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Optimisation of symmetric laminates with internal
line supports for maximum buckling load

M. Walker+t

CADENCE, Technikon Natal, Durban, South Africa

Abstract. Finite element solutions are presented for the optimal design of symmetrically laminated
rectangular plates with various types of internal line supports. These plates are subject to a combination
of simply supported, clamped and free boundary conditions. The design objective is the maximisation
of the biaxial buckling load. This is achieved by determining the fibre orientations optimally with the
effects of bending-twisting coupling taken into account. The finite element method coupled with an
optimisation routine is employed in analysing and optimising the laminated plate designs. The effect of
internal line support type and boundary conditions on the optimal ply angles and the buckling load are
numerically studied. The laminate behavior with respect to fibre orientation changes significantly in the
presence of internal line supports as compared to that of a laminate where there is no internal
supporting. This change in behavior has significant implications for design optimisation as the optimal
values of design variables with or without internal supporting differ substantially.
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1. Introduction

The use of laminated composite materials as structural components is becoming widespread
in several branches of engineering, particularly those of the aerospace and marine industries.
These structures often contain components which may be modeled as rectangular plates. A
common type of composite plate is the symmetrically laminated angle ply configuration
which avoids bending-stretching effects by virtue of mid-plane symmetry.

An important failure mode for these plates is buckling under in-plane compressive loading.
The load carrying capacity of these plates can be improved by the use of internal line
supports (Abrate 1995), and also by using the ply angle as a design variable, and determining
these optimally (Walker et al. 1995).

One phenomenon associated with symmetric angle-ply configurations is the occurrence of
bending-twisting coupling which may cause significantly different results as compared to
cases in which this coupling is exactly zero (Jones 1975). This effect becomes even more
pronounced for laminates with few layers. Due to this coupling, closed-form solutions cannot
be obtained for any of the boundary conditions and this situation led to the neglecting of
bending-twisting coupling in several studies involving the optimisation of symmetric
laminates under buckling loads (Chen and Bert 1976, Hirano 1979, Joshi and Iyengar 1985).
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The present study adopts a numerical approach to include the effect of bending-twisting
coupling and to obtain the optimal design solutions for a variety of internal line support types
and boundary conditions.

Optimisation of composite plates with respect to ply angles to maximise the critical
buckling load is necessary to realise the full potential of fiber-reinforced materials. Results
obtained using different approaches can be found in the literature, but there is little reported
on the optimal design of laminates with bending-twisting accounted for (Walker et al. 1995),
with internal line supports and different boundary conditions. The finite element formulation
which is used in the present study is based on Mindlin type theory for laminated composite
plates and shells. Numerical results are given for various combinations of boundary
conditions and internal line support types, and these are compared to optimally designed
plates without such supports. As illustrated in the present paper, an optimal design for
maximum buckling load based on plates without internal supporting becomes irrelevant and
leads to erroneous results in the presence of internal supports.

2. Buckling of symmetric laminates

Consider a symmetrically laminated rectangular plate of length, a, width b and thickness /
which consists of n orthotropic layers with fiber angles 6,, k=1, 2, ---, K, as shown in Fig. 1.
The plate is defined in the Cartesian coordinates x, y and z with axes x and y lying on the
middle surface of the plate. The plate is subjected to biaxial compressive forces N, and N, in
the x and y directions, respectively, as shown in Fig. 1. Plates with these characteristics are
commonly known as symmetric angle-ply laminates.

In the present study, a first-order shear deformable theory is employed to analyse the
problem and the following displacement field is assumed

U :Lla(x,Y)'*’Zl//x(xay)

V=, (x,y)+zy(x,y)
W:W(X’Y) (1)
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Fig. 1 Geometry and loading of the laminated plate
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where u,, v, and w, are the displacements of the reference surface in the x, y and z direction,
respectively, and y,, y, are the rotations of the transverse normal about the x and y axes.

The in-plane strain components can be written as a sum of the extensional and flexural
parts and they are given as

{et={&}+z{&} 2

where
{e}' =(&, & &)
and
Uy Y
fet=| v, | {e)=| w 3)
Uyy TV Ye + Y,

Here. a subscript after the comma denotes differentiation with respect to the variable
following the comma.
The transverse shear strains are obtained from

yx: wu X + l//\
= = v @

The equations for in-plane stresses of the k-th layer under a plane stress state may be written
as

Oy gn glz Qlﬁ Ex B
o | = glz gzz gzs & |=[Q ) ie} ®)
Oy *) Q16

Q 26 Q 66 Eu
(k)

and similarly for the transverse shear stresses as

Ty- 644 645 Y= c 6
=0 — _ — o
Te )y Qus Oss “© Yz [ ](k){}’} (6)
where o is a shear correction factor (Reddy 1984), and -Q—ij are the transformed stiffnesses.

