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Abstract. The extensive use of honeycomb sandwich structures has led to the need to understand
and analyze their low velocity impact response. Commercially available finite element software provides
a possible analysis tool for this type of problem, but the validity of their material properties models
for honeycomb materials must be investigated. Three different problems that focus on the effect of
differences in honeycomb material properties on static and dynamic response are presented and discussed.
The first problem considered is a linear elastic static analysis of honeycomb sandwich beams. The
second is a nonlinear elastic-plastic analysis of a circular honeycomb sandwich plate. The final problem
is a dynamic analysis of circular honeycomb sandwich plates impacted by low velocity projectiles. Results
are obtained using the ABAQUS final element code and compared against experimental results. The
comparison indicates that currently available material properties models for honeycomb materials can
be used to obtain a good approximation of the behavior of honeycomb sandwich structures under static
and dynamic loading conditions.
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1. Introduction

Sandwich structures are used extensively in aircraft and military vehicles due to their light
weight and high stiffness. Sandwich construction generally consists of thin high strength face
plates bonded to a low density low strength core. Face materials vary from traditional metallic
materials such as steel and aluminum to many types of fiber reinforced plastics. Soft low density
materials such as honeycomb or foam can be used as core materials. The extensive use of
honeycomb sandwich structures in such applications has led to the need to more fully understand
and to better analyze their low velocity impact response. This type of analysis is especially useful
for evaluation of vehicle crash vulnerability. Commercially available general purpose finite element
software packages provide a possible simulation tool for this type of problem, but the validity
of their material properties models for honeycomb materials must be investigated.

Analytical solutions for various static sandwich construction composite problems have been
obtained by many investigators. Likewise, low velocity impact on sandwich structures has also
been the subject of numerous investigations by analytical, experimental and numerical methods
(see, e.g. Goldsmith and Louie 1995). Interestingly enough, the solution techniques employed
in the analytical and numerical studies failed to address how the material constants for the
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honeycomb filler were obtained. Experimentally, transverse shear moduli are typically obtained
using a rail shear test (Kuenzi 1957, Stevens and Kuenzi 1962, Kuenzi and Jenkinson 1974).
Yield and ultimate strength, as well as stress strain curves, were also obtained by Kuenzi (1957)
and Stevens and Kuenzi (1962). Analytical formulations for the upper and lower limits of the
transverse shear moduli have been published by Kelsey, er al. (1958) and by Gibson and Ashby
(1988). A finite element determination of these moduli based on upper and lower limits has
been proposed by Grediac (1993). Formulations for the in-plane moduli and yield strengths
have been determined analytically by Gibson, er al. (1982) and by Gibson and Ashby (1988),
Gibson, et al. (1989) also developed in plane failure surfaces due to biaxial loading.

This paper considers three problems that focus on the modeling of honeycomb material proper-
ties. Of special interest is the effect of differences in material properties obtained using different
methods on the predicted response of a particular type of honeycomb sandwich beam. The
response predictions were obtained using the ABAQUS (HKS 1993) finite element code. First
order solid elements were used throughout the analysis for the following reasons.

In general, linear elastic finite element analysis of composite beams and plates can be accompli-
shed using shear deformation shell elements. These elements ignore stresses through the thickness
of the beam or plate but do not account for transverse shear stress. These elements are appropriate
for laminated composite and/or thick plate analysis where the transverse shear deformation
“cannot be ignored. However, no suitable shell element has been developed for elastic/perfectly-
plastic material models where the transverse shear is included in the yield criteria. When transverse
shear yield must be taken into account, solid elements must be used. First order elements do
not perform well in bending without a very fine mesh (HKS 1993). Second order elements perform
much better than first order elements as do incompatible mode elements if the mesh is rectangular
(HKS 1993). However, if an analysis involved contact, second order elements should be avoided
due to the numerical difficulties associated with ABAQUS contact algorithms (HKS 1993). When
large deformations occur and solid elements are no longer rectangular, the incompatible mode
elements do not provide an accurate solution (HKS 1993). Hence, for these reasons, first order
solid elements were used in the finite element analyses performed as part of this study.

The first problem considered is concerned with various methods of obtaining elastic constants
for honeycomb materials and their effect on static response. The magnitudes of the differences
in response are evaluated by comparing available experimental response data to the predictions
of linear static finite element analyses (FEA). The second problem focuses on inelastic deformation
of honeycomb sandwiches. Again, the effect of using different methods to obtain yield constants
for an elastic perfectly plastic material model is evaluated by performing a nonlinear FEA.
The FEA results are compared to published experimental data for the quasi-static loading of
a honeycomb sandwich plate. The third problem makes use of the material properties and models
from the first two problems to analyze the low velocity impact of honeycomb sandwich plates
where large and permanent deformations cannot be neglected. The FEA results are again compa-
red to available experimental data.

