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Elastodyamic analysis of torsion of shaft of
revolution by line-loaded integral equation method*

Tian Quan Yunt

Department of Mechanics, South China University of Technology, Guangzhou, 510641, China

Abstract. The dynamic response of an elastic torsion shaft of revolution is analysed by the
Line-Loaded Integral Equation Method (LLIEM). A “Dynamic Point Ring Couple” (DPRC) is
used as a fictitious fundamental load and is distributed in an elastic space along the axis of the
shaft outside the shaft occupation. According to the boundary condition, our problem is reduced
to a 1-D Fredholm integral equation of the first kind, which is simpler for solving than that of a
2-D singular integral equation of the same kind obtanied by Boundary Element Method (BEM),
for steady periodically varied loading. Numerical example of a shaft with quadratic generator
under sinusoidal type of torque is given. Formulas for stresses and dangerous frequency are
mentioned.

Key words: torsion of shaft of revolution; elastodynamic analysis; the line-loaded integral
equation method.

1. Introduction

The boundary element method (BEM) plays an important role in modern analysis, since it is
better than the finite element method (FEM) for many problems. However, BEM is not the best
for some problems. Many static problems have been analysed by LLIEM, for example, Yun
(1979) solved the torsion problem of shaft of revolution; Yun (1981) analysed axially loaded
pile embedded in an elastic half space, Yun et al. (1981) analysed ellipsoid compressed by two
axial concentrated forces at two ends; Yun (1988) analysed the torsion problem of rigid circular
shaft of varying diameter embedded in an elastic half space; Yun (1990) analysed the torsion
problem of elastic shaft of revolution embedded in an elastic half space; Yun (1991) analysed
rigid sloping pile under arbitrary loads; Yun and Su (1992) analysed a shaft (elastic cylindrical
shell) with step-varied thickness, and/or with hinged supports, embedded in a granular half
space under the action of gravity; Yun and Li (1995) analysed the in-plane-hinge-jointed rigid
sloping piles. These examples show that LLIEM is efficient and simple in calculation. The
major advantage of LLIEM over BEM is that LLIEM reduces a problem to a 1-D, non-singular
integral equation (s), while BEM reduces the same problem to 2-D, singular integral equation (s)
of the same kind. However, LLIEM has not been used for dynamic problem yet, this paper,
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presented at WCCM 3 (Yun 1994), extends the application of LLIEM to elastodynamic analysis
of torsion shaft of revolution.

A general elastodynamic problem is a 4-D (three spatial dimensions plus time) problem.
There are basically two approaches (direct and indirect methods) for elastodynamic analysis. In
the direct method, the problem is solved directly in real time space while the indirect method
the problem is firstly transformed and solved in an integral transformed space, and then the
inverse transformation is taken to return the problem to its original space. Usually, the indirect
method is recommender for the analysis of steady state dynamic problem due to its quasi-state
manner. The indirect method usually has troubles in getting a solution of inverse integral
transformation. The direct method usually spends more computation time since it repe  the
calculation in each time domain, but it is easy to understand and are widely accejtt by
engineers.

There is no previous paper concerned with elastodynamic analysis of torsion sh  of
revolution. The closest type of problem, in literature, related to our problem, is that dealing vith
elastodynamic analysis of timedomain BEM (Cheung, Lei & Tham 1993, Tham, Cheung & Lei
1994). However, these analyses are concerned with transient dynamic response of piles and half
space, not for steady varied loading and not for shaft of revolution. In this paper, a steady
varied loading problem of torsion shaft of revolution is analysed by LLIEM with both
advantages of the direct method (e.g., easy to understand, without making integral transform and
its inverse transform) and indirect method (less computation time, like a static problem).

In Sec. 2, as a fictitious fundamental load, the solution of DPRC at origin of an elastic space
is derived, and its property is mentioned. In Sec. 3, the integral equation of our problem is derived,
and the formulas of stress and dangerous frequency, which are interested to engineers, are
obtained. Finally, numerical example of a shaft with quadratic generator under sinusoidal type
torque is given.

