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Abstract.  In this study a direct displacement-based design (DDBD) procedure for a continuous deck 

bridge isolated with triple friction pendulum bearings (TFPB) has been proposed and the seismic demands 

of the bridge such as isolator’s displacement and drift of piers obtained from this procedure evaluated under 

two-directional near-field ground motions. The structural model used here are continuous, three-span, cast-

in-place concrete box girder bridge with a 30-degree skew which are isolated with 9 different TFPBs. By 

comparing the results of DDBD method with those of nonlinear time history analysis (NTHA), it can be 

concluded that the proposed procedure is able to predict seismic demands of similar isolated bridges with 

acceptable accuracy. Results of NTHA shows that dispersion of peak resultant responses for a group of 

ground motions increases by increasing their average value of responses. It needs to be noted that the 

demands parameters calculated by the DDBD procedure are almost overestimated for stiffer soil condition, 

but there is some underestimation in results of this method for softer soil condition. 
 

Keywords:  direct displacement-based design; triple friction pendulum bearing; seismic isolation; bridge; 

near field ground motion 

 
 
1. Introduction 
 

Seismic isolation is a response modification technique used to protect structures from potential 

damages caused by strong ground motions. Isolation uncouples a structure from potential 

earthquake damages by increasing the flexibility of the system beyond the predominant periods of 

ground excitations along with providing an appropriate damping ratio. These modifications can be 

applied to a structure by installing a mechanical device named isolator, usually in the base of 

structure (or between pier and deck in bridge cases), Therefore, an isolator should have not only 

adequate flexibility to lengthen the vibration period of the system in order to reduce the design  
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Fig. 1 Geometric and friction parameters of a TFPB (Amiri and Namiranian 2014) 

 

 

forces, but also an energy dissipation mechanism to increase the damping ratio of the system to an 

appropriate level. Furthermore it should show enough rigidity when subjected to service loads. 

There are various types of isolators introduced in literature and even used in practical cases. 

Triple Friction Pendulum Bearings (TFPBs) which is classified as sliding isolators, recently 

developed by Fenz and Constantinou (2008b), In sliding isolators, the friction between sliders 

implemented as the factor of energy dissipation and the act of sliding cause the flexibility of the 

system. As shown in Fig. 1 a TFPB includes multiple concave surfaces that depending on the level 

of displacement, sliding occurs between various surfaces. Regarding the fact that the lateral 

stiffness of a sliding isolator varies with characteristics change of its sliding surfaces (i.e., friction 

coefficient and radius of curvature), the force-displacement response of a TFPB would be multi 

stage and multi linear as illustrated in Fig. 2. In spite of some advantages of this adaptive behavior, 

it makes it difficult to model and analyze TFPBs for design purposes in comparison to other 

simpler isolators. 

Codes and specifications for isolation systems such as TFPBs provide two types of analysis 

procedure for calculating the seismic demands (i.e., the isolator displacement and base shear force) 

of structures: simplified methods and nonlinear time history analysis (NTHA), The latter can be 

cumbersome to use, specially when this situation comes together with complicity of TFPBs. 

Recently some studies conducted to model TFPBs in nonlinear time history analysis (Fenz and 

Constantinou 2008a, Yurdakul and Ates 2011), Simplified methods have therefore been developed 

such that the entire structural system (including superstructures, substructures and isolation 

systems) is modeled as a single degree of freedom (SDOF) system with an equivalent effective 

stiffness and an equivalent viscous damping ratio to represent the energy dissipation. The effective 

stiffness of an isolation system (Ke,is) can easily be calculated by knowing the force transmitted to 

isolator (F) and the displacement of isolator (Dis), as formulated in Eq. (1) 

is

ise
D

F
K ,                                   (1) 

The equivalent viscous damping ratio of an isolation system (ξeq,is) is calculated based on the 

well-known Jacobsen’s equation (Chopra 1995) 
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Fig. 2 Normalized force-displacement relationship for a TFPB (Amiri and Namiranian 2014) 

 

 

       
           𝐸      𝐷         

2      𝐷  
                                                 2  

In Eq. (2), which is suitable for displacement dependent isolators such as TFPBs, Hysteretic 

Energy Dissipated is the total energy dissipated by the isolator in the cycle of maximum amplitude 

and is equal to the area under the hysteresis curve of the isolator. With determination of the 

effective stiffness and the equivalent viscous damping ratio of the isolation system those of entire 

structural system can be developed. So the seismic demands can be calculated from a design 

spectrum by applying damping modification factor. 

