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Abstract.  In-plane and out-of-plane free vibration analysis of Timoshenko curved beams is addressed 

based on the isogeometric method, and an effective scheme to avoid numerical locking in both of the two 

patterns is proposed in this paper. The isogeometric computational model takes into account the effects of 

shear deformation, rotary inertia and axis extensibility of curved beams, and is applicable for uniform 

circular beams, and more complicated variable curvature and cross-section beams as illustrated by numerical 

examples. Meanwhile, it is shown that, the C
p–1

-continuous NURBS elements remarkably have higher 

accuracy than the finite elements with the same number of degrees of freedom. Nevertheless, for in-plane or 

out-of-plane vibration analysis of Timoshenko curved beams, the NURBS-based isogeometric method also 

exhibits locking effect to some extent. To eliminate numerical locking, the selective reduced one-point 

integration and B  projection element based on stiffness ratio is devised to achieve locking free analysis for 

in-plane and out-of-plane models, respectively. The suggested integral schemes for moderately slender 

models obtain accurate results in both dominated and non-dominated regions of locking effect. Moreover, 

this strategy is effective for beam structures with different slenderness. Finally, the influence factors of 

structural parameters of curved beams on their natural frequency are scrutinized. 
 

Keywords:  Timoshenko curved beams; in-plane and out-of-plane free vibration; isogeometric analysis; 

NURBS elements; numerical locking 

 
 
1. Introduction 
 

Curved beam structures have been widely utilized in bridge, building structures and industrial 

products. Thus, it is of importance to predict precisely the natural frequencies and modal shapes in 

structural design. Both in-plane and out-of-plane patterns may occur in free vibration of curved 

beams. As a consequence of the curvature effect, the vibration modes of curved beam are mutually 

coupled containing flexure, extension, shear and twisting behavior. However, in-plane and out-of-

plane vibrations are decoupled when the plane containing the centerline of the undeformed beam 

axis is a principal plane of the cross section at every point along the bar and also a plane of 

material symmetry. In this case, the in-plane beam model mainly relates to the bending-extensional 
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modes, while the out-of-plane model involves the bending-twisting modes (Chidamparam and 

Leissa 1993). Therefore, the dynamic analysis of a curved beam is inconvenient owing to its 

complex geometry and different vibration modes. 

In fact, many researchers have devoted to modeling, computational methods and numerical 

analysis of the relevant mechanical problems about the vibration of curved beam structures 

(Auciello and Rosa 1994). Various computational models and techniques are applied to solve these 

problems, such as finite difference method (Ball 1967), transition matrix method (Bickford and 

Strom 1975), finite element method (Raveendranath et al. 2001, Wu and Chiang 2003, Kim et al. 

2009), wave propagation method (Kang et al. 2003), differential quadrature method (Kang et al. 

1995) and dynamic stiffness method (Howson and Jemah 1999, Huang et al. 2000) etc. Recently, a 

condensation method is described for the free vibration analysis of curved beams (Mochida and 

Ilanko 2016). In practice, the finite element method (FEM) as a versatile numerical technique is 

widely used for solving complex engineering problems. Timoshenko beam theory can make a 

good prediction for the mechanical behavior generated by thick beam especially for the higher 

order vibration modes, which takes into account shear deformation and rotatory inertia 

(Chidamparam and Leissa 1993). However, there may be numerical locking in displacement-based 

finite element analysis, namely the classical elements show field inconsistency and stiffening 

effect, which is a common problem in full integration for the low-order elements. In general, in-

plane motion involves shear and membrane locking, while it has been found that there are obvious 

locking effects in the context of out-of-plane motion as well (Ishaquddin et al. 2012, 2013).  

Isogeometric analysis (IGA) is a new type of computational method proposed by Hughes et al. 