2. Static linear elastic analysis
2.1. Introductory comments

Static finite clement analyses are performed using both experimentally and analytically/numeri-
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cally determined transverse shear moduli. The results of the analyses are compared against experi-
mental test results. It will be shown that the transverse shear moduli are by far the most critical
elastic constants for bending of honeycomb sandwich beams. Hence, they are the focus in this
part of the investigation. The following section presents the analytical and numerical tools that
are available to approximate the linear elastic constants required to describe a honeycomb mate-
rial. These constants will be used for FEA of honeycomb sandwich beams, the results of which
will then be compared to published experimental data.

2.2. Elastic constants

Fig. 1 shows a standard hexagonal honeycomb configuration and the coordinate system used
throughout this investigation. Such a material is typically said to be orthotropic in nature; hence,
there are nine effective elastic constants that need to be determined. These are E,, E, E; v,
via, . G, Gy, and Gy, Consider one cell as shown in Fig. 2. The cell shown is constructed
of an isotropic material with modulus of elasticity E,, Poisson’s ratio v,, and shear modulus
G, (the ¢ subscript indicates property of honeycomb constituent material). This cell geometry
is typical of aluminum honeycomb construction where corrugated aluminum strips of thickness
¢ are bonded together forming a honeycomb with vertical walls that have a thickness 2. Gibson
and Ashby (1988) have presented the following analytical equations for the moduli E, and E,
with uniform thickness #:

E= ( ) gb/a+5m6! E )
a cos’ @
[tV cos @
EZ_(a) (b/a+sin6)sin20E" @

Egs. (1) and (2) are obtained using standard beam theory to evaluate forces and deformations
of the inclined walls. The formulation used to obtain E, and E, assumes that only inclined
cell wall bending needs to be considered (i.e., the vertical walls with thickness ‘2" do not contri-
bute). For regular hexagonal cells where 8=30' and a=b, and both moduli are given by

4 3
E=E= 7;(&) E 3)

To calculate E;, a modification to the formulation by Gibson and Ashby (1988) to include the
thickness 2¢ as shown in Fig. 2 is done by considering a portion of the honeycomb cell as
shown in Fig. 3. Based on the geometry in Fig. 3, the modulus E; is given by

_r 1+b/a
E= a ( cosB(sin@+b/a )E" @

For regular hexagonal cells,

_1(_8
E:= a(ﬁ)ﬂ. (9)

The 1-2 Poisson’s ratio is approximated by Gibson and Ashby (1988) based on the deflections
due to inclined wall bending that were used to determine E, and E, and is given by
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Fig. 2 Honeycomb cell.
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Fig. 3 Portion of honeycomb cell for E; formulation.
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_ (b/a+sinB)sin O ,
Yz cos’ 6 ©)
We note that v;,=1 for regular hexagons (i.e., 6=30° and a=b) and that v, in general is indepen-
dent of wall thickness. Poisson’s ratios vy; and v, are simply the Poisson’s ratio of the honeycomb
material itself, v, (Gibson and Ashby, 1988). Using the reciprocal relation between moduli and
Poisson’s ratios in tensor notation, that is,

Vi Vi
E-E )

together with the above definition of v, and vy, yields

_E
Vi3— E3 V,-~O (8)
E
W= Ej V.= : (9)

The shear modulus G|, was also formulated analytically by Gibson and Ashby (1988). This
formulation was done assuming the shear deflection is due entirely to cell wall bending so
that standard beam formulas can be used to calculate the shear stress and strain, thus obtaining
the shear modulus. As with the formulation of E; Gibson and Ashby considered the cell walls
parallel to the l-direction to have a thickness . Fig. 4 shows the formulation method of Gibson
and Ashby modified to consider the I-direction wall thickness to be 2. Using standard beam
equations, Gibson and Ashby arrived at the following expression for G,

_(tY (b/a+sin 6)
G <a) (Blay(1 +blda)cos b & (10)

_E [
i

Fig. 4 Cell walls bending in 1-2 shear.
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For regular hexagons Eq. (10) becomes

Gu:(é)} %E( (1)

For bending analysis of honeycomb sandwich structures, the transverse shear moduli (G;
and G») of the honeycomb are more important than the other honeycomb moduli. This is
due to the fact that the transverse shear moduli are generally hundreds of times larger than
the other moduli (except for E; which is even larger than the transverse shear moduli but not
as critical unless through the thickness deformation is important). The analytical determination
of transverse shear moduli is more complicated. but upper and lower bounds can be evaluated
by using the theorems of minimum potential and minimum complementary energy (Kelsey,
et al. 1958). Using minimum potential energy and a compatible strain field, the upper bound
can be determined. The lower bound is found by using minimum complementary energy and
a compatible stress field. If the two bounds are equal, an exact value is obtained (which is
in fact the case for G.;). The transverse shear values, considering the cell walls parallel to the
|-direction have a thickness 2¢ as shown in Fig. 2. were analytically determined by Kelsey. et
al. (1958) and are

