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Abstract. In the shape design of flexible structures. it is useful to predict the initial shape from the
desirable large deformed shapes under some loading conditions. In this paper, we present a numerical pro-
cedure of an initial shape determination problem for hyperelastic materials which enables us to calculate
an initial shape corresponding to the prescribed deformed shape and boundary condition. The present pro-
cedure is based on an Arbitrary Lagrangian-Eulerian (ALE) finite element method for hyperelasticity, in
which arbitrary change of shapes in both the initial and deformed states can be treated by considering the
variation of geometric mappings in the equilibrium equation. Then the determination problem of the initial
shape can be formulated as a nonlinear problem to solve the unknown initial shape for the specified de-
formed shape that satisfies the equilibrium equation. The present approach can be implemented easily to
the finite element method by employing the isoparametric hypothesis. Some basic numerical results are
also given to characterize the present procedure.

Key words: initial shape determination; incompressible hyperelasticity; arbitrary Lagrangian-Eulerian;
finite element method.

1. Introduction

Flexible or expansible materials such as rubber-like ones are often used under elastic large de-
formed states with severe stress concentration in the structures. In such situations, the initial
shape of the structure or the shape to be manufactured should be designed so that large de-
formed shape under some loading conditions may be desirable. In the conventional design pro-
cess of such structures, large deformation analyses in which the deformed shape is calculated
from the given initial shape and boundary condition are performed successively for various in-
itial shapes until some requirement for the deformed shape is satisfied. In more sophisticated
ways to obtain an optimal initial shape, sensitivity with respect to design parameters is cal-
culated simultaneously with the large deformation analysis (e.g., Kleiber and Hisada 1993).

An initial shape determination (or inverse shape) problem, in which the initial shape is solved
from the prescribed deformed shape under the given boundary condition, may lead to an alt-
ernative approach in this kind of the design problem. In this paper, the initial shape deter-
mination problem of hyperelasticity, which is often employed in the computational mechanics to
analyze this type of large deformation problems, is discussed and a numerical procedure for this
problem is developed.

Hyperelasticity is characterized by the stored energy function expressed in terms of the de-
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formation mapping associating the initial configuration with the spatial one. Then the stresses
can be uniquely determined through the stored energy density from the deformation gradient in-
dependently of strain histories, and hence the initial and spatial configuration can be in-
terchanged in the representation of the equilibrium equation. By using this material property,
Shield (Shield 1967) introduced the inverse motion in which the deformed shape is taken as the
reference configuration and the initial shape is unknown variable and proposed a formulation of
an initial shape determination problem recently, Govindjee, et al. (Govindjec and Mihalic 1995)
extended this method by using the energy-momentum formulation and developed a finite ele-
ment procedure of this problem.

In this work, we propose another approach of this problem by an arbitrary Lagrangian-Eu-
lerian (ALE) kinematic description. The ALE formulation for hyperelasticity was originally de-
veloped by the authors to introduce arbitrary mesh motion in the finite element analysis of the
large deformation problem (Yamada and Kikuchi 1993). In this formulation, a reference con-
figuration that is independent of both the initial and deformed ones is introduced and arbitrary
changes of shapes in both the initial and deformed state can be treated without loss of accuracy
by considering the variation of geometric mappings in the equilibrium equation. Therefore the in-
itial shape determination problem can be formulated as a problem to find the pair of the initial
and deformed configurations that satisfy the equilibrium equation formulated by the ALE des-
cription. Further the present ALE description can be approximated easily by the finite element
discretization based on the isoparametric hypothesis.

In this paper, our approach is applied to incompressible hyperelasticity that is a typical con-
stitutive relation of rubber-like materials and a finite element procedure of the initial shape de-
termination based on the ALE formulation is presented. Several numerical examples are also
shown to characterize the present approach.

2. Variational formulation
2.1. Large deformation problem of incompressible hyperelasticity

For the purpose of formulating the boundary value problem of hyperelasticity, the Lagrangian
description of motion is usually employed. In the Lagrangian description, the deformation is des-
cribed by the deformation mapping ¢, which is defined as the mapping from the initial con-
figuration Ry to the deformed configuration R,. By introducing the Lagrange multiplier p en-
forcing the incompressibility constraint, the boundary value problem can be formulated as the
stationary problem of the following functional defined in terms of ¢ and p:

g p)=[, {WE)-pJ -1} dX + 117 (9), M

where W is the stored energy function of incompressible hyperelastic material; J is the Jacon-
bian of the deformation gradient, and equal to the ratio of current to initial volume; F is the nor-
malized deformation gradient, in which the volumetric part of the deformation gradient F is el-
iminated multiplicatively as follows:

Fi=J""F}. )
Further IT(¢) is the potential energy of the external loads defined by
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T (g)=- jRX b¢"dX - [ e ¢ ds, €)

where b, is the body force and ¢, is the traction force defined on a part of boundary oRy CORy.
Let 7 and { be the admissible variations of ¢ and p, respectively. By taking the first variation
of the functional Eq. (1) with respect to ¢ and p, two variational equations can be given by

N, p; M)=DJI@,p)-(N°¢)

= [ {7 ()= 27 )58 Y~ PIG O |1 X 41T (m)=0, @
N0 :0)=0, 0. £ ~[ g -nax=o, @
where
o= 301 |0 417 1 ), 7 F)= 2rtr GEOD|

and ‘| is used to designate the covariant derivative; DJKf) denotes the Fréchet derivative of IKf
) with respect to f. Note that the first variation of J7(¢) is IT™(7). The Eqs. (4) and (5) are the
weak forms of the equilibrium equation and the incompressibility contraint equation, respec-
tively.

2.2. ALE formulation and initial shape determination

To formulate the determination problem of the initial shape, we employ an ALE description
for hyperelasticity in which the deformation mapping can be represented exactly. To realize an
ALE description, we introduce the reference configuration which is independent of both the in-
itial and deformed configurations. We assume that the reference configuration R, is connected
with the initial configuration Ry and the deformed configuration R, by the mapping ¥ and v,
respectively (see Fig. 1). In this case, the deformation mapping ¢ can be expressed as the fol-
lowing composite mapping of y and y.

o=yeox . ©)

Here, the mappings y and y are one-to-one and onto.

initial deformed

~_7

reference

Fig. 1 Diagram of domains and mappings for ALE description.
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In this case, the unknown function ¢ in the variational Egs. (4) and (5) can be replaced by the
function y and . Using y and y, we can rewrite Eqgs. (4) and (5) as follows:

‘N;‘i(‘p’p; 71)=N:n(la yv,p; 71)20, (7)
N”(¢.p; O=N"( v,p; H=0. ®)

Here, we assume that the pressure field p is defined in terms of the reference coordinates.

If yis fixed and y is taken as an unknown variable, we have a formulation of the initial
shape determination, in which the initial shape is calculated from the specified deformed con-
figuration under certain loading condition. Now if y is solved in this problem, the mapping ¢
composed of y and y is determined uniquely. Thus the solvability of the initial shape de-
termination problem based on the present formulation is similar to that of the large deformation
problem.

To establish a numerical procedure to solve the variational Egs. (7) and (8), which are non-
linerar, we need to obtain the incremental forms of the variational equations calculated by the
linearization with respect to increments of the unknown variables. Let U, v and g be the in-
crements of ¥, W and p, respectively. It is noted that U and v are respectively defined in the in-
itial and current configuration, and ¢ is defined in the reference configuration. By substituting
{x+Ue-y, y+vey, p+q} for {, v, p} in Eqs. (7) and (8) and using Taylor's formula up to the
first order terms of increments, the incremental variational equations can be shown to be

N (+Ue g, w+ve y,p +q; M =N" (%, ¥, p; 1)
+D N wps ) (U )+D N (% ¥ p; m)- (Vo W)
+D,N“(x, v, p; M)-q =0, ©
N7 (+Ue g, y+vey,p+q; L) =N (1 ¥, p; §)
+D,N " (x, %p;g)‘c(agOX)‘*'DvN Gwp;8)(vey)
+D, N (1, ¥, p; §)-q =0. (10)

The Fréchet derivatives with respect to y appearing in Egs. (9) and (10) correspond to sen-
sitivities related with the change of the initial configuration.

To evaluate Egs. (9) and (10), we need to calculate the Fréchet derivatives of the stress with
respect to . In the hyperelastic constitutive relation discussed here, the stresses can be uniquely
determined through the stored energy density from the deformation gradient independently of
the stress histories. Thus, suppose that the material is homogeneous in the whole domain, the Fré-
chet derivatives of the stress can be calculated from the Fréchet derivatives of the deformation
gradient. Concrete forms of the Fréchet derivatives in the weak forms are expressed by

DN 95 1) (U= D=, - ety = 31 | 8u)Ule = 3U" |1 80)
2T Yy~ 51 |4 ) U+ 2 P Yy 511 | 8 U L
+pI°G N [ UM 1A = [, (u U™ |4 +bya U) dX
[ {7 U L =U L0 Gt u U 45, (1)
D Nt ¥, p; M) (Vo )
IRX[C“b“”(n(a,b) - ';—718 e 8ab XVic.ay — %Ve e 8ea)
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The detail of the derivation of the above expressions can be found in our previous paper
(Yamada and Kikuchi 1993).