2. The solution of “Dynamic Point Ring Couple” (DPRC) at origin

2.1. The solution of “Impulse Point Ring Couple” (IPRC) on z=0 plane, at origin and =0,
in an elastic space

Fig. 1 An IPRC M,¥0) at origin. M,=lim 2ma’P (a— 0)
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Fig. 1 shows an impulsive loading with uniform intensity P-(0) suddenly applied at time t=
0, on a circle of z=0 plane, with radius a and centered at origin of an elastic space, along the
tangent of circumference. The limit of this loading system M,6(0) for @ — 0 is simply called an

IPRC M,4(0) at origin, where
M,=lim 2ra?P (a—0) (1)

The i-th component of displacement field at point x and time ¢ due to a unit concentrated
impulse force acting at a point x;, and time 7=0 in the direction of the x;-axis has been found
(Eringen 1975) and is listed:

1 t | 3xx; R R
(e, 15%,, 0)= }3—[—1{7’—5{] {H( ‘C—]]‘H(t'c_zﬂ
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where R=|x—x,|, x,=RR,;, x=RR,;, P-wave speed c,, S-wave speed c, are:
=(A+2G)Ym =2G(1-W/[m(1-2V), c2=G/m

A, G are Lamé coefficients, m=density, v=Poisson's ratio, H=Heviside unit step function, é=
Dirac function, d,=Kroncker delta.

The components of displacement and stress of a field point N(r, z) in cylindrical coordinates
at time ¢ due to a IPRC at origin and time #=0 can be obtained using Eq. (2) by integration (see
Yun and Gu 1993, for details) and are listed:

M,r Ry ¢
- S+ — 63,0 3)
87TGR} €2

U, v, w)=|0,

o: —a,,zo;zr,z:O

3M,r2 1 R? -
Tor == > 510"‘“”‘510 —L 8y
87R; 3 ;)
3M,rz 1 R? - ]
To, =— . S+ 520 — —L 6y 4)
87R; 3 ¢?

where and (" )=9( )/0t, 8,=8(t—Ry/cy), R=(r’+2°)'?, and L'Hospital rule, Laplace transfor-
mation and inverse Laplace transformation have been used in the integration and limit process.

2.2. The solution of a DPRC at origin

According to the property of &-function, for arbitrary continuous function F(¢), we have
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F(t):j_‘:F(r)S(t—T)dr=j_°;F(t—r)5(r)dr (5)

by Eq. (5), we can obtain the components of displacement and stress of a field point N(r, z) at
time ¢ due to a DPRC at origin and time 7, with time dependent magnitude M, F(7). For
example, the components of displacement of a field point N(r, z) at time ¢ due to a DPRC at
origin and time 7 with intensity M, sinort is: (0= wt<2nm)

V=—= =" 87: GR j sinw(t — 1)[x(7) +Roc ;" S(7)] dT

M,
= 87560;2 - {[sin@(t —t0)+ wtocos@(t —t )] Hap+1tosinm(t —to) - Ay} )
0

where H,=H(t - t)), t,=R,/c,, Ab,y=lim{6(t+e—1)— 8(t—£—1,)}, w=frequency. In the deri-
0
vation of Eq. (6),

Jroo :J-to €+J-IO+S+J-°°

—oo — o0 tg—& tote€
the formular of integral by parts and mid-value theorem of integration have been used. The last
term involved Ad,, belongs to the type of (co — o), whether it would be infinite or finite, it just
represents the response at t=f,, and disappears for ¢, For a torsion problem of periodical load-
ing, where the instant response is not so important comparing with the long lasting term Hy,.
Therefore, we neglect the instant terms in the following for simplifying, and list the components
of displacement and stress

V =[Myr /(8GR })|[sin®(t —t,)+ to@cosm(t —to)] Hy ©)

Tor =—3Mor2¢(yo, y)/[87R; ], To. ==3Myz Xy, y)/[87R ] ®)
AHyo, y)=A(yo)sin(y —y.)-Hy €)
A(yo)=[A-y2737+y21?%  y=ax, yy=ot, tH=Ry/c, (10)
yi=tg{[(1-y3/3)sinyo—yocosyo)/[(1-y;/3)cosy,+yosiny,]} (11)

