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Direct implementation of stochastic linearization
for SDOF systems with general hysteresis

S. Dobsont, M. Noorit, Z. Houit and M. Dimentberg it
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Worcester Polytechnic Institute, Worcester, MA 01609, U.S.A.

Abstract. The first and second moments of response variables for SDOF systems with hysteretic
nonlinearity are obtained by a direct linearization procedure. This adaptation in the implementation of
well-known statistical linearization methods, provides concise, model-independent linearization
coefficients that are well-suited for numerical solution. The method may be applied to systems which
incorporate any hysteresis model governed by a differential constitutive equation, and may be used for
zero or non-zero mean random vibration. The implementation eliminates the effort of analytically
deriving specific linearization coefficients for new hysteresis models. In doing so, the procedure of
stochastic analysis is made independent from the task of physical modeling of hysteretic systems. In
this study, systems with three different hysteresis models are analyzed under various zero and non-zero
mean Gaussian White noise inputs. Results are shown to be in agreement with previous linearization
studies and Monte Carlo Simulation.
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1. Introduction

The analysis of structural members under intense random (i.e., earthquake) excitation,
requires the incorporation of nonlinear stress-strain relationships into solution methods for
random vibration. Exact solutions for the response statistics of nonlinear systems are very
limited, particularly when the material behavior is hysteretic, having a multi-valued force-
deformation pattern with nonconservative energy dissipation. The lack of closed form
solutions for hysteretic random oscillators necessitates the use of accurate methods for
approximate solution.

Since the first random vibration study of an inelastic system, performed by Caughey (1960),
many researchers have applied various approximation methods to nonlinear stochastic analysis.
These include amongst others, moment closure techniques (Iyengar and Dash 1978, Crandall
1980, Noori and Davoodi 1990), stochastic averaging (Roberts 1987, Roberts and Spanos
1986), equivalent nonlinear systems (Nielsen et al. 1990), and an energy dissipation balancing
procedure by Cai and Lin (1990). While these methods offer alternative means for the
analysis of hysteretic or generally nonlinear systems, the most widely published of
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approximation methods has been that of Equivalent Linearization. Formulations of the
linearization procedure can be found in Spanos (1981), Iwan (1973) and Caughey (1963).
Application of linearization for multi-degree of freedom hysteretic structural simulation,
include work by Pradlwater and Schuéler (1992), while the majority of researchers working in
this field have utilized linearization for the study of SDOF hysteretic systems.

Some of the more popular hysteresis models for SDOF systems follow a rate-type format,
where the governing equations are as follows:

i +28ou + aw'u +(1-0)w'z = f(t) ‘ (1)
z=g(u,z) )

where u(f) is system displacement, z(7) is proportional to the hysteretic restoring force,  and @
are damping and natural frequency parameters, respectively; o is a ratio of post-yield to pre-
yield stiffness, and g(, z) is a general nonlinear constitutive equation that defines the
hysteretic behavior.

Equivalent Linearization has been used to analyze the system of Egs. (1) and (2) using
several different mathematical models for hysteresis (Wen 1980, Baber and Wen 1981, Baber
1984, Baber and Noori 1985, 1986, and Foliente 1993), with approximate solutions
comparing favorably to results obtained by pure Monte Carlo Simulation. While the
procedure of linearization for each of these models has been identical, following the format
presented by Atalik and Utku (1976), each unique constitutive equation has required a unique
analytical derivation for the equivalent linear system parameters. Based upon examination of
the derivations associated with these models, it is reasonable to conclude that as hysteresis
models have evolved into more sophisticated analytical forms to describe progressively more
generalized stress-strain behavior, the analytical effort of linearization has become increasingly
complex and tedious.

The focus of this research is to present a procedure for obtaining the response statistics
(first and second moments) of the SDOF system, that is generally applicable to any rate-type
constitutive model for the hysteretic nonlinearity g(%, z). The expressions for equivalent linear
system parameters will be posed in a form that is convenient for numerical solution, so as to
allow for a fully automated linearization process, to be accomplished by computer code.