Egs. (5) and (6) may be written in compact form as

o} :ékg (7)

where ék refers to the full matrix with elements (_Q_,,-)k,, and o; and € represent in-plane and
transverse stresses and strains, respectively. The resulting shear forces and moments acting on
the plate are obtained by integrating the stresses through the laminate thickness, viz.

VY =V V)=[" (T, 1.)dz

h2
MY =M., My, My)=[ (01,0, 0) 2d ®)
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The relations between V and M, and the strains are given by

{Vi=ISKn., {M}=[Dlg} ©)

where the stiffness matrices [S] and [D] are computed from

[Q luz2dz (10)

From the condition that the potential energy of the plate is stationary at equilibrium, and
neglecting the pre-buckling effects, the equations governing the biaxial buckling of the shear
deformable laminate are obtained as

M, . +2M,, ,, +M,  +Nw , +Nyw , =0
M, +M,, -V. =0
M,, +M,, -V,=0 (11)

where N, and N, are the pre-buckling stress components which are shown in Fig. 1. As no
simplifications are assumed on the elements of the [D] matrix, Egs. (11) include the bending-
twisting coupling as exhibited by virtue of D,#0, D,,+0.

3. Finite element formulation

We now consider the finite element formulation of the problem. Let the region § of the
plate be divided into n sub-regions S, (5,€S; r=1, 2, ---, n) such that

)= 1% () (12)
r=1
where IT and IT" are potential energies of the plate and the element, respectively, and u is the
displacement vector. Using the same shape functions associated with node i (i=1, 2, ---, n), §,
(x, y), for interpolating the variables in each element, we can write
u=Yy Six,y)u (13)
i=1

where u; is the value of the displacement vector corresponding to node, i, and is given by

. . , ; i T
w={u®,vO, w?, yo, Y} (14)

The static buckling problem reduces to a generalised eigenvalue problem of the
conventional form, viz.

(K]+A[Ks D {u}=0 (15)

where [K] is the stiffness matrix and [K] is the initial stress matrix. The lowest eigenvalue of
the homogeneous system, Eq. (15) yields to buckling load.
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4. Optimal design problem

The objective of the design problem is to maximise the buckling loads N, and N, for a
given thickness /# by optimally determining the fiber orientations given by 8,=( - 1)**' 8 for k<
K/2 and 6=(-1)0 for k>K/2+1. Let N=N and N=AN where 0<A<1 is the
proportionality constant. The buckling load N(6) is given by

N(6)=min,, , [N (m, n, 6)] (16)

where N,,, is the buckling load corresponding to the half-wave numbers m and » in the x and
y directions, respectively. The design objective is to maximise N(6) with respect to 6, viz.

N & mfz)ix[N (0], 0°<0<90° 17

where N(6) is determined from the finite element solution of the eigenvalue problem given by
Eq. (15). The optimisation procedure involves the stages of evaluating the buckling load N(6)
for a given O and improving the fiber orientation to maximise N. Thus, the computational
solution consists of successive stages of analysis and optimisation until a convergence is
obtained and the optimal angle 6,, is determined within a specified accuracy. In the

optimisation stage, the Golden Section (Haftka and Giirdal 1992) method is employed.

5. Numerical results and discussion
5.1. Verification

In order to verify the finite element formulation described above, some solutions are
compared with those available in the literature. A single-layered simply supported square
plate was modeled with 6=30°, A=0 (uniaxial compression) and material properties E,=60.7
Gpa, E,=24.8 GPa, G ;=12 GPa and v,=0.23. The analytical solution for this problem is
available in Narita and Leissa (1990). Table 1 illustrates and effect of the number of finite
elements on the non-dimensionalised buckling load N, where

3
= Naa? and D, ___Emr
D, 12(1 - vi,vy)
The plate thickness ratio is specified as #/b=0.01 m. The use of 256 elements for a square

plate resulted in an error of less than 0.08% as compared to the analytical solutions. This
mesh density was accepted as providing sufficient accuracy. Consequently, in the present

N,

(18)

Table 1 Effect of the number of ele-
ments on the buckling load

Number of elements N,
10x 10 25.57
1313 25.33
16X 16 25.22
2020 25.14

Exact 25.20
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study, a square plate is meshed with 256 elements. Plates of aspect ratios other than 1 are
meshed with a corresponding proportion of 256 elements.

