5:,0 20 F -g3--- Simo-Rifaj b
i) : ——o— QM6
| ¢ ASQBI
24 1 —a— QBI-HF(0.005)
] — e QIPO-HF(0.005)
a8 L ' ’
0.4 0.6 0.8 ! t.2

log(element size)

Fig. 6 Convergence rates of displacement norms
in several elements (v=0.4999 in QMBS6,
Simo-Rifai, and ASQBIL; v=0.5 and p=0.
005 in QBI-HF and Q1P0-HF)

1 T T N mj
! //.
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‘r i - ‘
~ e |
£ 1.0 I )
=
S !
& I
o8 0.5 | 1
2 J !
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= 0o —&- - QM6 :
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0.5 —&— QBLHF©0.005) |
—e— QIPO-HF(0.005)
ol . l L i
0.4 0.6 0.8 1 1.2

log(element size)

Fig. 7 Convergence rates of e¢nergy norms in sev-
eral elements (v=0.4999 in QMS6, Simo-
Rifai, and ASQBI; v=0.5 and B=0.005 in
QBI-HF and Q1P0-HF)
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be stable but not accurate for large B values in which the accuracy of displacement solutions
is also poor. For the range of 0.001<f<0.1, the pressure solutions are stable and accurate
and the displacement solutions are accurate. These phenomena can be observed more clearly
in the next example.

4.2. Pressure modes in Timoshenko beam problem

The well known benchmark problem for observing pressure oscillations or pressure modes
is the cavity flow problem. This problem has been cited frequently; however, no closed form
solution is available for velocities (displacements) or pressures. Consequently, considerable
difficulties arise in evaluating techniques for the elimination of pressure oscillations or
pressure modes by means of this problem. Here, a study on the stabilization of pressure
solutions is performed by capturing the pressure modes in the Timoshenko beam bending
problem.

In order to capture the pressure modes in the beam, the boundary condition at x=0 in Eq.
(50) is modified so that u,=0 at points B and C of Fig. 1. The introduction of this
perturbation makes the pressure solutions of the beam problem highly oscillatory for unstable
elements. In this case, exact solutions given in Eqs. (49)-(54) are not valid any more,
however the elimination of pressure oscillations or pressure modes can be studied successfully.

The pressure distributions at x=22.5 for various values of S under the additional
displacement perturbation condition are shown in Fig. 9. The pressure distributions of other
elements exhibit the pressure modes under this constraint condition. The pressure modes
observed in Simo-Rifai element are shown in Fig. 10. In Fig. 9, the pressure distributions for
small 8 values (8<0.0001) are not shown because the pressures oscillate severely. As S

25000 : ; ; : 25000 . ——— : :
exact pressure ——— solution of Fig. 8
R O QBI-HF(0.0001) | --g-- QBI-HF(0.001)
15000 | ¢ QBLHF(0.001) | 15000 | ¥ & QBLHF(0OD)
. X QBI-HF(0.1) ; i
e A QBLHF(1.0) | e X QBLHFO.1)
- r
1 ®  QBI-HF(10.0) | A QBI-HF(1.0)
5000 | T Simo-Rifai 5000 | ¢ QBLHFIOO)
8 H
a8 &
-5000 - -5000 -
i
15000 r -15000 +
-25000 : . ' s -25000 ‘ * f
6 4 -2 0 2 4 6 -6 4 2 0 2 4 6

y-coordinate y-coordinate

Fig. 8 Pressure distributions at x=22.5 in Timo-
shenko beam problem with the prescribed
displacement boundary condition (QBI-HF)

Fig. 9 Pressure distributions at x=22.5 in Timo-
shenko beam problem with the prescribed
displacement boundary condition and the
perturbed displacement boundary condition
(QBI-HF)
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increases, the oscillations diminish and the pressure solutions become stable and accurate. For
large B values (>0.1) the pressure solutions become erratic.

