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Lateral buckling of reinfroced concrete beams
without lateral support
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Abstract. Reinforced concrete beams possess variable flexural and torsional stiffnesses due to for-
mation of cracks in the tension area along the beam. In order to check the stability of the beam, it is thus
more appropriate to divide the beam into a finite number of segments for which mean stiffnesses and also
bending moments are calculated. The stability analysis is further simplified, by using these mean values
for each segment. In this paper, an algorithm for calculating the critical lateral buckling slendemess ratio
for a definite load level, in a reinforced concrete beam without lateral support at the flanges, is presented.
By using this ratio, the lateral buckling safety level of a slender beam may be checked or estimated.

Key words: reinforced concrete beams; slenderness; lateral buckling.

1. Introduction

A reinforced concrete beam shown in Fig. 1 is considered. This beam is assumed to be sub-
jected to arbitrary loads acting in the yz plane, which is the plane of major flexural rigidity. This
beam may buckle laterally at a certain critical value of the load. This lateral buckling is of im-
portance in the design of beams without lateral support, provided that the flexural rigidity of the
beam in the plane of bending is large in comparison with the lateral bending rigidity
(Timoshenko and Gere 1988).

Appropriate design aids for the design of slender concete compression members have been
developed in the past (Aydin 1990). In contrast to this for checking the lateral stability of
slender reinforced concrete beams of such practically and generally aids are not sufficiently
available.

The lateral buckling problem becomes important especially in steel structures. Reinforced con-
crete beams are generally casted monolithically with slabs. In this case, distorsion of the beam is
prevented. Also the widths of the reinforced concrete beams should be selected wider than steel
beams due to structural difficulties. Increasing the beam width results in an increase of the la-
teral flexural rigidity; thus, the lateral buckling possibility is decreased. However, the lateral
buckling state is a question of the precast concrete structures. Critical situations may arise dur-
ing the transportation of components or erection of precast concrete structures before adequate la-
teral restraint to components is provided (Park and Pauley 1975).
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Fig. 1 The curvatures of the deflected axis of the beam.

2. Assumptions

The following assumptions are made:

1) The loads are acting along the centroidal axis of the beam,

2) The beam is subjected to loads acting in the yz plane, which is the plane of major flexural
rigidity (Fig. 1),

3) The end rotations of the beam with respect to the z axis are prevented by some constraint,

4) Serviceability limit state is current. For this state, the mean strength values of concrete and
the steel are considered since the real flexural and cracking states should be checked.

3. Models for concrete and steel

The stress-strain properties of concrete should be the same curve as obtained experimentally
from uniaxially loaded specimens. However, in designs, some analytical models can be used.
The most realistic curve to be used is the one presented by CEN (European Committee for Stan-
dardization — EC2 1992) (Fig. 2a). This analytical model gives more accurrate results especially
in deformation calculations than other models (Litzner 1993).

The analytical expression for the model is given by
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Fig. 2 (a) Assumed concete stress-strain curve; (b) Assumed steel stress-strain relation.
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o =fe(kn-1")/(1+(k -2)7) ey

where

f. = strenght of concrete

N=¢./ €&, and €, =—0.0022 (strain of the peak compressive stress f.).

k = (1'1 Ec,nom)’ E:cl /fc

E..n=95F++8)"  (E.nm and £ in N/mm°)

E. . = secant modulus of elasticity

fu = characteristic compressive strength of concrete

Steel o, — &, relation is assumed to behave bilinearly, as shown in Fig. 2(b). The modulus of
elasticity of steel E, is 2.10° N/mm’.

4. Lateral buckling of a beam

If a beam is subjected to pure bending at both ends as shown in Fig. 1. The angle of twist ¢
can be represented in the form (Timoshenko and Gere 1988):

0=A,-cosCz+A, sinCz (2)
where
C*= _M_Z__
(GT)- (EL)
(El) and (GJ) are the flexural stiffness about the 7 axis and the torsional stiffness of the

cross section, respectively.
The constants of integration A, and A, are determined from the boundary conditions.

€)

5. Constant bending moment, curvature and stiffnesses in reinforced concrete beam

Egs. (2) are valid along the beam for which the bending moment and stiffnesses are constant.
In fact the bending moment along the beam is variable. In addition to this, the stiffnesses are
also variable due to presence of cracks. In this case, in order to apply Eqgs. (2), the beam is di-
vided into finite segments.