(bla)+sin @ ( t ) _imorr <gunr—__(b/a)tsin®6 ( t
(1+a/b)cosO \ b G:=GRSG1=G; (1+(a/b)sinGcos @ \ b Ge (12)
_ cos @ r
Gr= 1+(a/b)sin 6 (b)G" (13)

A finite element study of transverse shear in honeycomb materials (Grediac 1993) provides an
approximation for G;; as a function of the upper and lower bounds given in Eq. (12) that
was obtained using a least squares fit of finite element solutions for numerous cell configurations.
This approximation is given as follows:

GI3 — Gl&wur+ 787 %( %prr_ Gl{gwur) (14)

where ‘A’ is the thickness of the honeycomb core in the 3-direction.
2.3. Description of experiments and FEA model

Published experimental data concerned with bending of honeycomb sandwich structures is
limited: only a small number of honeycomb sandwich beam bending experiments have been
performed (Lingaiah and Suryanarayana 1991, Mines, et al. 1994). This section describes the
experiments and the finite element model used in this investigation.

The experimental beam configurations are represented in Fig. 5, the dimensions are given
in Table 1. The honeycombs used in each experiment have the configuration of Fig. 2 (ie.
parallel cell walls have thickness ‘2r’), are regular hexagons (ie., 6=30° and a=b), and are
constructed of 5052 aluminum; the only variation of the honeycomb in the three experiments
is the wall thickness 7. The experimental data for each case was presented as load and displace-
ment at the center of the beams (Lingaiah and Suryanarayana 1991, Mines, er al. 1994). Due
to the loading and geometric symmetry shown in Fig. 5, only half of the beams were modeled
for the finite element analysis; each half contained 983 elements with 999 nodes. including the
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Fig. 5 Linear elastic static analysis: Experimental beam configuration.

Table 1. Linear elastic static analysis: Experimental beam dimensions (Honeycomb core cell wall
material---5052-H32 Aluminum)

Reference Face Honeycomb core ! L w f h
material cell size (¢cm)  (cm) (cm) (cm) (cm) (cm)
Lingaiah and Unidirectional 0.635 001 150 50 013 19
Suryanarayana (1991) fiberglass
Mines, er al. #1(1994) Woven fiberglass 0.635 0006 400 60 0055 13
Mines, er al. #2(1994) Woven fiberglass 0.635 0006 400 60 0055 25

Table 2 Linear elastic static analysis: Material constants used for finite element analysis

Lingaiah and Mines, er al. #1 Mines, et al. #2
Suryanarayana (1991) (1994) (1994)
Face* Core Face* Core Face* Core
E, (GPa) 55.6 344X107° 20 0.84X10 20 0.84x107*
E> (GPa) 179 3.44X107° 20 0.84 <1071 20 0.84X10"*
E; (GPa) 179 298 20 1.87 20 1.87
Vi2 0.25 1 0.11 1 0.11 1
Vi3 0.25 0 0.11 0 0.11 0
V3 0.25 0 0.11 0 0.11 0
G, (GPa) 8.96 206X107° 4.13 0.50x10"* 4.13 0.50Xx10°*
G (GPa) 0.65 041 0.40
Gix (GPa) 8.96 0.87 4.13 0.59 4.13 0.53
Gy (GPa) 042 0.26 0.27
Gxe (GPa) 8.96 035 4.13 0.25 4.13 0.23

*The face material properties were not calculated analytically

interface elements and nodes. Table 2 contains the elastic constants used for the analysis. The
honeycomb elastic constants shown are obtained using the methods from the previous section
and from manufacturer’s rail shear and compressive tests. In those cases where a honeycomb
constant was obtained by two different methods, the constants calculated by an analytical method
are indicated with a ‘¢’ subscript, while an ‘¢’ subscript denotes an experimentally obtained
elastic constant. The face material properties are not the focus of this investigation; hence, these
constants were not obtained using analytical methods and no values are shown for these constants
with a ‘¢’ subscript. As can be seen in Table 2, the analytical/numerical values of G, which
is the larger of the two transverse shear moduli, are consistently smaller than the experimental
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values. This agrees with the work of Kelsey, er al. (1958) who showed that rail shear tests do
in fact over-estimate the transverse shear moduli of honeycomb materials. The comparison of
the results obtained from a finite element analysis using both calculated and experimental shear
moduli and experimental beam deflection data is presented and discussed in the next section.