3000000 T T T T T . — T
——— solution of Fig. 8
) Simo-Rifai element
2000000
o] o o i 1
. |
i
° 1000000 j
El |
z ]
a.
0 =
-1000000 F - o : o
o 0 i )
-2000000 : ! — * : : !
-6 -4 -2 0 2 4 6

y-coordinate

Fig. 10 The pressure modes observed at x=22.5 in Timoshenko beam problem with the prescribed
displacement boundary condition and the perturbed boundary condition (Simo-Rifai element)

E=1.0ps y
A
i+l uy=0 i+10

7,

Uy=uy=0
10 x 10 square mesh

l I 1 y=035
X

— 1.0 ——>

y

Prescribed displacement boundary conditions

Case A Case B
u,i( =u,i(+1 == ui“o =1.0 u)i("'l =..= u)i(+9 = 1.0, u)i( = ui“o =0
U =uy = Q elsewhere on I ux =uy = 0 elsewhere on I
Prescribed displacement boundary conditions
Case A Case B
u=ufl = =ufl0=10 uftl = =uf® =10, ui=ui*10=1.0

ux =uy =0 elsewhere on I ux=uy=0 elsewhere on I'
Fig. 11 Driven cavity flow model and two different boundary conditions
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% ASQBI A QBI-HF(0.01)
0.1 QBI-HF(0.01) 0.1
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Z 007 2 00
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»()'3 L 1 { )| 1 1 L 1 H _03 i 1 1 1 1 1 1
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Fig. 12 Pressure distributions at y=0.35 in the driven cavity flow problem with the boundary condition
Case A (v=0.4999 in QM6, Simo-Rifai, and ASQBI; v=0.5 and =0.01 in QBI-HF)

4.3. Driven cavity flow problem

The last example is the well known driven cavity flow problem. The geometry of the
model and the applied boundary conditions are shown in Fig. 11. Two different boundary
conditions have been used; one of which, Case A (often called leaky lid boundary condition),

0.3 [ T T T T T T T

- smoothed curve
0.2 + .
A QBI-HF(0.01) AT

pressure
=g
<o
T
1

'0.3 \ L 1 i 1 1 1 J 1 1
0.0 0.1 0.2 03 0.4 05 0.6 0.7 0.8 09 1.0

x-coordinate
Fig. 13 Pressure distributions at y=0.35 in the driven cavity flow problem with the boundary condition
Case B (v=0.5 and =0.01 in OBI-HF)
*Other elements show severe pressure modes.
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causes pressure oscillations and the other, Case B (often called ramp over one element
boundary condition), causes pressure modes in conventional finite element analyses. In this
example, the stability parameter §=0.01 was used.

The distribution of pressures at y=0.35 for QBI-HF and other several elements is shown in
Fig. 12 where the boundary condition Case A has been used. The smoothed curve obtained by
post processing, see (Lee et al. 1979), is considered as the benchmark solution. The pressures
of QM6, Simo and Rifai's element and ASQBI are oscillatory whereas those of QBI-HF are
stable and accurate. Although not shown, Pian and Sumihara (1984) and QBI (Belytschko and
Bachrach, 1986) exhibit similar instabilities. The distribution of pressures in the boundary
condition Case B is shown in Fig. 13. This boundary condition makes the pressure solutions of
conventional methods more unstable. The pressures of QM6, Simo and Rifai's element, and
ASQBI show severe checkerboarding and could not be shown in Fig. 13 without obscuring the
benchmark solution. The pressures of QBI-HF are also stable in this case.

5. Summary and conclusions

The stabilization procedure of Hughes and Franca has been studied in the context of a four-
node quadrilateral element with a strain field designed to avoid volumetric locking. It has
been shown that this stabilization avoids the pressure oscillations which plague these elements
for incompressible materials. Numerical examples showed that the performance of the
proposed element, QBI-HF, is superior to that of other conventional elements and Q1PO-HF.
Even in special displacement boundary condition problems which cause severe pressure mode
in incompressible case, QBI-HF showed a good and stable performance. However, the results
are still sensitive to the stabilization parameter as summarized below:

1) For 0<B<0.001: Pressure oscillations or pressure modes can not be eliminated successfully.

2) For 0.001<B<0.1: Pressure oscillations or pressure modes are eliminated successfully.
Pressure solutions are stable and accurate. Displacement solutions are still accurate
(there is no significant loss of accuracy in the displacement solutions).

3) For 0.5<10.0: Pressure oscillations or pressure modes are eliminated but the pressure
solutions become poor as f3 increases. The displacement solution loses its accuracy as f8
increases.

As a byproduct of this investigation, we have identified an excellent problem for checking
the stability of plane elements: the Timoshenko beam problem with a perturbed boundary
condition. It has shown with this test that many well known mixed elements are also unstable
as the material becomes incompressible. In particular, the Pian-Sumihara and Simo-Rifai
elements both suffer from pressure oscillations in this problems. Similarly, the QBI element
of Belytschko and Bachrach suffers pressure oscillations unless the Hughes-Franca
stabilization is added.
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