5.2. Numerical results

Numerical results are given for a typical T300/5208 graphite/epoxy material with E,=181
GPa, E,=10.3 GPa, G,=7.17 GPa and v,,=0.28. The symmetric plate is constructed of four
equal thickness layers with 0,=— 8,=— 6,=6,=0 and the thickness ratio is specified as h/b=
0.01. Different combinations of free (F), simply supported (S) and clamped (C) boundary
conditions are implemented at the four edges of the plate. In particular, five different
combinations are studied, namely, (F,S,F,S), (F,S,C,S), (§,5,5,S), (C,S,C,S) and (C, C,
C, C), where the first letter refers to the first plate edge, and the others follow in the anti-
clockwise direction as shown in Fig. 1.

The plates also have one of three internal simple-support types implemented, and these are
referred to as types 1, 2 and 3. Type 1 consists of a simple point-support at the center of the
plate, type 2 is a line support extending from the middle of second plate side to the center,
and type 3 is a line support extending from the middle of the second side to the middle of the
opposite side.

The results presented in this section are obtained for rectangular plates with aspect ratios
varying between 0.5 and 2. The non-dimensionalised buckling parameter N, is defined as

Nb*
h'E,

where N is the critical buckling load, and E, is a reference value having the dimension of
Young's modulus and is taken as £,=1 GPa.

The effect of the internal support type on the buckling load N, and fibre angle 0 is shown
in Fig. 2, and these results are compared to a plate with no internal supports. Here a/b=1.4
and A=1, while (S,S,S,S) and (C,C, C,C) boundary conditions are used. For each internal

Nh:

(19)
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Fig. 2 Effect of internal support type on maximum buckling load and optimal fiber angle for plates with
aspect ratios of 1.4 and A=1
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Fig. 3 Effect of the buckling load on the fiber angle for the five cases of boundary conditions, with a/b=

1.4 and A=1

support type the maximum buckling load occurs at a different fibre angle. As the number of
internal supports increase, so the buckling load increases, and thus support type 3 gives the
highest buckling loads.

The dependence of the buckling load on the fiber angle is investigated for the five cases
of boundary conditions in Fig. 3. The plate has an aspect ratio a/b=1.4 and is biaxially
loaded viz. A=1 while the internal support type used is type 1. Here (F,S,F,S) gives the
lowest buckling load and (C, C, C, C) the highest. The optimal fibre angle for (S, S, S, S) and
(C,C,C,C) occur very close to 45° due to the symmetry of the boundry and loading
conditions.

It is clear that the maximum buckling load for a given combination of boundary conditions
and internal support type the optimal fibre angle can be several times higher than the
buckling load at other fibre angles. This fact emphasises the importance of carrying out
optimization in design work of this nature to obtain the best performance of fibre composite
plates.

Table 2 compares the optimal fibre angle and maximum buckling load of plates with type 1
internal supports to those with no internal supporting, ranging in size from a/b=0.5 to a/b=2.0,
for all five boundary cases. Here, the loading is biaxial. As expected the (C,C,C,C)
boundary case gives the highest buckling loads. With all five boundry cases the maximum
buckling load decreases as the aspect ratio increases, while the fibre angle follows no trend
except in the case of (§,S,S,S), with internal support type 1, where 6 increases with
increasing a/b. Once again, it is clear that internal supports help increase an optimally
designed plate's maximum buckling load.

Table 3 gives a comparison of the effect on the buckling load of the three internal support
types for plates with A=1. Here the plates are either simply supported or clamped. N,
decreases with an increase in the aspect ratio while no trend is discernable for the optimal
fibre angle, except, as was noted above, in the case of (S, S, S, S) and internal support type 1.
As more internal supports are added so the maximum buckling loads increase, and therefore
internal support type 3 gives significantly larger buckling loads.
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Table 2 Comparison of the effect of the boundary conditions on maximum buckling load and optimal
fiber angle for plates with type 1 internal support and no internal supports, for A=1