(2005), in which the NURBS and T-splines etc. of computer-aided design (CAD) representing 

exact geometric model are adopted as the basis functions for structural analysis. Hence, geometric 

design of CAD and numerical computation of computer-aided engineering (CAE) can be closely 

integrated to realize the structural analysis directly on exact geometry. In contrast to the traditional 

FEM, it is convenient to implement the model transformation of complex geometries for IGA, 

without introducing the geometric error. As a result, IGA has attracted so much attention that it is 

becoming an active area in the field of computational mechanics, owing to the superior 

characteristics of NURBS such as high-order continuity and geometrical invariability during the 

refinement (Cottrell et al. 2009, Kim et al. 2009). Among them, Cottrell et al. (2006) initially 

applied IGA for structural vibration analysis. Weeger et al. (2013) studied the vibration of non-

linear Euler-Bernoulli straight beam. Specific to the in-plane free vibration, the Timoshenko 

straight and free-form curved beams were investigated by means of isogeometric approach in (Lee 

and Park 2013, Luu et al. 2015). Wang et al. (2013, 2015) proposed a set of higher order mass 

matrices to upgrade the frequency accuracy, and superconvergent free vibration analysis can be 

achieved for Euler-Bernoulli beams and Kirchhoff plates. Additionally, to overcome numerical 

locking of NURBS beam element, Echter and Bischoff (2010) introduced the discrete shear gap 

(DSG) method into IGA for statics analysis of straight beam, and the resulting elements are free 

from shear locking. However, Bouclier et al. (2012) further showed that the NURBS DSG 

elements were not efficient enough for curved beam, and the NURBS B  projection method was 

recommended to realize locking free analysis. It is well known that the selective reduced 

integration techniques are widely used in alleviating locking effect due to the simplicity of 

operation and low computational cost. Consequently, the improved numerical integration was 

discussed in detail for locking treatment in isogeometric elements (Adam et al. 2014). 

In terms of above mentioned review, the previous researches about vibration analysis of beam 

structure mainly concentrated on improving the beam models and also developing new general 
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algorithms. For curved beams, and especially variable curvature ones, it is necessary to establish a 

set of new superior computational procedure appropriate for both in-plane and out-of-plane curved 

beam models. Furthermore, the so called k-refinement for IGA can achieve the element continuity 

of Cp–1. It requires only less degrees of freedom, and can obtain better numerical precision if the 

locking effect of curved beam is not dominated (Adam et al. 2014). Nevertheless, the above 

statement for IGA is obtained according to statics or in-plane vibration analysis of curved beam 

recently, and there is no relevant work reported for out-of-plane vibration analysis and locking 

elimination in both in-plane and out-of-plane free vibration. In particular, it is important to devise 

an effective approach for locking free analysis of Timoshenko curved beams with different 

slenderness and complicated cross section, and acquire the desired results in both dominated and 

non-dominated regions of locking.  

In this paper, the in-plane and out-of-plane free vibrations of circular and parabolic 

Timoshenko curved beams are addressed by use of IGA with the interior element continuity of Cp–1. 

In order to overcome numerical locking, an effective scheme containing both in-plane and out-of-

plane pattern is proposed to realize accurate vibration analysis of curved beams. The remained of 

this paper is organized as follows. In Section 2, a brief overview of NURBS-based isogeometric 

analysis is presented for the sake of completeness and comprehension, and the in-plane and out-of-

plane free vibration formulas of curved beams are established. In Section 3, in-plane and out-of-

plane locking in the context of free vibration of Timoshenko curved beam is illustrated, and a 

feasible integral scheme in both dominated and non-dominated regions of locking effect is 

devised. In Section 4, several numerical examples for in-plane and out-of-plane free vibration of 

circular and parabolic beams are demonstrated. The conclusions are drawn in Section 5. 

 

 

2. Isogeometric free vibration formulation of Timoshenko curved beams 
 

2.1 NURBS-based isogeometric analysis 
   

B-splines are piecewise polynomial functions composed of the basis functions defined in the 

parameter space. The B-spline basis functions are constructed from a knot vector, which is the 

non-decreasing sequence defined as  

1 2 + +1= { , ,..., }n pΞ ξ ξ ξ                             (1) 

where n is the number of basis functions and p is the polynomial order. The interval [ξ1, ξn+p+1] is 

called a patch and the interval [ξi, ξi+1) defines a knot span. A knot vector is said to be uniform if 

they are equally spaced, otherwise non-uniform. And it is referred to as open if the first and last 

knots have multiplicity p+1. Open knot vectors are employed in this work to define the B-spline 

geometries interpolating at the first and last control points. 