By using the Egs. (9) and (10), the linearized initial shape determination problem can be for-
mulated as a problem to solve the following equations with U and g taken as unknown variables:

DlNeq(Xa v,p; n)’(UOX)tDPNeq(X’ w,p; n)q

==N"( ¥, p; =D N (t, vsp; M) (Vo W), (17)
DN (G w,p: §) U= )+D,N“" (%, y,p; 0) - q

=N v;p; O)-D N (% ¥, p; §)-(vo w). (18)

It is noted that v, the increment of the deformed configuration, is not zero necessarily. If v is
specified appropriately, we can consider the initial shape determination problem for prescribed
displacements as a loading condition.

3. Finite element discretization

To discretize geometry and kinematics by the finite element approximation for the present ALE
formulation, we adopt the isoparametric hypothesis in which the initial and deformed configura-
tions are described by using common interpolation functions defined in terms of the isoparametric
coordinates. In this case, the isoparametric coordinates are identified with the coordinates of the
reference domain R, Thus, the mapping from the parent element into the material configuration
corresponds to the mapping ¥, whereas the mapping from the parent element into the spatial con-
figuration corresponds to the mapping y (see Fig. 1). In the conventional large deformation
analysis by using the isoparametric element and the Lagrangian description, the mapping y is fix-
ed and the mapping ¥ is taken as an unknown variable. On the other hand, in the present initial
shape determination, the mapping y is taken as an unknown variable, while y is fixed.

In this work, the plane strain problems are considered and the plane strain assumption is treated
by imposing as zero the displacement component perpendicular to the plane. For a pressure/dis-
placement mixed finite element, we employ the six node composite element, in which its dis-
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placement field is assumed to be piecewise linear by a combination of four linear triangle elements,
and its pressure field is assumed to be constant over an element and discontinuous across element in-
terfaces (Fig. 2). Note that this element satisfies the BB (or the uniform lifting) condition.

By implementing the present ALE formulation to such finite element discretization, the matrix
form of variational Egs. (7) and (8) can be derived as

NG, y.p;m)= n (" - f7)=0, 19
N wp; §)=-C'r =0, (20)

Further, the Fréchet derivatives appearing in the incremental variational Eqgs. (9) and (10) can be
expressed as

N, wp;m)-Ue x=0'K*U
WNQwp;m)-vey=n'K?v,
DxNZ(x,vap;C)‘UoFC’K"PU
D N (6 ¥,p; §)-voy=C'K"v
D,N“(x, w,p;m)-q=n0"(K")q,
D,N“" (%, v, p; {)-q =0. (1)

Finally by considering that admissible vectors 7 and { are arbitrary, the matrix forms of the
discretized incremental variational Eqgs. (17) and (18) can be shown to be

KP (KLP )‘ ul_ et pint K
e SR e @

By using Eq. (22) and applying the newton-Raphson method, an iterative procedure to solve
the determination problem of the initial shape can be constructed. The iterations in this pro-
cedure are continued until the residual force vector appearing as the first term in the right hand
side of Eq. (22) reaches the tolerance.

In the actual calculation of the initial shape determination, which involves geometrical non-
linearity, we cannot always obtain the required solution in one iterative process for the specified
condition. Then we need to use an incremental procedure, in which an initial condition and a
loading history are specified. For an initial condition, we can use the trivial solution in which the
initial configuration is identical with the deformed one and the subjected force is zero. For a load-
ing history, the increment of the external force f can be specified. Then the initial shape that
corresponds to the prescribed deformed shape for such a incremental external force can be cal-
culated by the iterative procedure mentioned above. For another kind of a loading history, the in-

D,
D

geometry pressure

piecewise linear constant

Fig. 2 Finite element.
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Fig. 3 Schematic diagrams of solution process.

crement of the deformed configuration, denoted by v in the Eq. (22), can be applied instead of
the incremental external force. In this case, the initial shape can be successively calculated and
the final initial shape is attained when the increasing deformed shape reaches the required state.

3.1. Remarks

In the large deformation analysis, numerical solutions of the deformed shape are sought along
the equilibrium path. For the initial shape determination analysis presented here, numerical solu-
tions of the initial shape are found among pairs of the initial and deformed shapes that satisfy
the equilibrium equation under the prescribed boundary condition and are on the different e-
quilibrium paths (see Fig. 3). Therefore the loading history that brings the equilibrium state from
the calculated initial shape to the prescribed deformed one cannot be taken into account in the
present initial shape determination. Further the loading history applied in the initial shape de-
termination corresponds to neither the loading nor unloading path associated with the calculated
initial shape and the prescribed deformed one.

4. Numerical examples

In the following numerical examples, Mooney-Rivlin's law is employed as the most popular
constitutive relation for isotropic rubber-like materials. For this material modelling, the stored en-
ergy function W is described as

WE)=W(I, L) =cyd,—3)+col, - 3), (4.1)

where [, and I, are the first and second invariants of the right Cauchy-Green deformation tensor,
respectively; ¢, and c, are material constants, which are chosen: ¢,=1.5, ¢,=0.5.

