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Abstract. The stiffness matrix of a two-dimensional contact surface element is deduced from the
principle of virtual work. The incremental loading procedure used is controlled by displacement and stress.
Special potential contact elements are used to avoid the need to rearrange the FEM mesh due to
variations of the contact surface as contact develops. Published results are used to validate the method,
which is then applied to a turbine to solve the contact problem between the blade root and rotor in the
region in which a ‘push fit' connects the blade to its rotor.
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1. Introduction

The contact problem is one of the most challenging in solid mechanics. Since Kelvin's
consideration of a point force acting on an infinite elastic space and Hertz's study of contact
between two quadratically curved bodies, both of which took place a century ago, many
researchers have concentrated on solving contact problems, ranging from classic complex
function methods and integral equation methods to modern finite element and boundary element
methods, i.e., FEM and BEM. FEM solutions have been developed by many researchers. Chen
(1981) used a mixed FEM method to solve thermo-elastic contact problems, i.e., contact heat
transfer and elastic contact conditions were considered simultaneously. Tan and Sha (1984) used
a six noded triangular annular element and the wave front method to solve axisymmetric contact
problems for spherical shells. Chen (1983) solved elasto-plastic contact problems, by using FEM,
the mixed variational principle, quasi-elastic summation and double-iteration. Okamoto and
Nakazawa (1979) considered the Coulomb type friction criterion and changed some elements in
the stiffness matrix at each iteration in order to solve the contact problem for turbo-alternator
end-bells. Fredriksson (1976) presented the incremental governing equations for linear elastic
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materials and solved them by using FEM and a super-element technique. Rahman (1984) applied
loading iteration, contact condition iteration and friction condition iteration to solve special
hole-edge contact problems. Torstenfelt (1984) discussed several issues related to the magnitude
of loading steps. Cai and Liao (1993), Tseng and Olson (1981) and Haslinger and Hlavacek
(1982) used a mixed FEM which treated both displacement and stress as degrees of freedom at
nodes and they introduced contact force potential by means of Lagrangian multipliers. Oden and
Pires (1983) developed a variational principle for nonlocal and nonlinear friction laws in elastic
contact problems. Papadopoulos and Taylor (1993) and Kikuchi (1982) used a penalty method
to satisfy the contact conditions and FEM to obtain the solution.

Zhong (1985a, 1985b) and Zhong and Sun (1989) deduced the minimum potential energy
principle for elastic contact problems and solved the frictional contact problem by means of the
parametric quadratic programming method. Im and Kawk (1993) used an auto-step-loading
method in the linear programming method, considered interior and exterior slips caused by
friction on a uniform contact surface and recommended the application of nonlinear
programming to three-dimensional contact problems. Man et al. (1993), Paris et al. (1992) and
Garrido et al. (1994) used an incremental BEM to solve frictional and/or non-frictional contact
problems.

In this paper, the stiffness matrix of a two-dimensional contact surface element is first deduc-
ed, based on the principle of virtual work. Then, in order to reflect the variation of the contact
surface, the incremental method is applied to control the loading procedure. The incremental
loading factor (ILF) guarantees continuity of displacements and stress between each pair of
contact nodes. Potential contact elements are introduced throughout the surface region where
contact may occur, to avoid the need to rearrange the FEM mesh of nodes and elements as the
contact surface varies during the loading procedure. Numerical examples are presented to
validate the method by comparison with published results and finally the method is applied to
solve the contact problem for turbines which occurs within the region in which a ‘push fit
connects a blade to the rotor.

2. Two-dimensional contact surface element

2.1. Statement of the problem

0O - X

Fig. 1 Two bodies in contact
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Fig. 2 Two-dimensional contact surface element

Consider two bodies Q“ (o=b, 1) in contact, see Fig. 1. Note that for convenience, but
without loss of generality, the contact surface has been taken as approximately horizontal, so
that the superscripts b and ¢ denote the bottom and top bodies, respectively. The bodies are
bounded by the surfaces S, which are divided into S, S and S as follows. The
displacements and the loads are assumed to be given on S\ and S\”, respectively, while the
bodies are in contact on S'*. The bodies are assumed to be made of linearly elastic material, the
displacements and strains are assumed to be small and the contact friction is assumed to obey
Coulomb's law. Fig. 2 shows that in the local coordinate system § is the tangential line at the
contact point and 7 is the outward normal vector from body Q“ to body Q. The three
alternative states of the contact are:

o, <0, |7 | <—uo.,
i.e., the pair of contact nodes is sticking together;
o, <0, |t | =-uo.,
i.e., the pair of contact nodes are slipping over each other; and
o, >0, 7 =0,
i.e., the pair of contact nodes are separating from one another, i.e., the non-penetration condition is
g =vA —vB +620

Here o, is the normal stress; 7, is the tangential stress along S; u is the friction coefficient on
the contact surface between the two bodies; v* and v* are displacements along n of the pair of
contact nodes A and B, with A on Q” and B on Q®, respectively; and & is the initial normal
clearance between A and B.

