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Natural frequency characteristics of composite
plates with random properties
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Abstract. Exercise of complete control on all aspects of any manufacturing / fabrication process is
very difficult, leading to uncertainties in the material properties and geometric dimensions of structural
components. This is especially true for laminated composites because of the large number of parameters
associated with its fabrication. When the basic parameters like elastic modulus, density and Poisson's
ratio are random, the derived response characteristics such as deflections, natural frequencies, buckling
loads, stresses and strains are also random, being functions of the basic random system parameters. In
this study the basic elastic properties of a composite lamina are assumed to be independent random
variables. Perturbation formulation is used to model the random parameters assuming the dispersions
small compared to the mean values. The system equations are analyzed to obtain the mean and the
variance of the plate natural frequencies. Several application problems of free vibration analysis of
composite plates, employing the proposed method are discussed. The analysis indicates that, at times it
may be important to include the effect of randomness in material properties of composite laminates.

Key words: composite laminates; material property randomness; perturbation method; natural
frequencies; standard deviation of response.

1. Introduction

Laminated composites have a large number of parameters associated with its fabrication. These
are due to inherent limitations in exercising of complete control on all aspects of any
manufacturing/fabrication process (Zweben et al. 1989). The slackness of control results in
composite laminates exhibiting uncertainties in several factors like the fiber volume fraction, fiber
orientation, fibre matrix interface parameters, etc. These uncertainties are reflected as random
variations in material properties of composite laminates. In the present study parameters like
elastic modulus and Poisson's ratio are considered random. Chen and Zhang (1990) adopted the
perturbation approach to analyse stochastic structures. In earlier papers the authors (Salim et al.
1993, 1994) had used the above technique, extending the approach outlined by them and studied
the effect of such uncertainties on the static and free vibration response of laminated fiber
reinforced composite plates. This paper presents a discussion on several application problems to
plate natural frequencies and some of the recent results of the investigations.

2. Analysis for laminated composite plates

The analysis presented here is based on the Classical Laminate Theory (CLT). The elastic
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properties of a composite lamina are selected as the basic variables and are assumed to be
independent random variables. These random variables b -elastic moduli, Poisson's ratio, etc.
can be represented as:
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where the superscript R indicates a random variable. If Q;s are the reduced stiffness matrix
terms, the simplified relationships between these and the ba51c lamina properties are given by
(Vinson and Sierakowski 1986)
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This system of equations can be written as a series in the primary variables (Salim et al.
1994):

Q=" 1 {H c [””"””} 3)

Here f; are constants and e;{(n) are functions of #, the counter index for the infinite series
approximation of Q. The transformed reduced stiffness matrix terms Qi, are related to the
reduced stiffness matrix terms Q) through equation (Salim et al. 1994):

(Q'j Dk =Z7_ (Cijg 26_ Z’_l a4 Qi 4

where (C;,), are known functions of 6, the fiber orientation and a,; are known constants. The

qij
elements of the extensional stiffness matrix A;, coupling stiffness matrix B; and bending

stiffness matrix D, are given by (Vinson and Sierakowski 1986):
A= :Zly (Q'j (e — i)
B = % z:v: (éz‘j (2 —hy)
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where h, is the thickness of the k” lamina and N,, is the number of layers in the laminate.
The solution X, of a structural analysis problem involving fiber reinforced composites will in
general, be a function of the stiffness matrix terms of A;, B, and D, as represented by:

X=F(@A,;, B, D) (6)

So, the expectation of X will be a function of expectations of the stiffness matrix elements
—E[A;], E[B,], and E[D,], as the randomness in the stiffness elements depends on the basic
material properties which are independent RVs. This may be expressed as:

E[X]=F(E[A;] E[B;]. E[D;]) ™)

The unknown expectations in Eq. (7) can be found with the help of the known quantities.
Thus the expectation of the stiffness matrix elements — E[A;], E[B;], and E[D,] are given by:

E[A, J—z”'WE[@,»](hk k)
E1B;] 2 LS5 B(@, )]t~ hiy)
E[D;]= ? Z:Z? E [(Qij Y l(h—hiy) 8)

The derivatives of the stiffness matrix terms with respect to b are required for obtaining
the response statistics (Salim et al. 1993, 1994). These can be expressed using Eqgs. (8):
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Thus, with the help of the above equations, the characteristics of the random component as
well as the deterministic component of the unknown terms can be found out. This method
can be applied to a wide variety of problems for the static and dynamic analysis of composite
structures.