Direct Displacement-Based Design (DDBD) is a displacement-based simplified method 

proposed by Priestley (1993), new displacement-based methods, such as DDBD, are more 

compatible with performance-based concepts of earthquake engineering in comparison with 

traditional force-based ones, because performance levels are described in terms of displacements. 

The fundamental goal of DDBD is to obtain a structure which will reach a target displacement 

profile when subjected to earthquakes consistent with a given reference response spectrum. 

In recent years many studies have been published about evaluating accuracy of simplified 

methods in seismic designing and analyzing of different kind of structures (Sullivan et al. 2014, 

Jara and Casas 2006, Kowalsky 2002), Fadi and Constantinou (2010) evaluated the accuracy of 

simplified methods in analyzing structures that are supported on TFPBs under one-directional far-

field ground motions. Amiri and Namiranian (2014) evaluated the accuracy of capacity spectrum 

method (CSM), which is a simplified method, in estimating seismic demands of TFPBs under 

near-field ground motions. They concluded that CSM can provide a good estimation for isolator 

displacements and base shear forces. 

An early displacement-based approach for the design of bridges with seismic isolation can be 

found in Priestley et al. (1996), Calvi and Pavese (1997), Recently Priestley et al. (2007) proposed 

the extension of the DDBD method to bridges with seismic isolation. Calvi et al. (2008) presented 

a review of displacement-based seismic design of structures, including seismically isolated 
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bridges. Cardone et al. (2009) proposed a DDBD algorithm for seismically isolated bridges with 

various types of isolators. Tecchio et al. (2015) and Mergos (2013) examined the accuracy of 

DDBD on RC bridge bents. 

This study aimed to propose a Direct Displacement-Based Design (DDBD) method for a 

seismically isolated bridge with Triple Friction Pendulum Bearings (TFPBs) and then to evaluate 

it’s accuracy under two-directional near-field ground motions. Results of current paper may 

confirm reliability of simplified methods in analyzing and designing of seismically isolated 

structures with triple friction pendulum bearings. 

 

 

2. A DDBD for isolated bridges 
 

2.1 The step-by-step procedure of DDBD for a isolated bridge 
 

Following assumptions should be considered in implementation of DDBD for isolated bridges 

(Buckle et al. 2006): (1) The bridge superstructure acts as a diaphragm that is rigid in-plane and 

flexible out-of- plane. Compared to the flexibility of the isolators, bridge superstructures are 

relatively rigid and this assumption is applicable to a wide range of superstructure types. (2) For 

cases which are relatively simple in plan and elevation the bridge may be modeled as a single-

degree-of-freedom system. (3) The displacement response spectrum for the bridge site is linearly 

proportional to period within the period range of the isolated bridge (i.e., the spectral velocity is 

constant and the spectral acceleration is inversely proportional to the period in this range), (4) 

Hysteretic energy dissipation can be represented by equivalent viscous damping. (5) The design 

response spectrum may be scaled for different viscous damping ratios by damping factors which 

are independent of period. 

The DDBD for isolated bridges can be performed in four general steps. In the first step the 

target displacement profile (Δi) is set by the designer such that the desired performance level could 

be achieved for a given seismic hazard level. For bridge cases, codes and specifications provides 

limited values of deck’s displacement and pier’s drift for a given performance level. The design 

displacement can be developed using the following equation (Priestley 2003) 

∆𝑑 
∑ (𝑚  . ∆ 

 )𝑛
 =1

∑  𝑚  . ∆  
𝑛
 =1

                                                                      3  

Where n is the number of piers and abutments, mi is the appropriate contribution of deck (and 

pier) mass at each abutment (or pier) location and Δi is the corresponding deck displacement. 

Regarding the first assumption mentioned above (that the superstructure of bridge is rigid) the 

corresponding deck displacement at each pier (or abutment) location would be the same and then 

equal to the design displacement, as the superstructures of the bridge models are continuous. 

In the second step, the nonlinear MDOF model of the bridge is replaced by an equivalent linear 

SDOF system, whose properties (Ke and βeq) correspond to the effective lateral stiffness and 

equivalent viscous damping of the real bridge at the peak displacement response. The effective 

lateral stiffness of the equivalent SDOF system would be the sum of equivalent stiffness of all pier 

(or abutment)-isolator systems 

   ∑   

𝑛

 =1
                                                                          4  
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(a) Distribution of design displacement in piers (b) The 2DOF model of pier-isolators-deck system 

Fig. 3 A pier-isolator-deck system 

 

 

Where n is the number of piers and abutments and Ki is the equivalent stiffness of ith pier (or 

abutment)-isolator system. As the abutments assumed to be rigid, Ki at abutment locations is equal 

to effective lateral stiffness of isolation system. Ki at pier locations can be calculated from 

following equation 

1

  
 