2.2. Two-dimensional contact surface element

The contact problem is a locally nonlinear one because of the indeterminacy of the contact
boundary and the key to solving it is the method used to represent accurately the crucial process
of two elastic bodies that deform in conforming ways where they are in contact.

Fig. 2 shows a two-dimensional contact surface element comprising two contact surfaces ij
and rm which both have length ! and that are assumed to be linked by innumerable micro
springs of height e, which becomes zero when the two bodies are in contact. The two top
surface nodes r and m shown correspond to the bottom surface nodes i and j and the contact
pair of nodes (A, B) is in turn (r, i) or (m, j). The top and bottom surfaces represent the contact
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surfaces of the top and bottom bodies in Fig. 1 and the origin O of the local Cartesian
coordinate system xy shown is at the centre of the element.
The node force and displacement vectors {F}° and {d}° are defined as, respectively,

{FY' =[Fs F, F,j F,; Fo Fyy Fon Fin]'
{d}e = [u,- Vi Ui Vi Ur Vr Upm v’"]T

where {F}‘ causes the small springs at distance x from O to have shear stress 7, and normal
stress G,, i.e.,

{o}=[% o]

The displacements of the bottom surface relative to the top surface cause the relative
displacement {w} to be

{W} = [ub — U, Vp _Vt]T

where the subscripts b and ¢ denote the bottom and top surfaces, respectively. Because of the
linear elastic assumption

{o} =[D){w} | @)

where

E, 0O
[D]=[O En:| 2

and E, and E, (which are independent of x) are, respectively, the tangential and normal stiffness
coefficients of the contact surface element.

Assuming that the mode of displacement for each contact surface is a linear function of
position x, then the displacements of the top and bottom surfaces are respectively defined as

[ ] = —;—[G][u, Vr tim V] 3)
o " = (G 1w v, , v, @
where
a0 pBo
Gl= [0 a0 ﬁ}
®)
2 L L 2x
(x-———l—T, ﬁ—-1+ ]
Therefore

(0} =l = v, —u]" = Z(CHaY
[C1=[[G] -[G]] ©)
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If a random virtual node displacement of {Od}° is assumed, then the relative virtual element
displacement at x is

1 e
{8w} = S[CH8}
Because the virtual work of the element stresses is equal to that of the node forces,
. e 1 p e
{8dyT {F} =[] {8w}' {o}dx = {8} ["[CT'[D][CI{d} dx @
where Eq. (1) has been used. Hence
{F} =[KT {d} )
where
N 7
K] = [ [CTDP][Cldx ©)
From Egs. (5), (6) and (9), the stiffness matrix [K]° is obtained as
2[D] Symm.
1| [P 2(D]

K] = (10)

6|-2[D] —[D] 2[D]
-[D] -2[D] [P] 2[D]

As with the stiffness matrix of an isoparametric element, the stiffness matrix of the contact
surface element must undergo an axis transformation to allow for the contact surface of Fig. 1
not being horizontal before being assembled into the overall stiffness matrix of the entire
structure according to the nodal equilibrium conditions. Hence the displacements of the entire
structure can be obtained, enabling the stresses on the contact surface to be calculated.

2.3. Potential contact element

The contact state changes occasionally during the loading procedure, both because surface
elements which were in contact may separate and also because previously separated surface
elements may come into contact. This makes the problem complicated, e.g., it upsets FEM
meshes due to new contact surface elements being produced while old ones disappear. In the
present paper this problem is solved by introducing potential contact elements over that part of
the gap between the two bodies over which contact may occur at some stage of the contact
process, see Fig. 3. Their connection stiffnesses are zero if the two bodies are separated, i.e., [D]
becomes null. During loading, some potential contact elements become contact surface elements,

Fig. 3 Potential contact suface elements
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i.e., the corresponding pairs of previously separated nodes make contact, whereas the reverse
process occurs for other potential contact elements, corresponding to some pairs of nodes
separating after being in contact.

3. Incremental loading procedure
3.1. Incremental loading factor (ILF)

At the typical i-th loading step the Incremental Loading Factor (ILF) J3, is chosen to be small
enough to ensure that only a small variation of the contact surface occurs, such that if possible
only one of the potential contact elements changes into a contact surface element or vice-versa.
This is represented by [D] changing from being null to having the value of Eq. (2) or vice-versa.

The incremental load for the i-th step is

AF; =.BiAfi (11)

where Af; is a trial increment for which the structure is analysed using its contact state at the
end of the (i-1)-th iteration. The choice of Af; does not alter the final results obtained.