2.4. Comparison of experimental data and FEA results

The deflections at the center of the beam obtained from finite element analyses, using calculated
and experimental properties, are compared to experimental results in Table 3. The results show
that, for the beam geometry and loading considered, using the transverse shear properties obtained
by the rail shear tests in an FEA gives smaller deflections than using calculated transverse
shear properties in an FEA. However, with the exception of the Lingaiah and Suryanarayana
experiments, the differences between the two types of finite element analyses and the experimental
results are very slight. The larger difference in the case of the Lingaiah and Suryanarayana
beam can be explained by a number of considerations.

First, the beam in the Lingaiah and Suryanarayana experiment had a much smaller length-
to-thickness ratio (6.94) when compared to the length-to-thickness ratio in either of the beams
in the Mines experiments (284 and 15.3 for experiments #1 and #2, respectively). That is.
the Lingaiah and Suryanarayana beam was more “stocky” than both of the Mines beams. Because
shear effects are more prominent in beams with low length-to-thickness ratios, the FEA of such
beams would be especially sensitive to the transverse shear moduli used. Second. as can be
seen in Table 4, the ratios of central beam deflection to any one of the three primary honeycomb
geometric parameters (cell size, wall thickness and core depth) were much larger for the two
Mines beams when compared to the Lingaiah and Suryanarayana beam. One might say that
the geometries of the honeycomb cells in the Mines beams were overwhelmed by the deflections
induced by the loads in those cases. In the Lingaiah and Suryanarayana beam, the honeycomb
material evidently provided substantial resistance to deformation. Not surprisingly, the agreement
between the numerical predictions and the experimental results was closest for the Mines beams,
where the periodic nature of the honeycomb material was, in effect, washed out by the deforma-
tion.

Based on these considerations, it appears that numerical codes may have a tendency to work
better in modeling the response of honeycomb beams that are highly flexible and are expected
to undergo significant bending deformations. In general, however, it can still be said that the

Table 3 Linear elastic static analysis: Comparison of FEA and experimental results for central beam

deflection
Force Experimental FEA results % Diff. FEA results % Diff.
(N) results calculated from Exp. experimental from Exp.
(cm) properties results properties results
Lingaiah and 1.957 0.035 0.030 —143 0.028 =200
Suryanarayana (1991)
Mines, er al. #1 809 2.04 1.89 —~74 1.88 —78
(1994)
Mines, et al. #2 1,668 0.94 1.03 9.6 1.02 8.5

(1994)
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Table 4 Linear elastic static analysis: Ratios of beam displacements to various honeycomb gpometric

parameters
Ratio of deflection  Ratio of deflection Ratio of deflection
to honeycomb core to honeycomb wall to honeycomb core
cell size thickness depth
Lingaiah and Suryanarayana (1991) 0.0551 35 0.0184
Mines, ef al. #1 (1994) 321 340 1.569
Mines, et al. #2 (1994) 1.48 157 0.376

results of this analysis indicate that the use of effective material properties, whether they are
obtained from testing or are calculated analytically, in finite element analysis of honeycomb
structures in bending provides results that compare relatively well with experimental data.

3. Static nonlinear elastic-plastic analysis
3.1. Introductory comments

Modeling plastic behavior in materials is much more complex than modeling linear elastic
behavior. To reduce complexity, approximations to the actual stress strain curve are typically
made. However, the study of elastic-plastic behavior of honeycomb materials has not received
much attention to date. In this study, Hills orthotropic yield criteria (Hill, 1950) will be used
in an elastic perfectly plastic material model to approximate permanent deformations in honey-
comb materials. In this section, methods to determine these yield constants for honeycomb mate-
rials will be reviewed. Yield Constants Gibson and Ashby (1988) studied the inelastic behavior
of honeycombs in the 1-2 plane. Fig. 6 shows the typical shape of the stress strain curve of
a honeycomb fabricated from an elastic-plastic metal loaded in the 1 or 2-direction. The yielding
is due to plastic hinges forming in cell walls and the steep rise is due to cell walls aligning
or touching. The cell walls will not align or touch until strains become extremely large so it
appears that elastic perfectly plastic behavior will be a reasonable approximation of actual material
response. Gibson and Ashby (1988) presented an analytical formulation for o, and 6,,. The
formulation assumes that plastic hinges form only in the inclined cell walls having thickness
t as was shown in Fig. 2 (recall that the formulation of E, and FE, is the same regardless of
the thickness of the cell walls parallel to the 1-direction). The upper bound of the yield values
can be found by equating work done by forces on cell walls to the plastic work done at the
hinges. The lower bound can be determined by equating the maximum moment in the cell
wall to the fully plastic moment. If the upper and lower bounds are equal the formulation
is exact, which is in fact the case for o, and o, The equations presented by Gibson and
Ashby (1988) are

(V1
U""_<a> 2cos 9 o (15)

_{ry 1
qz*(a) 2sin 6(b/a+sin 6) e (16)
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Fig. 6 Honeycomb stress strain curve in 1 or 2-direction.