2. Models for hysteresis

Statistical linearization shall be performed upon three different rate-type analytical models
for hysteresis. Bouc (1967) introduced a model in the differential format of Eq. (2), which has
since been expanded by Wen (1976), Baber and Wen (1981) and Baber and Noori (1985) to
include material degradation and loop pinching properties. The original form of the Bouc-
Wen model is given by:

z=Au—Plullz|" z-yulz|" 3)

where A, B, v and n are parameters which regulate the shape of the hysteresis loop. Wen
(1976) showed the versatility of this model by altering the values of the shape parameters. An
example of a Bouc-Wen hysteresis loop pattern is shown in Fig. 1.

A second hysteresis model is presented by Baber and Noori (1986), and offers stiffness
reduction in the unloading regimes of the stress-strain cycle. The unloading stiffness reduction
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Like the previous model, a variety of loop patterns may be generated by adjusting the shape
parameters A, z, z,, Zu, Z, and y. Furthermore, the USR model is capable of generating
asymmetric hysteresis patterns. An example of USR hysteresis is shown in Fig. 2.

Finally, a recently proposed model (Dobson 1984), is given by the following:

z=Au+B(u+|u |)(z+|z|) +C(u+|u |)(z—|z|)
+D@~|ul)z+|z|) +E@—|a )@~ |z|) ©)

Similar to the BW and USR models, the above defines the hysteretic pattern in discrete
“branches”. Also similar to piecewise-linear models (Zaiming et al. 1991), the functions
containing absolute values act as switches; all but one of which vanish depending upon the
signs of the state variables. The advantage of this particular form is that the hysteretic
pattern can be “custom built", since each of the shape parameters B, C, D and E uniquely
regulates one portion of the loading cycle, and the entire loop pattern is specified in one
concise differential equation. Depending upon the signs of these parameters, linear, softening
or hardening curves maybe generated independently, to form the complete cycle. By making
these parameters time or system dependent, the loop pattern may become dynamic, to
account for material degradation.

The General Asymmetric Model offers a broad range of loop patterns, and is particularly
well-suited for systems with dramatic asymmetry. Such a system under sinusoidal loading is
shown in Fig. 3.

3. Statistical equivalent linearization

The method of equivalent linearization has been proven effective for providing first and
second moments of response for rate-type hysteretic systems (Barber 1984, 1985, 1986, 1981,
Dobson 1984, Foliente 1993, Park et al. 1986, Wen 1980). The procedure calls for writing
the system of Egs. (1) and (2) in state space format; letting q,=u, ¢,=u and g,=z be non-zero
mean random variables, then from Egs. (1) and (2):

q:1=9> (62)

Q2=—awZQ1—ZCwQ2_(1_a)w2q3+f(t) (6b)

9:=8(q2 q) (6¢)
Taking the expected value of each equation above, with u=E(g,) and p=E(f1)):

= L (72)

[L=—00" t-20o i~ (1-0) 0" s+ 1 (7b)

1=E(g(q2 q5)) (70)

Subtracting Eqgs. (7) from (6) yields zero-mean random variables, y=q,— i, and F=(f— )
such that:

Yi=Y2 (8a)
yr=—aw’y,-2{0y,~(1-d) 0’y;+F (8b)
y:=8(q2q:)—E(g) (8¢)

The nonlinear Eq. (8) involving the constitutive hysteresis model g(g,, g;) maybe replaced
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with the linear form:
y3=Cey,+K.y; ©)

where C, and K, are unknown equivalent damping and stiffness parameters, respectively. This
substitution allows for the generation of a linear system of ODEs whose solution provides
response covariances,

Sl Sll- -Sll_
S2 S12 SlZ
S3 S13 LS.'13
Si=E(y;y;) {S}= S, = Y E Szz (10)
SS S23 S23
_S6_ _S33J _S33J
0o 2 0 0 0 0 [0 ]
—aw* 2o (1-dw* 1 0 0 E(y.F)
0 C K. 0 1 0 0
=l 0 200 0 4l =201-0e* o | BIt|Ey,r
0 0 ~aw  C. K. -2{0 —(1-0)w’ E(ysF)
0 0 0 0 2C. 2K. 0

Excitation of Gaussian White Noise simplifies E(y F)=E(y,F)=0, E(y,F)=nW,, where W, is
power spectral density. Together, Eqs. (7) and (10) govern the means and covariances of
system response. They may be solved simultaneously if a suitable choice for C, and K, can
be made.