After this incremental load, the load F;, displacement v; and normal stress o, in the system are,
respectively,

F,':F,'_l"i’ﬁiAﬁ (12)
Vi =V + ﬁ,‘AV[ (13)
0; = 0, + B Ac; (14)

where F,;, v, and 0., are the load, normal displacements and stress after the (i-1)-th step and
Av, and Aoc; are the incremental displacement and stress due to the loading Af.

From the non-penetrating condition defined in Section 2.1, if a potential element becomes a
contact surface element at the i-th step then the Incremental Displacement Factor (IDF) is

:v,-"_l—vﬁ]+6 (15)
AvA — AVE

Vi

Here v/} and v/ are the normal displacements of the pair of nodes which make contact between
the (i-1)-th and i-th steps and Av; and Av? are the normal incremental displacements of this pair
of nodes due to Af. If there is a chance of two or more pairs of nodes coming into contact
between the (i-1)-th and i-th steps, Eq. (15) is repeated for each of them and the lowest value of
B, so obtained is used.

The Incremental Stress Factor (ISF) B; at which a pair of nodes which was previously in
contact separates is given by (Im and Kawk 1993)

By =-

where G,,, is the normal stress of the pair of nodes after the (i-1)-th step and Ac,; is their
normal incremental stress due to Af. As for Eq. (15), if two or more pairs of nodes could
separate between the (i-1)-th and i-th steps, Eq. (16) must be repeated for each of them and the

Oy, i
Ao, ;

(16)
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lowest value of f3; so obtained is chosen.
The ILF B, should satisfy both of the above IDF and ISF requirements simultaneously and so
the ILF B; for the i-th step is chosen to be

B; =min. {ﬁvi, ﬁfi} (17)

Note that the method presented assumes that the material is linear elastic throughout, but quite
large deflections are permitted (and are used in the examples presented below) as the
accumulation of the small deflection theory results for every loading step.

3.2, Values used for E, and E;

The stiffnesses E, and E, of Eq. (2) can be regarded as penalty factors, with their magnitudes
reflecting ¢he extent to which the contact conditions are satisfied. Therefore, E, should be
infinitely large whenever contact occurs. The high number used to represent this infinite value
when computing must not be too large, because otherwise ill-conditioning occurs. Check results
showed that acceptable results were obtained for any value in the approximate range 10°E,,,<E,
<10°F,,, , where E,,, is the larger Young's modulus of either of the two bodies.

E, should be obtained by iteration according to the slip condition

|7 | = - uo, (18)
so that, from Egs. (1) and (2), the transition from sticking to sliding is represented by

when computing the new values Av,,; and Au,, from Eqs. (1) and (2), where j(=1, 2, ....) is the
iteration number. These new values Avy,, and Aw,, are substituted in Eq. (19) and if the value of
E;, thus obtained is not sufficiently close to E the calculations are repeated until adequate
convergence is obtained.

4. Numerical examples for which published results are available
4.1. An elastic beam on an elastic foundation

To give a simple preliminary check against the published results of TOPHOB (1965), Fig. 4
shows his elastic beam with a uniformly distributed load and an elastic foundation. Because of
the symmetry, only half of the structure was analysed. Fig. 5 shows the FEM mesh used for the
structure, with the contact surface elements shown shaded. The beam and foundation are made
of the same material, with Young's modulus E=200 GPa and Poisson's ratio v=0.3. The contact
surface is frictionless with E,—oo, represented by E,=10°E and E,=10°E. Fig. 4 shows the
contact force R per unit length between the beam and its foundation compared to the results
taken from 'OPHOB (1965).

4.2. An elastic cylinder on an elastic foundation

Fig. 6 (a) shows an elastic cylinder on an elastic foundation that is square and rigidly
supported. It was analysed as a frictionlesss interface plane strain problem and physically the



370 Zhengxing Liu, Yaowen Yang, F.W. Williams and A.K. Jemah

'q =100 KN/m

PLLTT]

—
Pu—
le—-
e——u{
p——o{

(95.6)
932
(96.8)
96.2
(96.9)
96.5 \
(96.8)
96.2

(136.3)
1328

=

/=12m

|
Fig. 4 Beam on elastic foundation, including results for R (in KN/m) obtained by the present method and
(in brackets) by TOPHOB (1965)
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Fig. 5 FEM mesh for the right-hand half of the beam of Fig. 4 and its foundation, with the vertical scale
exaggerated

initial state is a line contact which becomes an expanding rectangular contact as the external
load is successively incremented. Only half of the structure is considered because of the
symmetry and the line and rectangular contacts respectively become point and line contacts in
the analysis. Fig. 6 (b) and (c) show the FEM meshes used. In Fig. 6(a), R=0.05 m, L=0.19 m
and it is assumed that both solids have identical material properties of E=40 GPa and v=0.35.