The procedure for evaluating the bending moment and stiffness that are assumed to be con-
stant on each segment is as follows:

5.1. Conversion of the bending moment diagram to the constant moment values

As an example, the simple supported beam subjected to a uniformly distributed load is di-
vided into 10 segments of equal length. Then, since the strain energy for the varying and con-
stant bending moments is equal for each corresponding segment, k coefficients shown in Table 1
can be obtained from this equivalence (Fig. 3).

By using the bending moment for a uniformly distributed load,
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Table 1 Bending moment conversion coefficients x for a uniformly distributed load

Segment # 1 2 3 4 5
x Eq. (8) 0.214 0.513 0.749 0.907 0.987
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Fig. 3 Conversion of the bending moment diagram to constant moment values of a simple supported beam

subjected to a uniformly distributed load.

The strain energy due to varying bending moment

z, M? q2L’ | z3-z{  z3-z{ z}-z{
= [T dz= — + s~ 7
zy 2(EL) 8(EL) 3L SL 2L
Strain energy due to constant moment M
2, M? M?
= d = —_—
J., 2(EL) = 2y (B

By equating Egs. (5) and (6) and rearranging, we obtain
qL’
8

16 1/_5 _ 1(_s — 1 /(s — -z
=135 {?(25‘25%3(Zf‘zf)‘z(zf‘zf)] =T

5.2. Moment curvature relationship for reinforced concrete cross section

M=k

©)

(6)

™

The value of the concrete compressive force F, and its acting distance from the extreme com-
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Fig. 4 Reinforced concrete cross section, dimensions, stress and strain distribution and the acting internal

forces.

pression fiber may be defined from the o, — €, relationship Eq. (1) shown in Fig. 2(a) as follows
(Grabner 1989)(Fig. 4):

F.=0.850 fum by )
k InN S1 1 S
= 1- - k=l | ks - —2— 10
* k—z( N—lj n av-nz( 1 (k—2)“) o
Here;
N=1+(k-2)n; n=&/¢,
1
slz-(k—_—z—)T(O.SNz—2N+lnN+1.5)

s2=%N3—1.5N2+3N-1nN—-161—

Eq. (10a) will be transformed into a quadratic equation for k=2. In this case;

n3-n) 4-1n
==L ky = ——— 10b
o, 3 iG-m (10b)
The steel force is:
F, =A; - o, ;  Os —<-fym (11)

The coefficient 0.85 in Eq. (9) shows the effect of the long term loads. In a cross section shown
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Fig. 5 Accepted mean value of steel strain for consideration of the tension effect between the cracks.
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in Fig. 4, the neutral axis depth c that satisfies the horizontal equilibrium condition for a det-
ermined value of €, can be defined by using the Egs. (9) and (11) and employing a trial and er-
ror method so that the moment resisting capacity of the cross section is:

M =M. +M, =F.(c —a)+F,(d —c) (12)

The curvature of cross section is:

y=— (13)

Curvature obtained from Eq. (13) refers to a cracked section. Tension effects between the
cracks contribute to curvature. In different Codes (Specification 1978, “Building” 1989, EC2
1992, CEB-FIB 1990) the consideration of this tension effect has been taken into account and
were studied in detail (Ghali 1993, Favre and Charif 1994).

In this paper, the tension effect between the cracks has been considered as shown in Fig. 5.

&,, = The mean value of steel strain.
€, = The mean value of steel strain of the uncracked cross section for the load at first cracking
(state 1)

€,,» = The mean value of steel strain for yield stress f,,

o, = Steel stress

o, = Steel stress at the cracked cross section for the load at the first cracking (state 2)

f,»=The mean value of yield stress of steel

In calculating curvature y;,, for each segment, instead of strain & the mean value of strain €,
is used.

£sm —&
d

Y = (14)

5.3. Stiffnesses of reinforced cross section

If the moment expression for concrete Eq. (12) is divided to the mean value of curvature,
then the mean value of stiffness for concrete is obtained. Thus:

Mc =(E1)cm =Ecm 'Icm (15)

m

where E_, is the mean value of modulus of elasticity for concrete and it is defined from the
Eq. (15), as follows:

= Mc
llfmIcm
The mean value of modules of elasticity E,, obtained of Eq. (16) is assumed to be valid for
bending about both x and y axes.