1

 𝑝
+

1

2     
                                                                      5  

Where Kp is the elastic stiffness of the pier, and Ke,is is the effective lateral stiffness of each 

isolator. So for calculation of Ki, either at abutment or pier location, it is necessary to determine the 

effective lateral stiffness of isolators. On the other hand as illustrated in Eq. (1), Ke,is is a function 

of isolator’s displacement which is unknown. Fig. 3 shows the distribution of the design 

displacement between pier and isolators (which is Δd=Dis+Dp) and the corresponding 2DOF 

model. From this relationship and analyzing The 2DOF system through a trial and error procedure, 

the isolator’s displacement can be obtained at pier locations. But at abutment locations the design 

displacement is fully allocated to the isolators, as the abutments assumed to be rigid. 

The equivalent viscous damping ratio of the SDOF system can be obtained from below 

𝛽   
∑  𝑚  .  𝛽     

𝑛
 =1

∑  𝑚  
𝑛
 =1

                                                                  6  

Where n is the number of piers and abutments, mi is the appropriate contribution of deck (and 

pier) mass at each pier (or abutment) location and βeq,i is the equivalent viscous damping ratio of 

ith pier (or abutment)-isolator system. βeq,i at abutment locations is same as the equivalent viscous 

damping ratio of isolators (ξis) and at pier locations can be calculated from following equation 

𝛽     
𝐷𝑝   .   𝑝  + 𝐷     .       

𝐷𝑝  + 𝐷    
                                                            7  

Where Dp,i and ξp,i are the corresponding pier’s displacement and damping ratio, and Dis,i and 

ξis,i are the corresponding isolator’s displacement and equivalent viscous damping ratio 

respectively. The damping ratio of both models without seismic isolation assumed to be 2% and  
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Table 1 Geometric Configuration of TFPBs used in bridges models 

Designation 
Displacement Capacities (mm) Effective Radius (mm) 

d2=d3 d1=d4 dTot. Reff2=Reff3 Reff1=Reff4 

GC1 64 228 584 356 1499 

GC2 125 400 1050 300 2085 

GC3 178 356 1524 902 3823 

 
Table 2 Friction coefficient values of surfaces used in bridge models 

Designation 
Surface 1 Surface 2 Surface 3 Surface 4 

µmax µmin µmax µmin µmax µmin µmax µmin 

LF 0.04 0.02 0.02 0.01 0.02 0.01 0.1 0.05 

HF 0.07 0.04 0.02 0.01 0.02 0.01 0.14 0.07 

EF 0.07 0.04 0.02 0.01 0.02 0.01 0.07 0.04 

 

 

the equivalent viscous damping ratio of isolators can be calculated from Eq. (2), 

Once the elastic properties of the equivalent SDOF system is developed, in the third step the 

effective period of vibration (Te) associated with the design displacement can be determined from 

the following well-known equation 

𝑇  2 √
𝑚𝑒

𝐾𝑒
                                                                             8   

Where me is the effective mass of the equivalent SDOF system and equals to the mass of the 

deck plus mass of the upper one-third of piers. It needs to be noted that if the design displacements 

at pier and abutment locations (Δi) aren’t identical, then the effective mass can be expressed as a 

function of Δi (Priestley et al. 2003) 

𝑚  
∑ 𝑚 ∆ 

𝑛
 =1

∆𝑑
                                                                         9  

Since the effective period of the equivalent SDOF system is determined, the displacement of 

the SDOF system (Dd) can be obtained from a displacement response spectrum which is modified 

to the equivalent viscous damping ratio (βeq) level by applying a damping modification factor. 

In the fourth step the displacement obtained from previous step (Dd) is compared with the 

design displacement (Δd) which is defined in the first step. If |𝐷𝑑 − ∆𝑑| < 𝜀 ,then the results are 

acceptable and other parameters such as base shear forces can be calculated, else someone may go 

back to the first step and change the initial design parameters such as configuration of isolators, 

size of sections and even the design displacements, and repeat the procedure until convergence is 

achieved. The base shear force at piers is equal to the pier’s drift (Dp) multiple in it’s stiffness (Kp). 

 

2.2 Description of the isolated bridge model 
 

A bridge model isolated with 9 different TFPBs has been considered. Table 1 shows the 

geometric configuration of  isolators (effective radius and displacement capacity) and Table 2 

shows three different sets of friction coefficients (low friction, high friction and equal friction)  
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Fig. 4 Plan view of the bridge model with same height of piers equal to 6 meter 

 

 

used for each of these geometrical configurations, Where 𝜇𝑚𝑎𝑥 is the coefficient of friction at 

high velocity and 𝜇𝑚 𝑛 is the coefficient of friction at very slow velocity. In Table 2 the values of 

𝜇𝑚𝑎𝑥 and 𝜇𝑚 𝑛 have been obtained from results of experimental tests conducted by previous 

studies (Fenz and Constantinou 2008c, Mokha et al. 1993), These isolators were used before in 

some previous studies (Amiri and Namiranian 2014, Fadi and Constantinou 2010). 