Two properties of the solution Egs. (7) and (8) are mentioned:
1. For any instant, we have

To, /T, =¥ /2, for Vt (12)

Eq. (12) shows that a family of zero stressed cone surface with the same apex at origin and the
z-axis as its symmetrical axis appears in the elastic space at any time.
2. The solution Eqs. (7) and (8) satisfies the differential equation of motion:

96, /3r +(1/r)9%,,/30+07./9z +(0, — 0p)/r =mU —F, (13a)
0Ty, /0r +(1/r)00,/00+0T,, /02 +27,,/r =mV —F (13b)
1, /9r +(1/r)7,,/00+90./9z +T./r =mW—F., (13c)

Obviously, Egs. (7) and (8) satisfy Eqgs. (13a) and (13c) if the body force F is neglected. By
Eq. (9), we have
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oNyo, y)or=y-r, ONyey)oz=y- z
y=[(dA /dyo)sin(y —y;)+A cos(y —y (= dy/9y)][@/(c2R )] Hy

Substituting the above relationship, Egs. (7) and (8) into Eq. (13b), we get 07,/ 0r+07,,/0z+
27,,/r=—3Myr/(87R; )=mV.

Since Eqs. (7) and (8) satisfy both the differential equation of motion in a cone and the zero
stressed boundary condition on the surface of the twisted cone, therefore Eqgs. (7) and (8) form
the solution of the cone shaft twisted by M,sinw¢ at origin.

3. Formulation of the integral equation

Let S and 9S be the body and boundary of a shaft of revolution respectively. The solution of
dynamic torsion of shaft of revolution implies that the differential Eq. (13) is satisfied in SX¢
and the boundary condition of zero stress is satisfied on dS X ¢, for Vre [0, co]. Since Eq. (13)
is always satisfied by any combination of the solution Eqgs. (7) and (8) of DPRC distribution,
therefore only the boundary condition of zero stress requires to be satisfied. In the following, a
zero stressed surface of revolution with given generator will be constructed in an elastic space at
any time due to DPRC distribution.

Suppose that the shaft of revolution is located in z € [0, b]. Let the fictitious load DPRC with
unknown intensity x(s) sinw? to be distributed along the s(=—z)—axis in [a, L](b <L <). The
reason for DPRC distribution outside the shaft occupation is to agree with the fact that no
singularity occurs at points of the axis of symmetry of a torsion shaft. Usually, an inhomo-
geneous integral equation is easier to obtain a numerical solution than that of its homogeneous
case. In order to reduce our problem to an inhomogeneous integral equation, analogous to an
adding term of uniformly flow in the method of source-sink distribution in fluid mechanics,
besides the above DPRC distribution, a single DPRC with intensity C-s,' sin wt (C-constant)
acting at s=s, (s,>>b) is added (Fig. 2). The stress at a point N(r, z) in the elastic space and at
time ¢, due to the above all DPRC, by Eq. (8), is

T, =~ [3r2/8m)] [ R ¢ (e, y)x(s) ds (14a)
o, ==Br /B[ +5) 003, )R x(5)ds =C - ¢y )] (14b)

]1/2 ]1/2

where R=[r*+(z+5)"]"%, Ro=[r’+(z+50)°]", y=0t,, yo=hty, t=R,/Cs, t,=Ry/Cs ¥, Vs V0 €0,
2n], ¢(y,, y) and @y, y) are the same expression as ¢ y,, y) shown in Eq. (9) but instead of y,
by y, and y,, respectively. And s, (L >s,>>b) is chosen in the following.

p= p(Z)