For P=41.76 KN/m, Table 1 gives results for the half contact width b and the maximum
normal stress g, on the contact surface, compared with results from Hertz's analytical solution
(Gladwell 1980) and with the results of Fredriksson (1976). Fig. 7 shows that the distribution of
normal stress on the contact surface along the x-direction fits well with both Hertz's analytical
solution and the results of Fredriksson (1976), while Fig. 8 gives the distribution in the y direc-
tion of the difference between the principal stresses o, and ©,.

4.3. An elastic punch on an elastic foundation

Fig. 9 shows an elastic punch on an elastic foundation, for which the dimensions are L,=0.19
m and 1,=0.10 m. Because of the symmetry conditions, only half of the structure was analysed
and the uniform punch compression load P;=1.2 MPa. The solids have the identical elastic

properties E=40 GPa and v=0.35.
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Fig. 6 An elastic cylinder on an elastic foundation showing (a) the problem; (b) an indication of the
general mesh and; (c) an indication of the local mesh

Table 1 The maximum normal stress for the elastic cylinder on an elastic foundation

Hertz This paper Fredriksson
b (107° m) 1.08 1.12 1.04
4, (MPa) 24.6 25.4 24.3
Y4
1.0

0.5

. + x/b
0 05 1.0
— Hertz (Gladwell, 1980)
e This paper

s Fredriksson

Fig. 7 Distribution of normal stress for the example of Fig. 6
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Fig. 10 Distribution of difference between principal Fig. 11 Blade root and the outer part of the rotor
stresses that contains it

The results are presented and compared with those of Fredriksson (1976) in Fig. 10, where o,
and o, are the principal stresses 1mm above the contact surface.

5. An application example

A high speed steam turbine has its blades connected to the outer part of the rotor by means of
their roots, which are push fitted from the side, see Fig. 11. The forces acting on this connection
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are the centrifugal force on the blade (which is by far the dominant one), the moment caused by
the steam acting on the blade and the centrifugal forces on the blade root and the outer part of
the rotor. These forces cause relatively high contact surface compressive stresses between the
blade root and the outer part of the rotor.

Fig. 11 shows the portion of the outer part of the rotor considered along with the associated
blade root.

The problem was treated as a plane strain one and Fig. 12 shows the mesh used for its cross-
section. Due to the assumed distribution of the clearances, C, — C, were the possible contact
regions and they were represented by potential contact elements and contact surface elements.
Elsewhere the clearance between the blade root and the outer part of the rotor was represented
by potential contact elements which were constrained to always have [D]=[0]. The blade root
and the outer part of the rotor were made of identical material, with Young's modulus £=200
GPa, Poisson's ratio v=0.3, density p=7.83x 10’ kg/m’ and a friction coefficient between them
u=0.2. The total load included a centrifugal force on the blade of P=6280.15 N, moment M=
1.5868 N-m and the distributed centrifugal forces on the blade root and the outer part of the ro-
tor, which was rotating at 50 Hz. The trial load increment Af, was 10% of the total load g, and
the initial contact state was assumed to be C,=C,=0 and C,, C;, Cs, C;>0, where C=0 and C>0
respectively indicate that the region C, is always represented as a contact surface element or is
represented by a potential contact element.

Table 2 shows the loading process and results, which should be self explanatory, except that
O, 18 the principal stress at the most heavily stressed position in the blade root or rotor at each
step, e.g., after the first four loading steps the load is 28% of the total load (i.e., 28% q,) and
C—C=0. Then, as the fifth and final load step, the load increases further to 100% of the total
load (i.e., to 100% g,) with no contact surface elements separating.

Fig. 13 shows the distribution of the maximum principal stress after all loading steps. The
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Fig. 12 Indication of FEM mesh for the cross- Fig. 13 Distribution of the maximum principal
section stress, in MPa

Table 2 The loading process for the turbine problem

New contact at Cs C, Cs C, None
ILF B 1.58 0.28 0.41 0.53 7.20
AG,,,. (MPa) 400.37 41.96 42.72 42.82 526.62

Crax (MPa) 400.37 442.33 485.05 527.87 1054.49
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structure and the centrifugal force are symmetric and the distribution of the maximum principal
stress is nearly symmetric. The small lack of symmetry is due to the moment, which is very
small compared to the centrifugal force, e.g., the maximum node load that it causes is only 4%
of that caused by the centrifugal force.

6. Conclusions

The variation of the contact surface can be reflected very accurately by using the contact
surface elements, the potential contact elements and the incremental method presented in this
paper. The method avoids the need to rearrange the FEM mesh, i.e., nodes and elements, during
the loading procedure. The results presented show that the method is quite accurate.
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