The structural model is a continuous, three-span, cast-in-place concrete box girder bridge with 

a 30-degree skew. The bridge was used as an example of bridge design without an isolation system 

in the Federal Highway Administration Seismic Design Course, Design Example No. 4 (document 

available through NTIS, document no. PB97-142111), 

Fig. 4 shows the bridge model described above. This model is the modified form of the design 

example for seismic isolation application. It has three traffic lanes and isolated with two isolators 

at each abutment and pier location. Loadings were determined based on AASHTO LRFD 

Specifications with live load consisting of truck, lane and tandem and wind load being 

representative of typical sites in the Western United States. Loading results show that the total 

weight (the critical combination of live and dead loads) supported by each isolator at the abutment 

and pier locations is approximately equal to 2350 kN and 5750 kN, respectively.  

Each pier consists of two circular columns which are connected by a rigid beam as a cap, so the 

pier works as a frame in the direction of rigid beam and as a cantilever in the direction normal to 

the beam. By setting the direction normal to the deck as x direction and the direction of the deck as 

y direction, and regarding the 30 degrees skew of the bridge, the stiffness of each pier is calculated 

from below 

 𝑝𝑥  
1

√
 𝑜 30 

(
24𝐸𝐼
𝐿3

)
 +

   30 

(
6𝐸𝐼
𝐿3

)
 

 

(10) 

 𝑝𝑦  
1

√
   30 

(
24𝐸𝐼
𝐿3

)
 +

 𝑜 30 

(
6𝐸𝐼
𝐿3

)
 

 

(11) 
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Table 3 Parameters of the series model of a TFPB for the most general configuration 

SFBP 
Coefficients 

of friction 

Effective radius 

of curvature 

Nominal displacement 

capacities 
Rate parameter 

Element 1 �̅�1  𝜇  𝜇3  ̅   1       +     3 

 ̅1    1 +   +  3 +    

+ ( ̅ 

+  ̅3) 

 ̅1  
   +  3 

4
 

Element 2  ̅   1  ̅         1 −        ̅  
    1 −      

    1

 1  ̅  
    1

    1 −      

 1 

Element 3  ̅3      ̅   3       +     3  ̅3  
     −     3

     

    ̅3  
     

     −     3

   

 

 

Where E, I and L are the elasticity modulus of concrete, the moment of inertia of each circular 

section and columns’ length respectively. It needs to be noted that all foundations of both models 

assumed to be rigid in this study. 

 

 

3. Nonlinear Time History Analysis (NTHA) 
 

3.1 Equation of motion 
 

The complicated hysteretic behavior of TFPBs makes it difficult to model them in the analysis 

and design methods specially in the time history analysis. But the hysteretic behavior of the TFPBs 

can be simulated by a series model of three independent Single Friction Pendulum Bearing (SFPB) 

elements, as shown in Fig. 5. Each element of the series model, which is connected to other 

elements with a slider mass, consists of a parallel arrangement of a linear elastic spring element 

representing the restoring force provided by the curvature of the spherical dish (1/�̅� 𝑓𝑓 ), a rigid 

plastic friction element with velocity dependence (�̅� ) and a gap element to account for the finite 

displacement capacity of each sliding surface ( ̅ ), The characteristics of each element of the series 

model are defined such that the hysterical behavior of the series model as a whole matches to the 

corresponding real TFPB. The defined parameters are summarized in Table 3 (Fenz and 

Constantinou 2008b),  

Considering a tow-directional analysis for a orthogonal directions of x and y, the force 

produced by the described arrangement of each element is given by (Fenz and Constantinou 2008) 

𝐹 𝑥  
 

�̅� 𝑓𝑓 

  𝑥 + �̅�    𝑥 +    (|  | −  ̅ )         (|  | −  ̅ ).
  𝑥

  
                       12  

𝐹 𝑦  
 

�̅� 𝑓𝑓 

  𝑦 + �̅�    𝑦 +    (|  | −  ̅ )         (|  | −  ̅ ).
  𝑦

  
                       13  

Where W is the weight supported by each isolator,   𝑥 and   𝑦 are the relative displacement 

of ith SFPB element of the series model in the x and y directions,    is the radial relative 

displacement of ith SFPB element of the series model (      𝑥
2 +    

2 ^0.5),     is the 

stiffness after gap closing, which should be assigned a large value, and   denotes the Heaviside 

function.   𝑥 and   𝑦 are dimensionless hysteretic variables of ith SFPB element. These are  
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Fig. 5 The series model of three SFPBs for modeling a TFPB 

 

 
Fig. 6 mathematical model of a substructure-TFPBs-deck system for the bridge model 

 

 

essentially the equations that are used for dynamic analysis of FP bearings (Nagarajaiah 1991), 

The only difference is the last term of equations, which is the additional restoring force from 

contacting the displacement restrainer. 