I, is the mean value of the moment of inertia of the concrete compressive area about the
modified neutral axis for a rectangular cross section, I, is given by:

Ecm (16)

_ b,Cn

Icm
3

a7
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Here c,, is the modified neutral axis depth and is calculated from:

Cn = - 18

- (18)

Once the mean value of the modulus of elasticity for concrete and the neutral axis depth have

been calculated, then the stiffnesses are obtained by calculating the torsional stiffness, the mo-

dulus of elasticity in shear G(G =~0.40E,,) and torsional moment of inertia J as that of the gross

concrete cross-section. For calculating the flexural stiffness about the y axis, the mean values of

flexural stiffnesses for cracked and uncracked section might be taken (Litzner 1993) and it
might also be considered that before buckling the 77 and y axes coincide.

Thus

(EL) = % (Eenly +Euly)+ Eenl )| - (19)

where:

I,=Moment of inertia of the concrete compressive area about the y axis at the cracked section.
I, = Moment of inertia of steel about the y axis.
I, = Moment of inertia about the y axis including the reinforcement at the uncracked section.
If the moment acting at the cross section is less than the cracking moment M,,, then the mean
value of modulus of elasticity for concrete becomes
M.,

Eon = v Il (20)

where

I, = Moment of inertia of transformed cross section composed of A, plus A,

Esm s

Vo = er (21)

¢, = Neutral axis depth of transformed cross section.
£,., = (see Fig. 5)

1‘4‘7= fr'Il ’ fr =06(fcm_8)2/3 (22)
h —C 1
f,=Modulus of rupture of concrete in N/mm* (EC2 1992)
(EL)=Ew -1, (23)

(EL) and (GJ) are the flexural stiffness and torsional stiffness of the beam about y axis and it
is more appropriate to have those values in a dimensionless form as follows;

(EL)=EL)bih fom 24
(GI)=(GI)b’h fem (25)

where
(EL) and (GJ) are the dimensionless stiffness coefficients.
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6. Calculation of critical lateral buckling ratio

Aydin (Aydm 1992) has studied the critical lateral buckling slenderness ratios which cause la-
teral buckling of beams for different external loadings. In this study, the Hognestad (Hognestad
1951) model is used for the concrete stress strain relationship and the effect of concrete stiffness
in the tension area is ignored.

The following algorithm is outlined for a beam of known steel and concrete grades and steel
arrangements. A simple supported beam subjected to a uniformly distributed load is taken as an
example for explaining the algorithm, but if desired, it can also be applied to different beams of
varying cross-sections and loads.

1) The beam is divided into 10 segments.

2) For each segment, coefficient C of Eq. (3) is obtained (Fig. 3 and Egs. (7) and (19) to (25)).

M . K gl Lh
(GIYELY) " (GIYELN" 8buh’fmn 2
by

(26)

In the above Eq. (26), the first term is relating to the cross-sc.*ion properties and the second
term to internal and external moments. These both terms we constant. Only the last term Lk /b,>
is relating to slenderness of the beam. The ratio of L /b, is defined as the critical slenderness
ratio A, in lateral buckling cases and it is also the ratio which brings the beam to the buckling
state.

3) Egs. (2) are established by taking the boundary conditions into account. For a simple sup-
ported beam, the following conditions may be used: ¢=0 at z=0 and z=L and at the interfaces of
each segment ¢ and its derivative (d¢/dz) are equal. Finally, a set of homogeneous equations
are obtained and the resulting equations will be twice the number of segments. If the external
loading of the simple supported beam is symmetric, then the number of equations are halved. In
this case the boundary condition d¢/dz=0 at z=L /2 can be applied. If the beam is a cantilever,
then the boundary conditions will be ¢=0 at z=0 and d¢/dz=0 at z=L.

4) A set of equations that are obtained in step 3 are solved. In solution of these equations, the
determinant of the coefficient matrix is set to zero. An iterative procedure that satisfies this con-
dition is applied; that is, an initial guess to the term Lh/b,’ of Eq. (26) is assigned and this
guess is updated with a small increment until a zero-determinant solution is satisfied.

5) Slenderness of the beam A is compared with the value A, found in step 4. As a result of
this comparison the safety coefficient of lateral buckling yis calculated as follows:

A’Cf
Y= (28)

According to this comparison, it might be said: If y<1 the beam is unsafe for lateral buckling.