Ni,p(ξ) represents the ith B-spline basis function of order p, and this definition is given 

according to the Cox–de Boor recursion formula (Cottrell et al. 2009) 

  +1

,0

1, if
=

0, otherwise

i i

i

ξ ξ ξ
N ξ

 



                         (2) 
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


 
              (3) 

where i is the knot index and i = 1, 2,…, n+p+1. 

A B-spline curve is constructed by taking a linear combination of B-spline basis functions. 

Given n basis Ni,p and corresponding control points Pi∈Rd, i=1, 2,…, n., a B-spline curve is 

defined as 

,
=1

( ) ( )
n

i p i
i

C ξ N ξ  P             (4) 

Then, a non-uniform rational B-splines (NURBS) curve in Rd is obtained by the projective 

transformation of a B-spline curve in Rd+1, which can exactly describe conic sections, such as 

circles and ellipses etc. The definitions of a NURBS curve and its basis function are expressed as 

,
=1

( ) ( )
n

i p i
i

C ξ R ξ  P             (5) 

,

,

=1 ,

( )
=

( )

i i p

i p n
j j j p

w N ξ
R

w N ξ
               (6) 

where Pi∈Rd represent NURBS control points, Ri,p are the rational B-spline basis functions, and  

wi indicates the ith weight. 

Further, the important properties of NURBS basis functions are shown as follows (Piegl and 

Tiller 1997):  

1) Non-negativity: , ( ) 0i pR   ; 

2) Partition of unity: ,
1

( ) 1
n

i p
i

R ξ


 ; 

3) 1, ,(0) = (1) = 1p n pR R ; 

4) Local support: If + +1[ , ]i i pξ ξ ξ , then , ( ) 0i pR   ; 

5) Smoothness: Ri, p(ξ) is p–1 times continuously differentiable at a knot at most. 

Moreover, the refinement strategies of NURBS curves (Hughes et al. 2005) include: 

1) h-refinement: Knots may be inserted without changing the curve geometrically or 

parametrically; 

2) p-refinement: The order of basis functions may be increased and the continuities of elements 

remain unchanged; 

3) k-refinement: Order elevation followed by knot insertion, which can achieve the continuity 

of Cp–1.  

In the process of structural analysis, NURBS basis functions will serve as the element shape 

functions based on isoparametric concept, and thus the major advantages of isogeometric approach 

comparing with classical Lagrange finite element analysis involve the following several aspects 

(Cottrell et al. 2009): 

1) The exact NURBS geometry is employed for analysis instead of approximate finite element 

meshes. 

2) To implement the element refinement is so simple that there is no much effort in further 
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communication with the CAD system, and the geometric model always keeps constant. A local 

model refinement in IGA can be achieved based on the work of Wang and Zhang (2014). 

3) High-order continuity of NURBS overcomes the drawbacks of traditional finite element 

analysis, which only have C0-continuity between the elements in general. 

4) There are fairly less number of control points in isogeometric analysis than that of finite 

element analysis for the same integral element number, and thus the higher computational 

accuracy can be obtained for IGA under the same number of degrees of freedom.  

 

2.2 In-plane isogeometric model 
 

The planar curved beam is considered as shown in Fig. 1, and (ƞ,ζ) and (x,z) are defined as 

global and local coordinates, respectively. The x axis is located along the tangential direction of 

centroidal axis, and the radius of curvature R may change with x. Herein, the in-plane and out-of-

plane motions are decoupled because the curved beam with symmetric cross-section is considered, 

and the involved variables contains the tangential displacement u, normal displacement w, and 

rotation θ of the cross section about the out-of-plane axis. The strain-displacement and constitutive 

relations of Timoshenko curved beam (Chidamparam and Leissa 1993, Raveendranath et al. 2001) 

are formulated as follows 

,   ,   
u w w u

ε γ θ κ
x R x R x

  
     
  

                     (7) 

,   ,   N = EAε Q = kGAγ M = EIκ                        (8) 

where ε, γ and κ represent the membrane, transverse shear and curvature strain, respectively; N, Q 

and M are the axial force, shear force and bending moment, separately; A, I, E, G and k denote the 

area of cross section, moment of inertia, Young’s modulus, shear modulus and shear correction 

factor, respectively. Specifically, A and I are constant for uniform curved beams, while they vary 

with the curvilinear coordinate x for variable cross-section beams. 