4.1. Compression by uniform end shortening

An initial shape determination problem of a block subjected to uniform end shortening in the
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A

Fig. 4 Compression by uniform end shortening: definition of the problem.

plane strain is solved as the first example. Considered geometry and boundary conditions are
depicted in Fig. 4. Only one quarter of the block indicated as a shaded part in Fig. 4 is con-
sidered by taking advantage of symmetric properties of the problem. Displacement in x,-direc-
tion along the left edge and that in x,-direction along the bottom edge are fixed owing to sym-
metric condition. Along the top edge, displacement in x;-direction is fixed and uniform com-
pressive displacement in x,-direction is considered. The finite element mesh in the prescribed de-
formed configuration is shown in Fig. 5.

Fig. 6 indicates the initial shape for 20% compression in which the initial height is 2.0. It is
confirmed that the deformed shape prescribed in the initial shape determination is identical with
that obtained by the large deformation analysis with the initial shape calculated from the present
approach. Fig. 7 shows the distribution of the stored energy density in the deformed state as-
sociated with the calculated initial shape. The distribution of the stored energy density cor-
responding to the square block subjected to the uniform end shortening is also depicted in Fig. 7.
This result is calculated by the Updated Lagrangian procedure with the rezoning (Yamada 1993).
It is observed that severe stress concentration occurs around the comner for the compressed
square block. On the other hand, the stress concentration for the calculated initial shape is not
so severe. Thus the present approach gives an initial shape designed better. Therefore the

Fig. 5 Compression by uniform end shortening: Fig. 6 Compression by uniform end shortening:
finite element mesh. calculated initial shape for 20% compression.
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(a) Calculated Initial Shape (b) Square Initial Shape

Fig. 7 Compression by uniform end shortening: distribution of the stored energy density for 20%
compression.

present approach is efficient to design the initial shape of the structure subjected to the large
prescribed displacement.

4.2. Compression by uniform traction

The second example is an initial shape determination problem of a block subjected to uniform
traction indicated in Fig. 8. Only a half of the block indicated as a shaded part in Fig. 8 is con-
sidered by taking advantage of symmetric properties of the problem. Displacement in x,-direction
along the left dege is fixed owing to symmetric condition. The displacement along the bottom
edge are fixed in both the directions. Along the top edge, uniform compressive traction in x,-direc-
tion is applied. The same finite element mesh in the deformed configuration as in the previous ex-
ample shown in Fig. S is used.

Fig. 9 indicates the calculated initial shape for the traction f=1.0. The large deformation analysis
is also performed by applying the uniform traction to the top edge of the calculated initial shape in
Fig. 9. In this analysis, the incremental procedure with the traction increased monotonically is em-
ployed. The corresponding deformed shape for the traction f=1.0 is shown in Fig. 10. This deformed
shape is quite different from the prescribed one in the initial shape determination. In other words,
the deformed shape cannot reach the prescribed one from the calculated initial shape in the large de-

Fig. 8 Compression by uniform traction: definition of the problem.
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Fig. 10 Compression by uniform traction: defor-
Fig. 9 Compression by uniform traction: calcu- med shape associated with the calculated
lated initial shape for f=1.0. initial shape and uniform traction f=1.0.

formation analysis. It is recalled that the equilibrium path cannot be considered in the present initial
shape determination. These results show that the calculated initial shape is sought on the different
loading path from the path corresponding to the uniform traction increased monotonically (see Fig.
11). However the pair of the calculated initial shape and the prescribed deformed one in the initial
shape determination satisfies the governing equation and hence there may exist at least one loading
path from such an initial shape to the deformed one.

5. Concluding remarks

A formulation of an initial shape determination based on an arbitrary Lagrangian-Eulerian des-
cription of motion and its finite element procedure have been presented for the large de-
formation problem of hyperelasticity. The initial shape that gives the specified deformed shape
under the given loading condition can be calculated in the similar procedure to the large de-
formation analysis. In this procedure, the equilibrium path is not considered to obtain the initial

external load 4 actual prescribed
deformed deformed
shape shape
f b % \ P

calculated initi
initial shape equilibrium| /:;ngtllclailﬁon
path |

y
configuration

Fig. 11 Schematic diagram of unsuccessful initial shape determination.
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shape and the deformed shape started from the calculated initial shape does not always reach the
prescribed deformed shape in the large deformation analysis. To apply the present approach to
practical problems, it is necessary to verify the deformed shape by performing the large de-
formation analysis with the obtained initial shape. We need further research to characterize the
present initial shape determination problem.
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