7. Numerical example

To demonstrate the application of this method presentc ‘'ere. the numerical example of
Deneke, Holz and Litzner (1985) was used.

Datum for the beam are :

Simple supported beam (end rotations of the beam are prevented with respect to z axis)
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Span of the beam L=18 m.
Total uniformly distributed load ¢g=25.14 kN/m.

fo.=50 N/mm’* (The mean value of 28 days cube compressive strength)
fom=50/1.18 =42.37 N/mm’ (The mean value of 28 days cube compressive strength converted
to cylinder compressive strength),
f.=0.6 (42.37- 8)*° = 6.34 N/mm’
fom = 42000 N/mm’
A, =452 mm’ (4912)
A, =3694 mm’ (6¢28)
2 2
maxM = qé, _ 25.148>< 18

Cracking moment of the beam M= 550.46 kNm.
A computer program was prepared to calculate the safety coefficient of lateral buckling and

the following values of this numerical example are obtained by using this program.
The computed C coefficients are given below.

=1018.17 kNm.

Segment 1 2 3 4 5
Cb,) hf.) 148.97 68.37 89.06 98.96 102.81

By using these coefficients, the value of A, =Lh /b, that satisfies zero-determinant of the coef-
ficient matrix of Egs. (2) is found to be 4944.
Slenderness of the beam

Lh 18x1.6
A== = 1704
b 0.13?
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Fig. 6 Reinforcement and dimension of the beam cross-section.
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Ao _ 4944 _, o
A 1704

If the load coefficient were considered, then the safety coefficient ¥ would be found lower
than the value 2.9
The reported safety coefficient by Deneke, et al. (1985) is 2.67

Safety coefficient of lateral buckling y=

8. Conclusions

Developments in material technologies and production techniques in application brings about
the possibility of lateral buckling in structural components. There is not sufficient proposals re-
lating to the verification of lateral buckling safety in reinforced concrete beams. EC2 (EC2 1992)
recommends that in the case of slenderness ratios Lh/b,” of greater than 125, a more detailed
analysis should be carried out. It is seen that the addmisible lateral buckling slenderness ratio of
a beam is rather small. For this reason, methods that are safe and easily applicable should be de-
veloped. In this study, a such method is proposed.

The proposed algorithm is a general one and can be applied to any cross sections with dif-
ferent steel arrangements. It can also be applied to beams of varying cross sections and to con-
tinuous beams.

The number of segments were varied in the computations. As a result, it was observed that in-
creasing the segments did not result in variation in the safety coefficient. The optimum segment
number was found to be 10.
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Notations

The following symbols are used in this paper.

A, area of tension steel

b width of the compression flange

b, width of the web of beam

c distance from extreme compression fiber to neutral axis

d distance from extreme compression fiber to centroid of bottom steel layer
E,, the mean value of modulus of elasticity of concrete

E, modulus of elasticity of steel

(ED the mean value of flexural stiffness of concrete

(EL), (EL) flexural stiffness of the cross section about x and y axes, respectively
(ELy), (EL,) flexural stiffnesses of the beam about the & and 1 axes

(EL) dimensionless flexural stiffness coefficient

F,F, concrete compressive force, steel force respectively

fom the mean value of concrete cylinder compressive strength

fom the mean value of yield stress of steel

G modulus of elasticity in shear

GJ torsional stiffness

(G)) dimensionless torsional stiffness coefficient

h overall thickness of member

I, the mean value of moment of inertia of concrete compressive area about the modified
neutral axis

I, moment of inertia of the concrete compressive area about y axis at the cracked section

I, moment of inertia of steel about y the axis

L, I moment of inertia of the transformed cross section composed of A, plus A, about the x
and y axes, respectively

torsional moment of inertia

span of the beam

constant bending moment about the x axis

moment resistance capacity by the concrete at the cross section

cracking moment

fixed coordinate axes

strain of concrete
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g, strain of steel

£, ultimate compressive strain of concrete

£, ultimate strain of steel

) the angle of rotation of the cross section about the z axis

Y safety coefficient of lateral buckling

K ratio of the moment that is accepted as constant at the 1/10 th segments of the beam
span to the maximum moment

A slenderness of the beam

Aer critical lateral buckling slenderness ratio
O, concrete stress

0, steel stress

v curvature

W, the mean curvature

778 curvature of the cracking moment