For a thick curved beam, the dynamic equilibrium equation of free vibration based on the 

principle of virtual work is written as 

0 0 0 0
( ) d  d  d  d

L L L L
EAεδε EIκδκ kGAγδγ x δuρAu x δwρAw x δθρIθ x             

(9) 

where L is the beam length, ρ is the mass density, δu, δw, δθ and δε, δγ, δκ are the virtual terms  

related to the displacement and strain, ü, ẅ and θ  are the associated acceleration, respectively. 

In this paper, the analysis of symmetric curved beam is simplified to one-dimensional 
 

 

  

Fig. 1 In-plane curved beam model Fig. 2 NURBS computation space of curved beam elements 
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problems, and a NURBS curve is employed to describe exactly the centroidal axis of beam model 

in terms of Eq. (5). The NURBS computation space of curved beam contains the physical domain 

(0, L) and parametric domain (0, 1) as shown in Fig. 2, and their relationships can be established as 

follows through the Jacobian matrix J 

0
2 2 0

, ,0 0 00

2 2
, , ,

, , , ,

3 3

( ) ( ) ( )

J ( ) ( )

1

J J

ξ

ξ ξ ξ

ξ ξ ξ

ξ ξξ ξ ξξ

x x ξ η ζ d

x η ζ

η ζ ζ η

R







  

  

 

                    (10) 

Based on the fundamental idea of isogeometric approach, the displacement variables are 

discretized using NURBS basis functions, and the displacement components corresponding to 

control points are written as 

1

( ) ( )
n

i i
i

ξ R ξ


 u u             (11) 

where n is the number of control points, u=(u,w,θ) and ui=(ui,wi,θi), hence the following formulas 

are obtained 

1 1

( ) ( ) ,   ( ) ( )
n n

i i i i
i i

ξ R ξ δ ξ R ξ δ
 

  u u u u                     (12) 

Substituting Eqs. (7), (10), (11) and (12) into Eq. (9) yields 

T[ ] 0δ  u Ku Mu                 (13) 

Due to the arbitrariness of the virtual displacement δu, therefore Eq. (14) is achieved 

= 0Ku Mu     (14) 

where K and M are global stiffness matrix and mass matrix of curved beam, respectively. 

Let 

e kiω

ku      (15) 

Substituting Eq. (15) into Eq. (14) yields the eigenvalue equation 

2[ ] 0k kω  K M        (16) 

where ϕk is the model vector, ωk is the corresponding natural frequency, and k denotes the kth 

mode. Then the subsequent solving process is similar to that of the traditional finite element 

analysis. The global stiffness and mass matrices of curved beam can be expressed as 

     

, , , ,

, , , , , ,0

, ,

0

/ 0 0 0 / 0

/ 0 0 / d

0 0 0 0 0 0

0 0

0 0  d

0 0

ij

T

x i p i p x j p j p

L

i p x i p i p j p x j p j p

x i p x j p

i j

L

ij i j

i j

R R R EA R R R

R R R R kGA R R R R x

R EI R

ρAR R

ρAR R x

ρIR R



       
             
         

 
 

   
 
 

K K

M = M

 

(17) 
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Fig. 3 Out-of-plane curved beam model 

 

 

where x=∂/∂x is the differential operator, i, j denote the serial number of control points, and R is 

the radius of curvature. The non-zero knot spans can determine computational elements for 

isogeometric analysis, and Gaussian quadrature is adopted to integrate the stiffness and mass 

matrix in the interval [–1, 1]. Furthermore, the mechanical behavior of Timoshenko straight beam 

can be analyzed directly through eliminating the curvature term R, namely 1/R=0. 

 

2.3 Out-of-plane isogeometric model 
 

The out-of-plane curved beam model is shown in Fig. 3, in which the coordinate system (x, y, 

z) is established with x axis along the tangential direction of centroidal axis, y along the normal 

direction, and z perpendicular to the plane (x, y). Moreover, the cross-section variables contain the 

out-of-plane transverse displacement u, the bending rotation ϕy about y axis, and the twisting angle 

ϕt about x axis, respectively; Qz, My and Mt are the associated shear force, bending moment and 

twisting moment. Apart from the representation of variables similar to the in-plane model, Iy, Ip 

and J denote the moment of inertia with respect to y axis, the polar moment of inertia and twisting 

constant, separately.   