For regular hexagonal honeycomb (ie, 6=30° and a=b), o, and o,, are equal and Egs. (15)
and (16) reduce to

2
qvlz("yz:‘gd‘(ﬁ) Oye (17)
where o, is the yield stress of the honeycomb material.

Inelastic behavior of honeycomb materials in the 3-direction has been studied much more
than that of other directions because honeycombs are often used as energy absorbers for compres-
sive crushing in the 3-direction. The behavior of honeycomb in the 3-direction is different in
tension and compression. Fig. 7 shows the typical shape of the compressive stress strain curve
for a typical honeycomb. In Fig. 7, the curve drops to a uniform crush strength due to cell
wall buckling. It is obvious that the stress strain behavior in tension would be quite different
and have an ultimate strength considerably higher because of the absence of cell wall buckling.
Unfortunately, material models in FEA codes have not been developed for this type of behavior.
Hence, this study is forced to consider honeycomb behavior in tension to be the same as in
compression.

The 3-direction yield value will be taken from the empirical formulation of ultimate compressive
strength by Stevens and Kuenzi (1962) and is given by

G =45 W (18)

where W is the weight density in lbs/ft’ and o,; has units of Ibs/in’. This formula is based
on a curve fit of experimental data from aluminum honeycombs of various densities having
regular hexagonal cells configured as shown in Fig. 2.

The yield value for shear in the 1-2 plane has been analytically formulated by Gibson and
Ashby (1988) in a manner similar to the method used to determine o,, and o,. It is assumed
that the yielding is due to the formation of plastic hinges in the cell walls parallel to the 1-
direction. The upper and lower bounds are equal as they are in the formulation of ¢, and
o, so the solution is exact. With the cell walls parallel to the 1-direction having a thickness
‘2, the result of the analytical formulation is the equation

M27\a) (blaycosd O

which reduces to

=2 (LY 20
0}12*"7? a ) o (20

for regular hexagonal cells.
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Fig. 7 Compressive honeycomb stress strain curve in 3-direction.

As was stated previously, even though the properties of honeycombs in transverse shear (shear
in the 1-3 and 2-3 planes) are more critical than other properties, the inelastic behavior of honey-
combs in transverse shear has received almost no attention. The shape of a typical stress strain
curve in transverse shear is shown in Fig 8 (Bitzer 1993). Stevens and Kuenzi (1962) provided
the yield values as shown in Fig. 8 but did not provide any curve fit information. A linear
regression analysis on the data presented by Stevens and Kuenzi was performed; a curve fit
of this data produces the following relations

Gy =69 W—62 1)
0 =31W—17 22)

Once again, W is in Ibs/ft' and the o,;; and o, are in lbs/ft> The analysis produces an R’
value of 097 for Eq. (21) and 095 for Eq. (22). Due to the fact that no analytical studies of
inelastic behavior in transverse shear are available, the empirical formulations in Egs. (21) and
(22) will be used to provide the yield constants for Hill's yield criteria.

3.3. Description of experiments and FEA model

Beckmann (1990) published results of an experiment in which a circular honeycomb sandwich
plate was loaded quasi-statically and subsequently exhibited inelastic deformations. The results
of this experiment will be compared against the results of a FEA using the elastic perfectly
plastic approximation for the honeycomb material as presented in the previous section. This
section describes the experiment and the finite element model used for this part of the study.

The experimental configuration, shown in Fig. 9, consisted of a circular plate with aluminum
face plates and an aluminum honeycomb core. The plate diameter was 25 cm and simply suppor-
ted around the outside edge continuously. Additional geometric parameters are given as indicated
in Table 5. The load was applied quasi-statically through a projectile that was used for the
impact experiments which will be discussed in a subsequent section. The projectile was an alumi-
num cylinder with a diameter of 7.5 cm and a steel head having a convex curvature with a
46 cm radius. The results of the experiment were presented as force and displacement at the
center of the plate (Beckmann 1990).