The coefficient of friction at each sliding interface (�̅� ) varies with velocity according to the 

following equation 

�̅�  𝜇𝑚𝑎𝑥 −  𝜇𝑚𝑎𝑥 − 𝜇𝑚 𝑛  
−𝑎|�̇�𝑖|                                                 14  

Where 𝜇𝑚𝑎𝑥 is the coefficient of friction at high velocity, 𝜇𝑚 𝑛 is the coefficient of friction at 

very slow velocity, a is a rate parameter, which has units of time per unit length and controls the 

variation between 𝜇𝑚𝑎𝑥 and 𝜇𝑚 𝑛, and  ̇  is the relative sliding velocity of ith SFPB element of 

the series model. 

m1 

m2 m1 

m2 

Cs 

Ks 

Md Ms 

Slider mass 

Element 1 Element 2 Element 3 

𝑢 𝑔 
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Fig. 6 shows the mathematical model of a substructure-TFPBs-deck system for the bridge 

model. Assuming a same displacement in all along the deck, The dynamic behavior of such a 

system subjected to a ground motion can be described by the following eight degrees of freedom: 

udx and udy are the displacement of the deck, usx and usy are the displacement of substructure, and 

u1x, u1y, u2x, u2y are the displacements of the slider masses. The effect of vertical excitation is 

ignored, because according to experimental studies, it does not have any significant effects on the 

prediction of the responses of a structure supported by the TFPBs (Fenz and Constantinou 2008a, 

Morgan 2007), So the motion equations of the system subjected to a ground motion in the x 

directions can be given by  

[

𝑚𝑑 0 0 0
0 𝑚 0 0
0 0 𝑚1 0
0 0 0 𝑚 

]{

  𝑑𝑥

   𝑥
  1𝑥
   𝑥

}+ [

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 𝐶 𝑥

]{

 ̇𝑑𝑥

 ̇ 𝑥

 ̇1𝑥

 ̇ 𝑥

}+ [

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0   𝑥

]{

 𝑑𝑥

  𝑥

 1𝑥

  𝑥

}

 −[

𝑚𝑑 0 0 0
0 𝑚 0 0
0 0 𝑚1 0
0 0 0 𝑚 

] [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]   𝑥 − 2{

𝐹3𝑥

𝐹 𝑥 − 𝐹3𝑥

𝐹1𝑥 − 𝐹 𝑥

−𝐹1𝑥

}                                        15  

Where m1 and m2 are the masses, very small, assigned to the slider, md is the appropriate 

contribution of deck mass, ms is the mass of substructure which is assumed to be zero in abutments 

and one-third of pier mass in pier locations, KSx and CSx are the stiffness and damping coefficient 

of the substructure. A relatively large value assigned to KSx in abutments in order to model the 

rigidity of abutments.    𝑥 is the horizontal component of ground motions in the x direction and 

Fix is the force in the ith isolator element. Similarly, the equation of motion in the y direction can 

be written as the x direction. 

Since the    variables change very slowly when the bearing is sliding and change very rapidly 

in the regions where the direction of motion reverses or when sticking occurs, the governing 

equations are systems of stiff differential equations (Fenz and Constantinou 2008a), So in order to 

solve the equations correctly, first, the time step in the solution algorithm should have a very small 

value (0.005 sec has been found suitable), and second, a special algorithm for solving these types 

of equations should be implemented (Shampine and Reichelt 1997), The equations of motion of 

the substructure-TFPBs-deck system can be expressed as a system of first-order ordinary 

differential equations as below 

{�̇�}  [𝐴]{𝑥} + {𝐵}                                                                 16  

Where the state vector {x} is 

{𝑥}  {  𝑥   𝑦   1𝑥  1𝑦    𝑥   𝑦   𝑑𝑥  𝑑𝑦   ̇ 𝑥     ̇ 𝑦   ̇1𝑥   ̇1𝑦  

   ̇ 𝑥   ̇ 𝑦  ̇𝑑𝑥  ̇𝑑𝑦   1𝑥   1𝑦    𝑥    𝑦  3𝑥   3𝑦}
𝑇
                                           17  