Lo e fpr Q.l '
Y LAY R I Y YL

L z (s) a 0 20 2 b z

Fig. 2 DPRC distributed in [a, L] which produces a zero stressed surface of revolution p=p(z) in the elastic
space at any time
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By stress analysis, the normal direction n of the zero stressed plane in a small cylindrical
element of a field point N(r, z) is determined by

tg o= Tg,/TgZ

where o+ /2 is the angle between n and the z-axis. Every element of points has such a zero
stressed plane, therefore a family of zero stressed surfaces of revolution occurs in the elastic
space. One of them passing through N(r, z) is constructed to coincide with the given generator p
=p(z), where the derivative p'=dp/dz is equal to

p'=dp/dz =1,,/7, (15)
Substituting Eq. (14) into Eq. (15), we have
7 L 7 —
CPy.0¥)=] [p=p' @ +5)]@(ys,y)R " x(s)ds (16)

a

By the theorem of integral mean value of function, there exists a ¢y, ¥) (@ (Ver W= (Y0
V)= ¢ (yqa, ¥)) such that

00 [ PP +IRx(s)ds =[ [p=pe +)IR 9 (3r.y)x(s)ds (17)

where y,,=@R,, / ¢;, R,=[p"+(z+a)’]'*, and so on.
Now, s, is chosen by Eq. (17), and substituting Eq. (17) into Eq. (16), we have

Cp'=[ lp=p(e +5)IRx(s)ds (18)

Since constant C and generator p=p(z) are given (without loss of generality, let C=1), then,
Eq. (18) is a Fredholm integral equation of the first kind. Obviously, Eq. (18) is independent of
time. This means that the zero stressed surface of revolution with generator p=p(z) appears in
the elastic space and keeps unchange at any time. This characteristic coincides with the zero
stressed boundary condition of dynamic torsion of shaft of revolution. Thus the above solution
can be regarded as the solution of dynamic torsion of shaft of revolution. Eq. (18) also shows
that the solution x(s), like a static case, is wholly determined by the given generator.

Once x(s) of Eq. (18) has been solved, the stresses can be calculated by Eq. (14). The relation
between x(s) and the given dynamic torque M, (z,)=T,sinw (¢ — t;) can be obtained by

Tosineo(t ~1,)=My(zo)=27["" 15, r2dr (19)
0

Substituting Eq. (14b) with mid-value ¢(y,, y) into Eq. (19), and again using the theorem of
integral mean value of function, there exists a r,(0<r, < p) in z=z, such that

6 OmnIKE)=]""[[ o+$)R7x(5)ds ~c]r0 (yany ) dr (20)
then, we have
TosinaXt —,)=—(3/4)A (Vo) K(zo)sin(y =y 1) (21)

where y,,0=0t,0, no=Rno/C2 Ryo= [rmz"'(zo'*‘so)z]m,

K(zo)sz(zu)[J’L (zo+$)R,x(s)ds —c|ridr (22)
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A(y,) and y,,, are the same expressions as Egs. (10) and (11), instead of y, by y,q, respectively.
From Eq. (21), we have
To==(3/4)A (yno) K(z0) (23)

The maximum stress is of interest to engineers. Suppose that 2p(z,) is the maximum diameter
of the shaft, then, the maximum stresses of the shaft, by Eq. (14), are:

To: (P> 20) == (3p/(8m) f1(P) ¢ (Ys0, ¥ ) (252)
%o, (P, 20)=—(3p/(8) f(P)  (¥s0> ) (25b)

f,(p)zJ;L(zo+s)RS;5x(s)ds—C, R,=[0*+(zo+s )% f2(p)=f:Rs;sx(s)ds.

Although x(s) is independent of dynamic factor, but stress varies with frequence @ and time ¢.
The so-called “dangerous” frequency @, and time ¢, at which 7,(p, z,) and T,(p, z,) attend to
maximum, can be found by solving the following optimization problem (O.P.):

O.P.: Find w and ¢ such that

Max 74, (p, z,) and 74, (p, z,) of Eq. (25)
s.t. Eq. (23), i.6., A (Ymo)=—(4/3)T/K(z0)=C,

~ This is a constrainted O.P., it can be solved as an un-constrainted O.P. by the method of
Lagrange multiplier. Let