The corresponding elastic equations of Timoshenko curved beam with considering the effects 

of shear deformation and rotary inertia (Chidamparam and Leissa 1993, Huang et al. 2000) can be 

given by 

( ), ( ),  ( )
y yt t

z y y y t

u
Q kGA M EI + M GJ

x x R x R

  


 
     

            
(18) 

Similarly, the dynamic equilibrium equation of Timoshenko curved beam for out-of-plane free 

vibration can be written as 

0

0 0 0

[ ( ) ( ) ( )] d

 d d  d

L y yt t
z y y t

L L L

y y y p t t

u
Q δ M δ + M δ x

x x R x R

ρAuδu x ρI δ  x ρI δ x

  


   

 
    

  

                

(19) 

where δu, δϕy and δϕt are the associated three virtual displacements, separately. The solving 

procedure of Eq. (19) is identical to that of in-plane isogeometric model. 

Further, the global stiffness and mass matrices of out-of-plane curved beam can be expressed as 
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Fig. 4 IGA flow chart of Timoshenko curved beam Fig. 5 A quarter of circular arch model 
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   
     

K M

             

(20) 

Thus, the NURBS-based IGA flow chart is depicted in Fig. 4 to analyze the free vibration of a 

Timoshenko curved beam. Firstly, the exact NURBS geometric information is extracted from the 

curved beam model without subdivision. Next, the refinement of IGA is implemented according to 

the requirement of calculation, in which the geometric model remains unchanged. Then, the 

computer program runs directly on the refined NURBS geometries without any conversion of data 

format. Finally, the analysis results can be obtained by the corresponding control variables. In this 

study, the k-refinement is adopted to achieve Cp–1-continuity for NURBS of polynomial order p. 

 

 

3. Numerical locking and effective scheme for free vibration of curved beams 
 

Numerical locking may exist in slender Timoshenko beam solved by displacement-based finite 

element method, usually occurring in the case of low-order polynomial interpolation. Straight 

beam mainly involves shear locking, however for curved beam, additional locking is also included 

due to the influence of its curvature. Locking effect is attributed to the interpolation of inconsistent 

order for displacement components participating in strain terms in FEM (Ishaquddin et al. 2012). 

Currently, isogeometric analysis (Hughes et al. 2005) demonstrated its superiority in numerical 

precision, efficiency and integration of CAD and CAE. However, it is shown that the NURBS 

element suffers from numerical locking for static analysis, in which the locking effect leads the 

numerical solution of displacement to exhibit stiff behavior for low-order NURBS element under 

some parametric condition such as slender region (Echter and Bischoff 2010). 

Among the several existing methods for overcoming locking effect, the selective reduced 

integration techniques have been studied and improved for decades of years due to the simplicity 

of implementation (Adam et al. 2014). In addition, a strain projection method ( B  method) was 

applied in NURBS element to treat volumetric locking (Elguedj et al. 2008) and in-plane locking 

of static Timoshenko curved beam recently (Bouclier et al. 2012). Therefore, the two techniques 

are adopted jointly in this work to solve both in-plane and out-of-plane locking within the context 
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of free vibration analysis. Note that there are the same number of Gauss points in stiffness and 

mass matrices for the full and reduced integration herein. However, the selective reduced 

integration is only implemented in the stiffness matrices. 

 

3.1 In-plane model: shear and membrane locking 
 

For in-plane case, there is inconsistency of derivative order in both membrane and transverse 

shear strain components, namely the interpolation functions cannot represent the so-called 

inextensible bending and shearless bending (ε=0 and γ=0 in Eq. (7)) for thin beam model, resulting 

in the well-known membrane locking and shear locking. Thus in this section, various selective  

integral schemes in conjunction with the B  (also expressed as Bbar thereafter) projection  

element are compared for free vibration of curved beam with a wide range of slenderness to 

achieve locking free analysis.  