The approach presented here is used to solve problems concerning free vibration of fiber
reinforced composite plates, in the next section.

3. Free vibration of composite laminates

Some studies related to the free vibration of rectangular composite laminates with
randomness in system parameters are attempted. The effect of randomness in system
parameters on the response is introduced using the perturbation approach. The governing
equations obtained using energy formulation are solved by the Rayleigh Ritz technique. The
validation of the results is done by Monte Carlo simulation. The statistics of random natural
frequencies in first few modes are obtained for some types of laminates.
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3.1. Formulation procedure

As an example we consider the case of a specially orthotropic rectangular plate of size a X
b, simply supported along all the four edges.

In specially orthotropic laminates all the elements of [B] matrix are identically zero. Other
coupling terms like Ay, A, and D, D,, are also absent. The only stiffness matrix terms
present are D, D,,, D;, and D,. Again here we are concerned only with the transverse
oscillations of the plate. Owing to these simplifications several terms drop out from the
general equations.

We try to attempt the solution using energy formulation. The simplified energy criterion for
this problem assuming no lateral or in plane loads is:

Total potential, [T, =U +T =stationary value (10)

where U is the strain energy and T is the kinetic energy. Thus for the present case the total
potential IT, is:

1 ¢bpa o'w ’ oIw ow
m=U+T=3 ) {D(a—J +2D5 5 oy

2 20\
+D, 0w +4D ¢ ow | _ pw'w2 | dxdy = stationary value (11)
ox2 xdy

Here p is the effective mass density of the composite laminate and ¢ is the natural frequency.
The boundary conditions along the edges of the plate for the case when all the four edges of
the plate are simply supported are defined by:

along x =0 and x =g for all y

w =0
o'w J’
sz‘Dn%_Dlz‘ay_M;:O (12)
along y =0 and y =b for all x
w =0
o’'w I’w
M, :_Dn—axz _Dzz—‘ayz =0 (13)

The Rayleigh-Ritz technique can be used to solve Eq. (11) for the boundary conditions
specified by Eqs. (12) and (13). A series approximation for the transverse deflection w(x, y),
satisfying the boundary conditions can be written as:

W, ))=3" 3 amXn (@)Y, () (14)

Here X,(x) and Y,(y) are eigen-functions that satisfy the set of boundary conditions.
Substituting Eq. (14) in (11) and applying the condition of stationary value of total potential
we get M X N homogeneous algebraic equationS'

d’X; de

ZZZL{ o == dx j Y, Y,dy
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Substituting the admissible eigen functions X and Y and having carried out the required
integration the above set of M X N equations can be written in a compact form using matrix
notation:

[L -&’B]{A}=0 (16)

Where matrices L and B consist of system elements, A is the eigen vector giving mode shapes
and o is the natural frequency corresponding to the values of m and n used. If the inverse of
B exists the above equation can be written as:

[B'L -a&'I]{A}=0 (17)

If R=B 'L and considering the material parameter randomness at this point R, A and @ would
be random in nature Eq. (17) an be reformatted as:

[R* - I]1{A%}=0 (18)

Any random variable (RV) may be expressed in two parts as its mean and a zero mean
random part. For many practical engineering situations the random scatter in the system
parameter is small compared to its mean value. Combining these two arguments we can write:

RV® =RV + eRV’ (19)

Where RV? and RV’ are mean and scaled up zero mean random component of the random
variable RV* and £ is a small perturbation parameter. Splitting up the random terms in the
above equation gives:

[[RY+eR"|-[0 +ea ]I]{A’ +€A"}=0 (20)
[R ~aI + R — e I]{A" +€A"}=0 (21)