The entries of matrix [A] and vector {B} can be calculated from Eqs. (15), (16), (17) and the 

similar entries between vector {x} and vector {�̇�} (first to eighth entries of {�̇�} is equal to ninth to 

sixteenth entries of {x}), These 22 first-order ordinary differential equations are solved 

simultaneously by using the ode15s solver in MATLAB. The ode15s solver is a variable order, 

multi-step algorithm that is appropriate for solving systems of stiff differential equations. 
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Table 4 Characteristics of near-field ground motions for SR soil condition 

Earthquake Station 
Magnitude Distance 

Component 
PGA PGV PGD 

(Mw) (km) (g) (cm/s) (cm) 

Chi Chi (CC057) TCU057 6.7 11.8 
Normal 2..0 5..3 33.5 

Parallel 2.20 ...0 36.0 

Cape Mendocino 
Petrolia 6 8.2 

Normal 2.7. 9..0 03.3 

(CMP) Parallel 2.75 72.. 07.0 

Duzce (DB)
a 

Bolu 6.. 12 
Normal 2.60 3..9 00.6 

Parallel 2.69 70.3 .5.3 

Gazli (GK) Karakyr 7.9 5.5 
Normal 2.72 7..0 0..0 

Parallel 2.6. 6... 0..6 

Kokaeli (KG)
a 

Gebze 6.3 10.9 
Normal 2.0. 30.0 .... 

Parallel 2... 09.0 03.. 

Kokaeli (KI) Izmit 6.3 7.2 
Normal 2..3 00.7 0.9 

Parallel 2.00 00.9 .6.. 

Northridge (NN)
a 

Newhall 7.6 5.9 
Normal 2.60 .02.. 53.. 

Parallel 2.73 .0.0 .7.0 

Northridge (NR)
a 

Rinaldi 7.6 6.5 
Normal 2.96 .76.. 09.9 

Parallel 2..0 70.7 0... 

Northridge (NS)
a 

Sylmar 7.6 5.3 
Normal 2.30 .52.5 3..0 

Parallel 2.90 05.5 35.5 

Tabas (TT) Tabas 6.. 2 
Normal 2.9. ..9.5 07.9 

Parallel 2.9. 60.7 .0.. 
a
 Pulse subset records 

 

 

3.1 Ground motions and scaling methods 
 

Near-field ground motions may be distinguished from far field ones by some characteristics 

such as distinctive pulse-like time histories, high peak velocities, and large ground displacements. 

Previous studies show that seismically isolated structures are sensitive to near-field ground 

motions such that their response are qualitatively different when subjected to these kind of ground 

motions. Near-field ground motions, especially pulse-like records, may cause an extra 

displacement demand to isolated systems and need more attention for selecting the locations and 

properties of isolators. 

Twenty pairs of near-field ground motions in two sets, one for stiff Soil to soft Rock (SR) 

condition and another for soft Soil to stiff Soil (SS) condition, are used to evaluate the accuracy of 

the DDBD method in estimating the seismic demand parameters of isolated bridges with TFPBs. 

These ground motions are used previously to evaluate the accuracy of equivalent lateral force 

procedure in estimating seismic displacement of lead rubber bearings (Ozdemir and Constantinou 

2010) and also to evaluate the accuracy of capacity spectrum method in estimating seismic 

demands of TFPBs (Amiri and Namiranian 2014), Tables 4 and 5 show the main characteristics of 

these motions, which were downloaded from PEER Strong Motion Database. Among these records  
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Table 5 Characteristics of near-field ground motions for SS soil condition 

Earthquake Station 
Magnitude Distance 

Component 
PGA PGV PGD 

(Mw) (km) (g) (cm/s) (cm) 