S.S.S,S) (F.S,F,S) (F,.S,C,S)
No support Type 1 No support Type 1 No support Type 1
a / b N b 9 N b 60[)1 N b 9 N b 6{),)1 N b Bl)[)/ N b 90,71

upt opt

0.50 4059 25.0° 430.0 39.6° 252.0 25.0° 252.6 25.0° 2523 25.0° 2527 248°
0.75 1847 20.2° - 270.0 45.0° 113.1 24.1° 1133 23.1° 1133 248° 1135 238°
1.00 1215 45.0° 1989 450° 625 20.7° 625 20.7° 639 41.1° 654 37.9°
1.25 1032 61.8° 1603 45.0° 389 31.0° 389 31.0° 41.1 244° 488 47.7°
1.50 103.5 68.2° 1355 458° 27.1 303° 275 36.2° 29.8 54.2° 402 52.0°
1.75 1024 66.3° 1186 474° 199 29.8° 206 37.7° 282 720° 351 558°
200 101.1 65.1° 1070 50.8° 153 29.5° 161 38.1° 282 739° 320 589°

Table 2 Continued
(C,S,C,S) (C.CC0O
No support Type 1 No support Type 1
alb N, 6, N, 6, N, 6, N, 0,

opt opt opt (7:13

050 4153 23.1° 5101 47.0° 9421 34.6° 9559 31.5°
0.75 2507 63.7° 351.1 44.1° 450.7 343° 4782 46.8°
1.00 2440 56.3° 2648 43.1° 2652 63.0° 3506 45.0°
1.25 2300 63.9° 229.6 64.6° 2545 57.7° 12812 44.1°
1.50 231.5 58.7° 2358 62.5° 238.6 539° 239.0 52.0°
1.75 2255 55.6° 2341 59.2° 2354 59.6° 2356 60.5°
200 2256 60.1° 2291 57.0° 230.2 56.8° 2331 59.2°

Table 3 Effect of internal support type on maximum buckling load and optimal fiber angle for A=1

Type 1 Type 2 Type 3
S,S,S,85) (C,CCO S, 5,S,5) (C,C,C, 0O S, S,S,9) (C,C,C, 0O

a / b N b 6npl N b enpr N b 9 N b 90[7/ N b 90[1[ N b eupl

opt

0.5 430.0 39.6° 9559 31.5° 4814 44.1° 10435 31.5° 5248 46.9° 1082.6 30.3°
06 346.6 43.9° 6779 29.5° 4068 49.6° 740.0 30.3° 4549 524° 7702 42.7°
0.7 290.8 449° 5141 453° 3549 50.6° 6278 551° 418.0 60.5° 7030 64.6°
0.8 251.1 45.0° 4430 46.2° 3150 50.0° 5624 52.7° 4159 68.5° 6927 63.5°
09 2212 450° 3911 458° 2823 49.1° 5059 50.6° 4139 67.0° 6793 61.1°
1.0 1989 45.0° 3506 450° 2553 48.1° 4577 489° 4103 658° 6641 59.2°
1.2 166.6 45.0° 2927 44.1° 2146 47.0° 3854 46.8° 4012 642° 6468 62.7°
14 1443 453° 2522 453° 1837 458° 3274 449° 3974 66.8° 6364 59.6°
1.6 1280 46.2° 236.6 60.5° 1599 45.0° 283.7 449° 3949 651° 6304 62.3°
1.8 1159 48.0° 2353 604° 1412 45.0° 2659 639° 391.8 64.9° 6252 60.5°
20 107.0 50.8° 233.1 59.2° 1265 46.0° 2625 61.5° 391.0 66.1° 622.6 61.8°

6. Conclusions

A finite element solution for the optimal design of laminated composite plates with internal
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line supports for maximum buckling load was presented. This formulation is based on
Mindlin-type thin laminated plate theory. The numerical approach employed in the present
study is necessitated by the fact that the inclusion of the bending-twisting coupling effect and
the consideration of various combinations of free, simply supported boundary and clamped
boundary conditions, as well as internal supports, rule out an analytical approach.

The effect of optimisation on the buckling loads was investigated by plotting the buckling
load against the design variable (Figs. 2 and 3). The results show that the difference in the
buckling loads of optimal and non-optimal plates could be quite substantial, emphasising the
importance of optimisation for fiber composite structures. Also, the effect of internal
supporting on the optimal fibre angle and maximum buckling load was demonstrated.

As expected the maximum buckling load increases as the number of internal supports
increase. Also, as the aspect ratio increases so the plate becomes more unstable and the
maximum buckling load decreases. Significant differences in the optimal fibre orientations
and buckling loads are observed for the cases with and without internal supports. Thus, an
optimal design for maximum buckling load based on the plates without internal supporting
becomes irrelevant and leads to erroneous results in the presence of internal supports.
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