From the above terms corresponding to Oth and 1st powers of € are collected together to get
the following:

£ — [R*-a®I]{A%}=0 (22)
g€ >R -0 T|{A}+[R? —*I]{A"}=0 (23)

Eigenvalue problems for evaluating natural frequencies can be formed from these two
equations. Eq. (22) gives the deterministic part of the natural frequencies. Substituted for @’
in Eq. (23) and considering it's second order expectation leads to the variance of the natural
frequency. The assumption of independent input random variables results in substantial
simplification of the variance relation.
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4. Numerical results

Results have been computed for some typical problems to study the effect of randomness
in material properties on the free vibration response of rectangular composite plates. Except
when specified, all the input RVs are assumed to have the same standard deviation (SD) to
Mean ratio. All the plate configurations under consideration are assumed to have the same
total thickness h. For the problems studied, the basic material properties like the longitudinal
modulus, transverse modulus and shear modulus are considered to be random variables. The
randomness in material properties is handled using the perturbation technique discussed earlier.
Most of the results computed are for Graphite/Epoxy plates. Towards the end some results for
plates made of Glass/Epoxy composite are also presented. This is done to investigate the
effect of modular ratio since the ratio of £ /E,, is more for Graphite/Epoxy material, in
comparison with Glass/Epoxy. The assumed mean values of the random variables used are
given in Table 1.

Validation of the perturbation technique used for the present problem was done by
comparing it with the results from a Monte Carlo simulation study as reported in an earlier
paper (Salim et al. 1994). Fig. 1, shows results from the Monte Carlo simulation, compared
with the present approximation for a [90°] square Graphite/Epoxy plate with all the four sides
simply supported. The ratio SD /Mean is assumed to be fixed at 0.10 for all the four primary
random variables. Here the SD of fundamental and higher natural frequencies @’ are plotted
against the change in SD of input RVs. As indicated by the plots, for the range of SD of
input RVs considered both results are quite close. One may, therefore, conclude that the
present approximation employing first order perturbation gives sufficiently accurate results for
the free vibration problem under consideration.

The mean values of natural frequencies for a [90°] lamina simply supported along all the
edges is given in Table 2, for various aspect ratios. Table 3 gives mean of natural frequencies
for a square laminate, with various stacking sequences.

Fig. 2, gives the plot of variation of SD of natural frequencies @’ of a [90°] square lamina
with variation in SD of longitudinal modulus E,,. Hence, only E,; is random, all other
parameters are deterministic as SD of all other RVs are assumed to be zero. Figs. 3 , 4 and 5
show similar results for the other RVs —E,, the transverse modulus, i, the Poisson's ratio,
and G,, the shear modulus. The SD of natural frequencies are affected most by the change in
SD of the longitudinal modulus E,;,. The fundamental frequency is sensitive to changes in E,,
E,, and u,,. We can see that the influence of SD of input RVs on SD of natural frequencies
diminishes with increase in the mode for the above three cases. If we consider the magnitude
of effect on the SD of natural frequencies by the SD of each of the input RVs —the order E,
G, E and u,, shows progressively decreasing influence.

Fig. 6 shows the influence of simultaneous change in the SD of all the input RVs on the
SD of the natural frequencies. Here all the basic RVs are assumed to have the same ratio of

Table 1 Mean of primary random variables

Random variable Graphite/Epoxy Glass/Epoxy
E, 181.0 GPa 53.78 GPa
E,, 10.3 GPa 17.93 GPa
1% 0.28 0.25

Gy 7.17 GPa 8.963 GPa
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Fig. 1 Normalized SD of natural frequencies @', plotted against SD of input RVs. The present ap-
proximation compared with results from a Monte Carlo simulation. [90°] laminate, AR=1.0.
Graphite/Epoxy (Salim et al. 1994)

Table 2 Mean of natural frequencies o, for different aspect ratios. [90°]
lamina, all sides simply supported. Graphite/Epoxy (Hz’)