=0 (50, )+ PlA (Yno) = C1] (26)
where [ is the Lagrange multiplier. Then
0¥/ 0w=(0¥/0y,)(dy,o/ W) =0 (27)
oW/t =(0¥/dy )(dy /dt)=0 (28)
d¥/9B=0 (29)
we get: y -y, =mn/2 (30)
B=—1¢/tno (31)
A(Yn)=C, (32)
From Eq. (32),
Ty=—@/H)Kz)A(Yn), 0=y, =2m) (33)
Eq. (33) shows that the amplitude of dynamic torque 7 related to y,o=wyt,q, by Eq. (10), where
(Dd =ym0/tm0=27r/tmo (34)
To=Tomee =—(3/H) K (20)A (21) (35)

From Eq. (30), we get t,=t,+t,,/4, however, ¢, is not important, while @, is interesting to
engineers. Eq. (34) shows that the dangerous frequency related to ¢,,=R,,/c,, which relates to
the given generator p=p(z).

4. Numerical solution and example

Eq. (18) is rewritten simply as
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T
10 [
Ry
5 L
|
Tor
N —— r/p(2)

0 0.5 1.0
Fig. 3 The distribution of stresses on cross section z=2 at t=300 sec

JLK(z,s)x(s)ds =F(z) (36)

K@, s)=[p-pE+s)IR>, F@)=Cp
Eq. (36) is solved by its discrete form, i.e.,

z K x = zs l ]=1 2 T, n
x;=x(s;), F,=F(@), j K(z,s)ds,
(J-nar
AL =(L -a)/n, s;=j-AL, z;=i-(b-zp)/n. (37)

Once x; has been solved from Eq. (37), the stress and the corresponding torque M;(z,) can be
numerically calculated by Eq. (14) and Eq. (19), where the integral is replaced by summation,
respectively.

Numerical example of a dynamlc torsion shaft of revolution with generator p_p(z) N1+40.1z
located in z,=0, b=5 as shown in Fig. 2. In this example, m=7.8X 10" (Pa.sec’/M’), G=8.0x 10"
(Pa), a=10 (M), L=20 (M), n=20 are used.

The distributions of stresses on different cross sections, at different time, due to dynamic
torque M(0) at z,=0 are plotted and shown to be similar in pattern. A typical pattern of
distribution of stresses on cross section z=2 (M) is presented in Fig. 3. In which the stress 7,, is
almost linear and 7, is obviously far less than 7,. This result approaches to that of a torsion

Mz (10°%kNm) M (2)/T,
1.0 — Lot e
0.5} - , . "
0 T .2m wt-y,
0 I 2 3 4 5 z(m -—1of N
(a) (b)

Fig. 4 (a) Torque of different cross section at t=300 sec. (b) Torque of cross section z=2 at different time
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cylinder and is expected, since the shaft p=V1+0.1z is slowly varied in diameter. Fig. 4 shows
the torque of different cross sections at the same time and the torque of the same cross section
at different time.

The ratio of maximum amplitude of dynamic torque 7y, due to dangenous frequency @, of
Eq. (34), to its minimum amplitude 7, due to @=0 (the static case), by Eqgs. (35) and (23), is

Toma/Tos =(L+y2/3+4% /9=y 2 /3=(27)*/3=13.0 (38)

This result shows that the effect of dynamic action is of significance.

5. Conclusions

The problem of dynamic torsion of shaft of revolution, twisted by end torque 7, sin@(t - t), is
studied by LLIEM with both advantages of the direct method (e.g., easy to understand, without
making integral transform and its inverse transform) and indirect method (less computation time,
like a static problem). In which, a zero stressed surface of revolution with given generator p=p(z)
can be constructed to appear in an elastic space at any time by DPRC, with unknown intensity
(x(s)+C-sy) sinox, distributing on [a, L)(L>a>b) along the s(=-z)-axis outside the shaft
occupation. Then, the problem is reduced to a Fredholm integral equation of the first kind and
can be solved by known methods.

The advantage of LLIEM over BEM for dynamic analysis is the obtained integral equation is
1-D and non-singular, while the BEM needs to treat singularity (e.g., 0(1/) and 0(1/7), see, Y.
K. Cheung et al. 1993) by special method.
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