Chi Chi (CC101)
a 

TCU101 7.6 2.1 
Normal 0.22 68.4 71.9 

Parallel 0.24 53.0 41.6 

Erzincan (EE)
a 

Erzincan 6.7 4.4 
Normal 0.49 95.4 32.1 

Parallel 0.42 45.3 16.5 

Imperial Valley El Centro 
6.5 7 

Normal 0.36 77.9 58.7 

(IVA4)
a 

Array#4 Parallel 0.47 40.1 20.7 

Imperial Valley El Centro 
6.5 4 

Normal 0.38 91.5 62.0 

(IVA5)
a 

Array#5 Parallel 0.53 49.0 37.0 

Imperial Valley El Centro 
6.5 1.4 

Normal 0.44 111.8 66.5 

(IVA6)
a 

Array#6 Parallel 0.40 64.7 24.8 

Imperial Valley El Centro 
6.5 6.2 

Normal 0.18 47.0 31.4 

(IVA10)
a 

Array#10 Parallel 0.23 39.3 18.9 

Kocaeli (KD) Duzce 7.5 15.4 
Normal 0.28 52.1 37.9 

Parallel 0.38 53.2 26.7 

Kocaeli (KY)
a 

Yarimca 7.5 4.8 
Normal 0.28 48.2 43.0 

Parallel 0.31 72.9 55.9 

Loma Prieta 
Corralitos 6.9 3.9 

Normal 0.48 45.4 14.1 

(LPCor) Parallel 0.51 41.6 7.20 

Loma Prieta 
Saratoga 6.9 8.5 

Normal 0.36 55.5 29.4 

(LPSar)
a 

Parallel 0.38 43.3 15.8 
a
 Pulse subset records 

 

 

which are rotated to fault parallel and normal component, 14 records show the property of pulses 

(pulse subset) as judged by wavelet analysis classification of the records (Baker 2007), These time 

histories represent near-field ground motions from recorded historic events which have a variety of 

faulting mechanisms in the magnitude range of 6.5 to 7.6 and distance range of 1-16 km. 

Scaling of ground motions is performed in two separate stages. In the first step, the geometric-

mean scaling method presented by Huang (2008) is implemented to normalize the records. In this 

method the sum of the squared errors between the target spectral values and the scaled geometric 

mean of the spectral ordinates for each pair is minimized in some specified periods (1,2,3,4 and 5 s 

based on Ozdemir and Constantinou (2010)), Table 6 shows the scaling factors for each record 

obtained by using geometric-mean scaling method and ASCE7-10 spectra as target spectral values. 

The second stage of scaling is performed according to the ASCE requirements. For each pair of 

horizontal ground motion components, a SRSS (Square Root of the Sum of Squares) spectrum 

shall be constructed by taking the SRSS of the 5%-damped response spectra for the scaled 

components (where an identical scale factor is applied to both components of each pair), The 

ASCE requires that each pair of ground motions shall be scaled such that in the period range from 

0.5TD to 1.25TM, the average of the SRSS spectra from all horizontal component pairs does not fall 

below the corresponding ordinate of the design spectrum used for the site, where TD and TM are  
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Table 6 Scale factors of geometric-mean scaling method 

SR soil condition SS soil condition 

Ground motion 
Scale factor 

Ground motion 
Scale factor 

DBE MCE DBE MCE 

CC057 1.33 1.99 CC101 1.68 2.53 

CMP 0.68 1.02 EE 0.97 1.46 

DB 0.6 0.9 IVA4 1.26 1.89 

GK 0.81 1.22 IVA5 1.05 1.58 

KG 1.58 2.37 IVA6 0.88 1.32 

KI 1.67 2.5 IVA10 1.91 2.86 

NN 0.7 1.05 KD 1.22 1.83 

NR 0.54 0.81 KY 0.96 1.44 

NS 0.41 0.62 LPCor 1.49 2.24 

TT 0.56 0.84 LPSar 1.67 2.51 

 
Table 7 Equivalent viscous damping ratio of TFPBs in different conditions 

Isolator’s configuration - friction condition 

βeq (%) 

SR soil condition SS soil condition 

DBE MCE DBE MCE 

GC1-LF 20 11.6 17.7 14 

GC1-HF 19.3 20.6 20.8 15.1 

GC1-EF 26.1 19.6 21 15 

GC2-LF 22.3 20.7 21.8 16.5 

GC2-HF 23.6 24 27.1 22.4 

GC2-EF 32 25.1 26.7 18.7 

GC3-LF 21.4 20.7 20.7 18.8 

GC3-HF 24 20 21 20.9 

GC3-EF 30.2 27.7 28.7 27.2 

 

 

defined as the effective periods in the DBE and MCE hazard levels. Because of the different 

configuration and surface properties of each isolator, TD and TM are different for each isolation 

system, so the second stage scaling factors will be different for each TFPB considered in this 

study. The final scaling factor for each near-field motion is obtained by multiplying the scaling 

factor derived from the two separate stages. 