The detailed theoretical basis of B  projection method can be seen in the reference (Elguedj et 

al. 2008, Bouclier et al. 2012), in which the strains relating to locking (membrane and transverse 

shear strains) are projected to a basis of lower dimension. Namely, the modified B  projection 

stiffness matrices (Bouclier et al. 2012) can be written as 

[ ] [ ] [ ] [ ]m s bB
K K K K  

                         
(21) 

where mK  and sK  are the stiffness matrixes related to the modified membrane and transverse  

shear strains, respectively, and Kb is the bending stiffness matrix.  

Arbitrary slenderness: The 1/4 circular arch with hinged-hinged boundary conditions is 

examined here as shown in Fig. 5 with the main parameters as: radius R=1 m, arc length L=Rθ, 

radius of gyration ( / )r I A , central angle θ=π/2, E=10 GPa, k=5/6, Possion ratio v=0.3. The 

dimensionless frequency parameter is defined as 2

i iλ ωL ρA / EI , ωi denotes the ith natural 

frequency, and ρ is the material density. The isogeometric free vibration analysis is implemented 

from p=2 through k-refinement in this study due to the fact that quadratic NURBS is the lowest 

order that can represent exact curved beam model. Therefore, full integration (3-point for p=2 and 

4-point for p=3), various selective reduced integral schemes and B  projection element are tested 

in this example for comparison, with different combination of numbers corresponding to Gauss 

integration point for bending, membrane and shear energy terms, respectively. For instance, 2-1-1 

means that 2-point integration is adopted for bending energy terms and 1-point integration for 

membrane and transverse shear energy terms. It is important to note that there are almost the same 

results for 2-point, 3-point and 4-point integration for B  projection elements. Hence, several 

representative solutions for frequency parameters with better accuracy obtained by twenty 

quadratic and cubic NURBS elements along with the analytic solutions (Blevins 1979) are 

depicted in Fig. 6 for comparison.  

Clearly, there are serious locking effects for 3-point integration in quadratic NURBS element in 

Fig. 6(a), because the fundamental frequency parameters deviate from the analytic solutions 

remarkably when the slenderness ratio (R/r) is larger than 1000, though the subdivision number of 

element is twenty. And the improvements exist in B  projection element and reduced 2-point 

integration, selective reduced integration (3-2-2) to some extent, but they are not optimal for 

extremely thin curved beams. Relatively, locking free analysis can be achieved only by selective 

reduced integration 2-1-1 and 3-1-1 for quadratic NURBS, that is 1-point integration adopted for  
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(a) Quadratic NURBS (b) Cubic NURBS 

Fig. 6 Comparison for the fundamental frequency parameters of hinged-hinged 1/4 circular beam by 

selective reduced integration and NURBS B  element 

 

 

both membrane and shear energy terms. Moreover, the locking regions are backward distinctly for 

cubic NURBS in Fig. 6(b), and only by 1-point integration there is no locking effect under the 

circumstance of extremely slender model. Herein, an additional Gauss point is incorporated to the 

boundary element for 1-point integration to remove the zero-energy mode (Bouclier et al. 2012, 

Adam et al. 2014). 

Slenderness R/r=100: The curved beam with slenderness R/r=100 is studied with the exact 

solution (Tufekci and Arpaci 1998) for reference and the relative error of frequency parameter is 

defined as 

|λi–λiRef|/λiRef×100%                             (22) 

where i denotes the ith mode, λi is the numerical solution of frequency parameter and λiRef is the 

exact solution for reference. 

Although there is no severe looking effect for the fundamental frequency of curved beam with 

slenderness R/r=100 in Fig. 7(a), the full integration (3-point) in quadratic NURBS elements is 

inappropriate for the fundamental frequency of moderately thin curved beam. Apart from B  

projection elements, better results are achieved with 2-point integration, and the accuracy 

comparison of various integral selections is shown in Fig. 7(b). By contrast of Figs. 7(a) and (b), 

there are the equivalent effects for integration of 2-point (2-2-2) and 3-2-2 along with B  

projection element, being optimal in the optional integral schemes.  