AR 1st 2nd 3rd 4th

0.5 0.15044E-02  0.32505E-02  0.61606E-02  0.10235E-01
1.0 0.10679E-02  0.15044E-02  0.22319E-02  0.32505E-02
20 0.95878E-03  0.10679E-02  0.12498E-02  0.15044E-02

Table 3 Mean of natural frequencies @', for different stacking sequences. Square
plate, all sides simply supported. Graphite/Epoxy (Hz’)

Stacking sequence 1st 2nd 3rd 4th
[90°=0°], 0.959E-03  0.139E-02  0.212E-02  0.314E-02
[45°] 0.123E-02  0.309E+00  0.393E+00  0.411E+00
[60°] 0.130E-02  0.361E+00  0.402E+00  0.431E+00
[45°=0°], 0.110E-02  0.277E+00  0.352E+00  0.369E+00
0.150

0.125

o.100

0
0
N
o

0.050

©*, SD/Mean

0.025

0.000 1 1 1 )
0.00 0.05 0.10 0.15 0.20
Input RV, SD / Mean

Fig. 2 [90°] laminate, AR=1, all sides simply supported, sensitivity of SD of normalized natural fre-
quencies @ to SD of input RV Ej;. SD of all other input RVs kept zero. Graphite/Epoxy
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Fig. 3 [90°] laminate, AR=1, all sides simply supported, sensitivity of SD of normalized natural fre-
quencies @ to SD of input RV E,,. SD of all other input RVs kept zero. Graphite/Epoxy

©.00125

0.00100

0.00075

0.00025

SARNASARS RS AR RARRNLLEAS!

1 Il I —l

0.00 0.05 o.10 0.18 0.20
Input RV, sSD / Mean

Fig. 4 [90°] laminate, AR=1, all sides simply supported, sensitivity of SD of normalized natural fre-
quencies @’ to SD of input RV u,,. SD of all other input RVs kept zero. Graphite/Epoxy

SD to mean. The results are for a (90°) lamina with aspect ratio 0.5. All the four sides are
assumed to be simply supported. The first natural frequency is affected least. Higher and
higher modes are progressively affected more by the change in SD of input RVs.
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Fig. 5 [90°] laminate, AR=1, all sides simply supported, sensitivity of SD of normalized natural fre-
quencies @’ to SD of input RV G,,. SD of all other input RVs kept zero. Graphite/Epoxy
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Fig. 6 [90°] laminate, AR=0.5, all sides simply supported. Variation of SD of normalized natural fre-
quencies @’ with SD of input RVs. Graphite/Epoxy

The influence of change in aspect ratio on the SD of natural frequencies is shown by Fig. 7.
Here all the input RVs are assumed to have a SD equal to 10% of their mean value. The
results are for a [90°] lamina. The nature of variation of the SD of frequencies at low aspect
ratios is strongly dependent on the mode we are considering. But the result seems to reach
plateau as we approach higher aspect ratios. At aspect ratios above 2.0, the SD of first mode
frequency is the largest, with gradually decreasing values for the higher modes compared to
the first mode. At low aspect ratios this pattern is not present.

Fig. 8 illustrates the influence of change in aspect ratio on the SD of fundamental
frequency at different SDs of input RVs, with all of them having the same SD to Mean ratio.
When the SD of input RVs is low the change in aspect ratio doesn't seem to affect the SD of
natural frequencies @’. As the SD of input RVs is increased, the influence of change in aspect
ratio increases. The change in aspect ratio doesn't seem to affect the SD of @’ beyond a limit,
depending on the SD of input RVs.

Results for the case of a [90°=0°], square plate is shown in Fig. 9 for the first four
frequencies.