For closure, C, and K, are chosen to minimize the error of the linear approximation in Eq.
(9), in a statistical sense. Following the results of Atalik and Utku (1976) under certain
conditions, including the assumption that the state variables of velocity and hysteretic force
are jointly Gaussian, the choice which minimizes error is given by the following:

_ | dgu,z)
c. —E[———-—-ad ] (1)
K =E[M] (12)
0z

These equations for equivalent stiffness and damping coefficients are obtained from an
expression that is applicable to MDOF systems with general (not necessarily hysteretic)
nonlinearity. It should be noted that the values of these coefficients are system dependent, and
must be continually updated as the system of ODE's for means and covariances is solved
numerically.

The Bouc-Wen model of Eq. (3) and its various extensions have been studied under
Gaussian White Noise input using the procedure outlined above (Baber 1984, 1985, 1986,
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Fig. 4 Zero-mean analysis of USR model using previous linearization

1981, Wen 1976). It must be emphasized however, that any changes introduced to any
hysteretic model, which alter the partial derivatives contained in Eqs. (11) and (12), requires
analytical effort to re-derive new expected value expressions. For the USR model of Eq. (4),
the derivation of equivalent linear coefficients, using the approach of Egs. (11) and (12), is
presented by Dobson et al. (1997). The process is tedious and time consuming, even under
the simplification of zero-mean random variables. Taking the partial derivatives of the
nonlinear model expands the function into twenty-four different additive sub-functions for
equivalent damping, and forty additional for stiffness. The expected value of each of these
functions must be evaluated at each time step of a numerical routine which solves the system
response statistics.

The result of this procedure is shown in Fig. 4, as the RMS responses of displacement,
velocity and hysteretic force under three levels of Power Spectral Density, are shown and
compared to results of approximately 700 samples of Monte Carlo Simulation. Parameter
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values for the system are as follows: {=0.10, w=1.0, @=0.05, A=1, n=1, p=1, z,=-z_=0.1,
z4=1, z,=0.005. Overall results are good, especially at low levels of PSD, as would be
expected. However, the linearization progressively underestimates displacement and
overestimates hysteretic force as excitation intensity increases.

4. A different implementation of stochastic linearization

The hysteretic system of Eqgs. (1) and (2) is an example of a system in which there is only one
state variable that is governed by a nonlinear differential equation. This is an advantage to a
system with multiple nonlinearities; and leads to the development of linearization coefficients that
differs from the definitions given in Egs. (11) and (12). Another issue which contributes to this
development is the fact that although a linear system is used as an approximation to the equations
governing means and covariances, the response dependence of this linear system prevents its
analytical solution. This system dependence of the linearization coefficients influences their new
definition.

Consider the error of linearization; the difference between the nonlinear system and the
approximation of Eq. (9):

0
{e} = 0 (13)
g-E(g)-C.y,~K.y;

Only the third variable is nonzero, therefore, the covariances of the error terms are all zero,
except for the term:

E(ee?)=E[(g ~E(g)—Ccy:~K.ys)] (14)

Since C, and K, are response dependent, and require continual re-evaluation in the
numerical solution of Eq. (10), they may be treated as constants at each discrete time step,
and brought outside the expected value operator. Taking partial derivatives of Eq. (14) with
respect to C, and K,, and equating to zero, leads to the following:

aaéz =—2E (gy,) +2E (y2E(2)) +2K.Ss+2C.8,=0 (15)
322 =—2E (gy:)+ 2E (y+E (g )) +2K. S 4 +2C.S5s=0 (16)

If E(g) is assumed to be known at each time step, then E(y,E(g))=E(y,)E(g)=0=E(y;E(g)),
since y, and y; are zero-mean random variables. Also noting that E(gy,)=E(gq,) — ILE(g),
E(gy;)=E(gqs) — I:E(g), leads to the solution of Egs. (15) and (16), and the specific definition
of the linearization coefficients:

C, = SeE(gu)—SsE(g2)~SeE (g) tha+SsE(g) 113
APRPERY

_ S4E(gz)-SsE(gu)~S.E() 1 +SsE(g) it
APRPERY

17)

K.