The loading and geometry shown in Figure 9 are symmetric about the axis of the cylinder
and plate, but the material properties of the honeycomb are not. A full three dimensional FEA
would be required to account for the symmetry mismatch between the aluminum and the honey-
comb material, but large computation times would be required. Instead, an axisymmetric approxi-
mation will be made by using a transversely isotropic material model. In such a material model,
the elastic constants required are E), E;, v, vii, and Gy Thus, the only modification to the
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Fig. 8 Honeycomb transverse shear stress strain curve.
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Fig. 9 Nonlinear elastic-plastic analysis: experimental plate configuration.

Table 5 Nonlinear elastic-plastic and dynamic analyses: Experimental plate
configurations (face and honeycomb core cell wall material-+-5052-H32

aluminum)
Exp. Honeycomb t f h Projectile
No. cell size (cm) (cm) (cm) (cm) velocity (m/s)
Elastic-plastic
- 0.32 0.0025 0.08 19 -
Dynamic
1 0.32 0.0025 0.08 19 25
2 0.32 0.0050 0.08 19 30

analytical formulation of the effective elastic constants discussed previously is for transverse
shear. The transversely isotropic shear modulus G,; will be approximated by using the average
of the two orthotropic shear modulus values, that is

G, 3neff— (Gt G»)/2 (23)

Similarly, the orthotropic shear yield stress values are also averaged to yield the transversely
isotropic approximation, that is,

Oyi3g—(C13F G,23)/2 (24

The finite element model consists of axisymmetric solid elements to represent the honeycomb
and face materials and an axisymmetric rigid surface to approximate the projectile used to
apply the load. As in the previous case, 983 elements with 999 nodes comprised the finite element
model. The honeycomb material properties are given in Table 6. Note that in Table 6, E,, £,
vi>. vin, and o,; were calculated using analytical formulations. However, G35 0,3, and Gz
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were calculated using empirical formulas because analytical formulations for these parameters
have not yet been developed. The face material is 5052-H32 aluminum and modeled as an
isotropic elastic perfectly plastic material. Only two elastic constants are needed; they can be
obtained from MIL-HDBK-5F (1990) and are E=70 GPa, v=0.33. Finally, the von Mises yield
criterion is used to determine the onset of plasticity; the yield value is 0,=155 MPa (MIL-HDBK-
SF, 1990).

3.4. Comparison of experimental data and FEA results

A plot of deflection at the center of the plate as a function of the load applied to the projectile
is shown in Fig. 10 for both the FEA and the experimental results of Beckmann (1990). The
sudden drop in the experimental curve at a deflection of 0.25 cm is most likely due to local
core crushing. Post-experiment measurements made by Beckmann (1990) showed a top face
deflection of 1.4 cm and a bottom face deflection of 1.2 cm, indicating 0.2 cm of core crushing.
According to Beckmann (1990), the crushing of the honeycomb core appeared as buckling of
the honeycomb walls under and in the immediate vicinity of the indenter. The permanent defor-
mation of the top face plate as predicted by the FEA is 1.7 cm, which is 21% higher than
the experimental value.

We note that because an elastic perfectly plastic material model was used in this investigation,
the finite element analysis did not consider core crushing. Although the FEA results do not
agree precisely with the experimental results, they do indicate that the use of Hill’s yield criteria
and an elastic perfectly plastic material model does provide a reasonable approximation of the
behavior of honeycomb sandwich plates.

A possible reason for the lack of a more precise agreement in Fig. 10 can be the uncertainty
of the proper value for shear yield stress shown in Fig. 8. For this reason, the FEA was performed
using 110% and 120% of the value of g3, shown in Table 6 (ie., 110% and 120% of the value
obtained from Eq. (24)). A plot of deflection at the center of the plate as a function of the
load applied to the projectile is shown in Fig. 11 for both the FEA (using 100%, 110%, and
120% of 6,13 and all other material constants as in Table 6) and the experimental results of
Beckmann (1990). It appears that 110% of the 0,154 value shown in Table 6 may be a better
value for the shear yield stress. However, additional tests should must be run to see if this
conclusion can be generalized.

In Table 7, the maximum central displacement as predicted by the FEA is compared to the
experimental value obtained by Beckmann (1990) for the non-linear elastic-plastic problem. As
can be seen in this Table, there is excellent agreement between the numerical prediction and
the experimental value. We note that the diameter-to-thickness ratio for the plate configuration
considered by Beckmann is approximately 12.1; other ratio values of interest involving the maxi-
mum central displacement and the geometry of the honeycomb material for this problem are

Table 6 Nonlinear elastic-plastic analysis: Honeycomb material constants used for FEA
E, (GPa) E; (GPa) iz G]_;gﬁ (GPa) o, (MPa) 03 {MPa) Op13seff (MPa)
044X1073 1.496 1 267 0.028 381 1.27