 

 

4. Analysis results 
 

This study used ASCE7-10 spectra as the design spectra which are in two hazard levels (DBE 

and MCE) and for two soil types (stiff Soils to soft Rocks (SR) and soft Soils to stiff Soils (SS)), 

The proposed DDBD procedure is coded in MATLAB and is run for each described model (1 

structural models with 9 different TFPBs) in two directions (normal to deck (x) and parallel to  
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(a) SR soil condition (b) SS soil condition 

Fig. 7 dispersion of isolator’s peak resultant response obtained from each pair of time histories for DBE 

hazard level 

 

 

deck (y)) and for the mentioned ASCE7-10 design spectra. For each case, the results of DDBD 

method is evaluated by the corresponding results obtained from Nonlinear Time History Analysis 

(NTHA), 

The isolation systems have an effective period, Teff, in the range of 2.3-3.9 and 2.6-4.4 s in the 

DBE and MCE hazard levels respectively, and an equivalent viscous damping ratio, βeq, in the 

range of 18-32% and 12-27% of critical in the DBE and MCE hazard levels, respectively. The 

detailed values of βeq presented in Table 7. 

Fig. 7 shows dispersion of isolator’s peak resultant response (√ 𝑦
 +  𝑥

  ) obtained from each 

pair of time histories for the SR and SS ground motion groups. It can be seen that dispersion of 

peak resultant responses for a ground motion group increases by increasing their average value of 

responses. 

Fig. 8 shows a comparison of the peak isolator displacement at piers calculated by the proposed 

DDBD method based on the orthogonal combination rule (√ 𝑦
 + 0.3 𝑥

  ) and the average value 

of the maximum resultant displacement (√ 𝑦
 +  𝑥

  ) calculated by NTHA for the SR and SS soil 

condition in two seismic hazard levels. Maximum difference between the DDBD and the average 

of NTHA is about 8% and 11%, respectively, for DBE and MCE hazard levels in the case of SR 

soil condition, and the majority of results are overestimated by the proposed method. The 

maximum difference in the case of SS soil condition is raised to 9% and 8% for DBE and MCE 

hazard levels, respectively and some results are underestimated by the proposed method. 
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(a) SR soil condition and DBE hazard level (b) SR soil condition and MCE hazard level 

  

(c) SS soil condition and DBE hazard level (d) SS soil condition and MCE hazard level 

Fig. 8 Comparison of NTHA and DDBD on TFPB displacements in different conditions 

 

 
Pier’s drift, which is directly related to the base shear forces of the bridge models, is another 

parameter of interest for evaluation of the proposed DDBD results in this study. For the case of SR 

soil condition, maximum difference of pier’s drift between the DDBD results and the average of 

NTHA is about 9% and 8% for DBE and MCE hazard levels, respectively. The maximum 

difference in the case of SS soil condition is about 10% and 11% for DBE and MCE hazard levels, 

respectively and almost all results are overestimated by the proposed method. Fig. 9 shows the 

corresponding results of both methods of analysis for pier’s drift. 

The results of this study demonstrate that the proposed DDBD method is able to predict the  
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(a) SR soil condition and DBE hazard level (b) SR soil condition and MCE hazard level 

  

(c) SS soil condition and DBE hazard level (d) SS soil condition and MCE hazard level 

Fig. 9 Comparison of NTHA and DDBD on drift of piers in different conditions 

 

 
seismic demands of bridges supported on TFPBs with acceptable accuracy. This conclusion is 

generally in agreement with the results of previous studies on the simplified methods for different 

isolation systems and seismic excitations. However, it should be noted that for the case of softer 

soil condition, there is some underestimation in the calculated seismic demands by the DDBD 

procedure, this gives the reason that codes and standards should not allow the usage of these 

methods without the aid of a NTHA. 
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5. Conclusions 
 

The DDBD method is one of the displacement-based simplified procedures for calculating the 

seismic demands of isolated structures under ground motions. In this study, comparisons have been 

made between the DDBD results and those of NTHA under near-field excitations for a continuous, 

three-span, cast-in-place concrete box girder bridge isolated with TFPBs. 

Because of the complicated hysteretic behavior of TFPBs, a series model of three SFPBs 

implemented for modeling them in nonlinear time history analysis. Results of NTHA shows that 

dispersion of peak resultant responses for a ground motion group increases by increasing their 

average value of responses. 

Generally, results of both methods show that TFPBs with bigger configuration and lower 

friction coefficients have more displacement demand but cause less drift of pier, on the other hand 

TFPBs with smaller configuration and bigger friction coefficients have less displacement demand 

but cause more drift of pier. Therefore, depending on the design limitations such as available 

clearance and dimension of sections, an appropriate configuration and friction coefficients could 

be selected. 

Based on the comparison of the isolator displacements and drift of piers for the two approaches, 

it is concluded that the proposed DDBD method can predict these seismic demands in a good 

agreement with the mean of the results by the NTHA. But for the soft soil (SS) condition, some 

results are underestimated by the DDBD, compared with those of the NTHA. In spite of simplicity 

and acceptable result of the DDBD, it is not error-free. Simplified methods such as DDBD can be 

used for preliminary design purposes and for checking the results of NTHA. 
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