(18)
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In essence, both the classical and currently proposed method of linearization are founded
upon the same principle, the mean-square minimization of expected error. The difference is in
the way the process is implemented, with the current method being better suited for
computational methods. The advantage to the above definition over that of Egs. (11) and (12)
is that it is posed directly in terms of the desired response statistics and only three expected
values, which also do not contain partial derivatives of the hysteresis model. With the
excitation being Gaussian white noise, # and z can be assumed to have a jointly Gaussian
probability density function, thereby allowing the evaluation of the three unknown expected
values E(g), E(gi) and E(gz), and closure of the system. Using the mean and covariance
response solutions of Egs. (7) and (10), the expected values may be obtained through Gauss-
quadrature integration. Whatever the choice of hysteretic model, Eqgs. (7), (10), (17) and (18)
remain unchanged, and the effort of linearization is reduced to simply changing the function of
g(i, z) in the three critical expected values. Often, this redefinition, or introduction of a new
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model, requires the altering of only one line of computer code, and most importantly,
completely avoids the type of analytic effort previously associated with equivalent linearization.

5. Numerical results

A computer program written in BASIC solves the system of Eqgs. (7) and (10) with a fourth-
order Runge-Kutta subroutine, and also continually updates the linearization coefficients
defined by Egs. (17) and (18). The first system studied, incorporates the USR model of Eq.
(4) under zero-mean excitation, and is a comparison between the results provided by each
implementation of linearization. Fig. 5 transposes the time histories of RMS displacement,
velocity and hysteretic restoring force found by the current method, with the results of Fig. 4.
The newly proposed implementation shows a more accurate result when judged by MCS. The
reason for this, may be due to the reduced number of numerically evaluated expected values,
and additive truncation error. There is a distinct improvement in the results for displacement

PSD = 1.0 0.5 0.1
MCS - — —
—— ——

EL
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RMS elocity
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time (sec)

Fig. 6 Zero-mean analysis of general asymmetric model
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Fig. 7 Nonzero-mean analysis of Bouc-Wen model

and hysteretic force, as the new linearization nearly coincides with purely simulated response.

The next study conducted with the new implementation of linearization was a zero-mean
analysis with the General Asymmetric model of Eq. (5). Parameter values defining the system
are given by: {=0.10, @=1.0, a=0.05, A=1, n=1, B=-25, C=0, D=0, F=0.25. Fig. 6 shows
the time histories of RMS responses for each system variable, and compares the linearization
results to 200 samples of MCS. Again, there is excellent agreement between linearization and
simulation, even at the most intense excitation.

The last analytical model to be studied using the direct linearization approach is the
original Bouc-Wen model. The system is under nonzero-mean excitation and is defined by the
following: {=0.01, w=1.0, «=0.05, A=1, n=1, B=y=0.5. Mean excitation values of f=0.2
and f=0.8 are utilized, and the response statistics are compared to MCS. Fig. 7 presents the
time profiles of mean and RMS state variables along with the result of 200 samples of MCS.
There is excellent agreement between this linearization and MCS, and furthermore, the reader
may verify the agreement between the current results and the previous work of Baber (1984),
who utilized classical linearization for the same analysis.

6. Conclusions
A procedure has been presented for obtaining first and second moments of response
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variables for a SDOF system incorporating a general hysteretic nonlinearity. The method is an
adaptation of classical linearization procedures, and eliminates the effort of analytical
derivations associated with each hysteresis model. Case studies using three different forms of
rate-type hysteresis models, have shown the method to be accurate when judged by Monte
Carlo results, and possibly more accurate then classical linearization routines, due to reduced
numerical error. It is possible that with the analytical effort removed from the task of random
vibration analysis, this generally applicable procedure may promote the introduction of more
sophisticated hysteresis models for simulation of real-world systems.

Future work involving this linearization method is focused upon extensions to MDOF
systems, by the direct minimization of the variance of approximation error for each DOF; and
extension to Non-Gaussian response, as the assumption of Gaussian state variables was not
mandated in the derivation of equivalent linear coefficients.
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