Note: E). E3 vi, and o, calculated using analytical formulations; Gz 63, and o134 were
calculated using empirical formulas.
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Fig. 10 Nonlinear elastic-plastic analysis: Force displacement of FEA and experiment.
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Fig. 11 Nonlinear elastic-plastic analysis: Force displacement of FEA (using three different values for
Oyiseg) and experiment.

given in Table 8. The ratio values in Table 8 and the plate diameter-to-thickness ratio for this
problem are similar to the corresponding values for the beams used by Mines et al. in performing
a static linear elastic analysis. It is recalled that the numerical results agreed fairly well with
the experimental data for these beams. Hence, considering the geometric similarity between the
circular plate used by Beckmann and the beams used by Mines, it is not totally surprising
to find that the numerical prediction for the problem under consideration also agrees well with
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Table 7 Elastic-plastic and dynamic analyses: Comparison of FEA and experi-
mental valuesof maximum central beam displacement (Beckman 1990)

Experimental FEA value % Diff. from

value (cm) (cm) Exp. results
Elastic-plastic problem 1.68 1.80 7.1
Dynamic problem #1 1.85 1.83 -11
Dynamic problem #2 1.85 1.90 27

Table 8 Elastic-plastic and dynamic analyses: Ratios of beam displacements to various
honeycomb geometric parameters (Beckman 1990)

Ratio of deflection Ratio of deflection Ratio of deflection
to honeycomb core to honeycomb wall to honeycomb core

cell size thickness depth
Elastic-plastic problem 5.25 672 0.884
Dynamic problem #1 5.78 740 0974
Dynamic problem #2 578 370 0974

the experimental result.

4. Dynamic impact analysis
4.1. Introductory comments

Beckmann (1990) also presented results of two experiments involving the low velocity impact
of circular honeycomb sandwich plates which resulted in permanent deformations. The results
of these experiments will be compared to dynamic FEA using the analytical and empirical
formulations for elastic and plastic constants presented previously. Following a description of
the experiments and the finite element model used for the dynamic investigation, a comparison
of the experimental results and FEA predictions is presented and discussed.

4.2. Description of experiments and FEA mode/

The experimental configurations were the same as shown in Fig. 9 except that the sandwich
plates were loaded by firing the projectile at low velocities. For the two experiments considered,
the only variations were honeycomb cell wall thickness and the velocity of the projectile. A
summary of the experimental configurations is presented as indicated in Table 5. As was the
case in the quasi-static problem considered previously, the projectile was an aluminum cylinder
with a diameter of 7.5 cm and a steel head having a convex curvature of a 46 ¢m radius.
The experimental results were presented as projectile force versus displacement (Beckmann 1990).

As in the quasi-static problem, the low velocity problem under consideration was considered
to be approximately axisymmetric which allowed the use of transversely isotropic properties
for the honeycomb material. The honeycomb material properties used for the FEA are summari-
zed in Table 9 and were obtained by the methods presented in the previous sections; the face
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material properties are as given previously. The finite element model used in the dynamic analysis
consisted of 2085 elements with 2104 nodes, including the interface elements and nodes.

4.3. Comparison of experimental data and FEA results

Plots of the deflection at the center of the plate as a function of impact force are shown
in Fig. 12 and 13 for Experiments 1 and 2, respectively. In Fig. 13 the impact force from the
FEA rises much faster than the experimental results and has a significantly higher initial peak
value. This difference can be explained by core crushing that is ignored in the FEA. In Experiment
1 (see Fig. 12), the honeycomb core thickness was reduced from 1.9 cm to 1.7 cm. This difference
can also be seen in Fig. 13, but is not as pronounced because in Experiment 2 the honeycomb
core thickness was only reduced by only 025 mm (ie., only 1.3% as compared to 11% in Experi-
ment 1). The core crushing in Experiment 1 is larger than Experiment 2 because the honeycomb
core in Experiment 2 has thicker cell walls and therefore increased strength.

Another difference in the FEA verses experimental data comparisons is the oscillations in
the FEA results that are not present in the experimental data. Part of this difference may be
explained by the method by which the experimental data was obtained. In the experiments,
the motion of the projectile was recorded by an optical sensor that measured displacements.
The displacement as a function of time was then filtered and differentiated twice to obtain
accelerations which were then multiplied by the projectile mass to obtain impact force as a
function of time. This filtering and differentiation undoubtedly removed most or all of the oscilla-
tions. Additionally, no structural damping was used in the FEA which may also explain part
of the difference in oscillations between the FEA and the experiments.

The data for Experiment 2 shows a drop in the force between 0.5 cm and 1.3 cm of displacement
which is not present in the FEA results. A possible explanation for this difference may be
localized crushing of the core at the support location or failure of the bond between the face
plates and the honeycomb core. Neither of these were discussed in the publication by Beckmann
nor were they modeled in the FEA.