Figs. 10 and 11 show the results for [45°] and [45°=0°], laminates. The plots for different
modes are closely packed together in both the cases. The 0° layers in the second case doesn't
seem to have much influence on the output SD.
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Fig. 7 [90°] laminate, AR=1, all sides simply supported. Variation of SD of normalized natural fre-

quencies @ with change in aspect ratio, for different modes. SD of input RVs 10% of mean.
Graphite/Epoxy
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Fig. 8 [90°] laminate, all sides simply supported. Variation of SD of normalized fundamental frequency
with change in aspect ratio, for different SDs of input RVs. Graphite/Epoxy
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Fig. 9 [90°=0°], laminate, AR=1, all sides simply supported. Variation of SD of normalized natural fre
quencies @ with SD of input RVs. Graphite/Epoxy

Results for [60°] laminate configuration is shown in Fig. 12 for a square plate.

Some results for a typical Glass/Epoxy composite are now presented. Table 4 gives mean
values of natural frequencies for a [90°] lamina, simply supported along all the four edges.
Fig. 13 gives the variation of SD of natural frequencies with the SD of input RVs for an

0.000 4 1 L 1 1
0.00 0.08 .10 0.18 0.20
Input RV, sSD / Mean

Fig. 10 [45°] laminate, AR=1, all sides simply supported. Variation of SD of normalized natural fre-
quencies @’ with SD of input RVs. Graphite/Epoxy
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Fig. 11 [45°=0°], laminate, AR=1, all sides simply supported. Variation of SD of normalized natural fre-
quencies @ with SD of input RVs. Graphite/Epoxy
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Fig. 12 [60°] laminate, AR=1, all sides simply supported. Variation of SD of normalized natural fre-
quencies @' with SD of input RVs. Graphite/Epoxy

aspect ratio of 0.5. The results are for a [90°] lamina, simply supported on all the four edges.
The magnitude of SD of the natural frequencies are comparable to those for a similar
Graphite/Epoxy configuration. The rate of change of the SD of the frequencies with the input
parameters is different in these two cases.

Influence of the change in aspect ratio of the plate on the SD of natural frequencies is
shown by Fig. 14, for different levels of SD of input RVs. The result is for a [90°] lamina
with all the sides simply supported. At low levels of SD of input RVs the change in aspect
ratio has practically no effect on the SD of first natural frequency. At higher levels of SD of
input RVs the response SD dips to the lowest value at aspect ratio 1.0, to to again increase to
higher values. All the response curves ultimately reach a plateau and further increase in aspect

Table 4 Mean of natural frequencies @', for different aspect ratios. [90°]
lamina, all sides simply supported. Glass/Epoxy. (Hz’)

AR 1st 2nd 3rd 4th

0.5 0.10062E-02  0.31890E-02  0.68269E-02  0.73687E-02
1.0 0.46055E-03  0.10062E-02  0.19157E-02  0.31890E-02
2.0 0.32412E-03  0.46055E-03  0.68792E-03  0.10062E-02
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Fig. 13 Test case Glass/Epoxy composite. [90°] laminate, AR=0.5, all sides simply supported. Variation
of SD of normalized natural frequencies @’ with SD of input RVs
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Fig. 14 Test case glass/epoxy composite. [90°] laminate, all sides simply supported. Variation of SD of
normalized fundamental frequency o’ with change in aspect ratio, for different SDs of input RVs

ratio doesn't seem to have much effect on the SD of first natural frequency.

5. Conclusions

The perturbation approximation gives sufficiently accurate results for the problem under
consideration. In general the SD of natural frequencies are affected most by the change in E,,.
The nature of influence of the input RVs are strongly dependent on the mode of vibration and
the extent of randomness of the variable under consideration. The nature of variation of SD of
normal mode frequencies is strongly dependent on the mode at low aspect ratios. Change in
aspect ratio beyond a limit doesn't seem to affect the SD of natural frequencies. At low levels
of SD of input RVs change in aspect ratio, fiber orientation etc. doesn't seem to have much
effect on the SD of natural frequencies. SD of natural frequencies have a maximum value for
a laminate with 45° fiber orientation. The outer plies of laminates have a dominating
influence on the SD of natural frequencies. In general the results show a linear behavior for
the change in SD of natural frequencies with the SD of the input RVs. The rate and order of
change of natural frequencies with change in SD of input RVs is strongly dependent on the
stacking sequence and the boundary conditions.
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