In Table 7, the maximum central displacements as predicted by the FEA for the dynamic
problems are compared to the values obtained experimentally by Beckmann (1990). As can
be seen in the final two rows of this Table, there is again excellent agreement between the
numerical predictions and the experimental values. Since the plates used in the dynamic problems
are identical to the one used in the elastic-plastic problem, the diameter-to-thickness ratio is
again approximately 12.1; other ratio values of interest involving the dynamic maximum central
displacements and the geometries of the honeycomb material for this problem are given in
the second and third rows of Table 8. Once again, the ratio values in Table 8 and the plate
diameter-to-thickness ratio for this problem are similar to the corresponding values for the beams

Table 9 Dynamic analysis: Material constants used for FEA

EXp. No. E, (GPa) E; (GPa) Viz G|3‘¢ﬁ‘ (GPa) Oy (Mpd) O3 (MPa) Oy 13seff (MPa)
1 044X107* 1.496 1 0.267 0.028 3.81 1.27
2 346X10°° 2993 1 0.535 0.113 10.14 247

Note: E1. Es v and oy calculated using analytical formulations; Gz o0 and 6. were calculated
using empirical formulas.
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Fig. 12 Dynamic analysis: Force displacement of FEA and experiment 1.
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Fig. 13 Dynamic analysis: Force displacement of FEA and experiment 2.

used by Mines, et al. in performing a static linear elastic analysis. Hence, it is again not totally
surprising to find that the numerical predictions for the problem under consideration also agree
rather well with the experimental results.

Finally, the differences in final plate displacement between the FEA predictions and the experi-
mental results are approximately 17% and 5% for Experiments 1 and 2, respectively. As was
the case with the quasi-static problem, there is not a precise agreement between the experiment
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and the FEA, but the results do indicate that the methods used for finite element analysis in
this investigation can provide a good approximation of honeycomb sandwich beam response
to low velocity impact.

5. Conclusions and recommendations

The results of this investigation indicate that the use of empirical and calculated effective
material constants for honeycomb can be used to provide a reasonable approximation of the
behavior of honeycomb sandwich structures. These material constants can be use in conjunction
with a linear elastic perfectly plastic material model and the finite element method to analyze
the response of honeycomb sandwich structures to static and dynamic loads.

In the first part of this investigation analytical/numerical methods of determining linear elastic
constants for honeycombs were presented. A static FEA was performed on honeycomb sandwich
beams using both analytical/numerical elastic constants and experimentally determined constants.
These FEA results were then compared to published experimental data. Of particular interest
in this comparison is the effect of the transverse shear moduli because it is by far the most
important property in the bending of honeycomb sandwich beams. Although there was not
enough experimental beam data to determine which method of obtaining transverse shear moduli
is better, the results do show that this difference is more important in beams with low length
to thickness ratio (i.c., stocky beams). However, the results do indicate that the use of effective
elastic constants, whether calculated or obtained by experiment, provide a reasonable approxima-
tion of honeycomb sandwich beam behavior.

The second part of this investigation focused on the inelastic behavior of honeycomb materials.
Analytical and empirical methods of obtaining yield constants for honeycomb materials were
presented. These yield constants and the elastic material properties presented in the first part
of the investigation were used to perform a static FEA. The results of this FEA were compared
to published quasi-static experimental data that included inelastic deformations. Although only
one set of experimental data was available and the FEA results did not agree precisely with
the experiment, the results do indicate that these analysis methods can be used to predict the
overall response of honeycomb sandwich structures subject to inelastic deformations.

The third and final part of the investigation focused on the low velocity impact of honeycomb
sandwich structures. The methods of obtaining material constants for an elastic perfectly plastic
model presented in the first two parts of this investigation were used to perform dynamic FEA
of circular honeycomb sandwich plates impacted by low velocity projectiles. A two dimensional
analysis was needed for the dynamic analysis to keep computer run times to a minimum. Al-
though the run time required for the static inelastic problem was only 13 minutes, the run
time for the dynamic problems were approximately 200 hours. The large run times required
for the dynamic analysis would preclude a full three dimensional analysis of a complex structure.
As was the case for the static inelastic problem, an exact match to the experimental data was
not obtained. The FEA did however predict the overall response relatively well. The results
do indicate that the agreement between experiment and FEA gets worse as the amount of honey-
comb core crushing increases because honeycomb crushing is ignored in the FEA model. The
two dimensional FEA. as presented in this investigation. could be very useful in the evaluation
of the energy absorbing capabilities of honeycombs with varying cell dimensions and materials
(as long as the cell geometry is hexagonal and the material is isotropic).
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