Notably, the membrane-to-shear stiffness ratio EA/GA=2.6 is greater than 1, and thus the 

membrane energy term has the larger proportion. Accordingly, the curved beam in this case tends 

to be membrane locking relatively rather than shear locking, though both of the two numerical 

locking are not dominated. It can well explain that, there are better results for 1-point reduced 

integration in membrane energy term (namely 2-1-2 or 3-1-2) in Fig. 7(b) when the subdivision 

levels of elements are still fairly rough due to obvious locking effect in this region. However, this 

is not the case for 1-point integration in shear energy term (2-2-1). Further, for the cubic NURBS 

shown in Figs. 8(a) and (b), there is no significant difference for the 1st and 5th frequency with 

various integration schemes, and desired results are obtained with the fine element subdivision. 

Therefore, the cubic NURBS hardly suffers from numerical locking for the curved beam with 

R/r=100, which is also observed in Fig. 6(b) clearly.  

512



 

 

 

 

 

 

Isogeometric method based in-plane and out-of-plane free vibration analysis... 

  
(a) (b) 

Fig. 7 Convergence comparison of fundamental frequency for curved beam with R/r=100 by quadratic 

NURBS with respect to various schemes 

 

  
(a) 1st mode (b) 5th mode 

Fig. 8 Convergence comparison of the 1st and 5th frequency for curved beam with R/r=100 by cubic 

NURBS with respect to various schemes 

 

 

Overall, the B  projection element, reduced 2-point (2-2-2) integration and selective reduced 

3-2-2 integration (3-point for bending energy terms and 2-point for membrane and transverse shear 

energy terms) are feasible integral schemes in C1-continuous quadratic elements for free vibration 

analysis of curved beam with slenderness R/r=100.  

 

3.2 Out-of-plane numerical locking 
 

As shown in Eq. (18), for the out-of-plane free vibration of planar curved beam taking into 

account the effects of shear deformation and rotary inertia, all of the three strain terms have the 

coupling of derivatives with zero and the first order together for displacement components, 

resulting in the curvature related locking as discussed for the in-plane counterpart. However, 

differing from the in-plane pattern, it is difficult to determinate in advance for which energy term 

the reduced integration or B  projection method should be performed to eliminate numerical 

locking, because of the interpolation of inconsistent order existing in all the three strains. In view 

of the feature of out-of-plane locking, the integral scheme based on model parameters of curved 

beam presented below exhibits its effectiveness. 
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Herein, the curved beam with circular cross-section and clamped-clamped boundary conditions 

are considered with the radius of cross section rcs, v=0.3 and shear modulus G=E/2(1+v), namely 

EI/GA=0.65rcs
2, EI/GJ=1.3. In this curved beam model, the bending-to-twisting stiffness ratio 

keeps constant also close to 1, while the bending-to-shear stiffness ratio changes with the value of 

radius rcs, thus shear locking may be dominated. And let rcs=1, the other main parameters are listed 

as: k=0.89, A=π m2, Iy=π/4 m4, J=Ip=π/2 m4, E=2.6×10–2 GPa, and the dimensionless frequency 

parameters 2

yλ ωR ρA / EI . Accordingly, the stiffness ratio GJ: GA: EIy = 1: 2: 1.3, and the 

proportion of shear energy terms is the largest among the three terms. Therefore, by B  projection 

method, the shear strain is projected onto a basis of lower dimension, but the twisting and bending 

strains are not projected. Thus, it yields [ ] [ ] [ ] [ ]t s bB
K K K K   .  

Arbitrary slenderness: The dimensionless fundamental frequency parameters of 60º and 90º 

circular beam calculated by basic quadratic and cubic NURBS elements along with B  projection 

element are presented in Fig. 9 in contrast with the analytic solutions (Blevins 1979), in which full 

integration is adopted for observation of locking phenomenon. Obviously, the solutions by B  

projection element are completely free from locking, while there are severe locking effects for 

basic quadratic and cubic NURBS elements in extremely slender cases. It is noted that, selective 

reduced 1-point integration does not work in this case which is locking free for the in-plane 

models, because of the complexity of out-of-plane locking. 

Slenderness R/r=100, 20: The accuracy of natural frequencies may be affected by numerical 

locking especially for coarse meshes, though there is no serious influence according to the results 

in Fig. 9 for moderately thin curved beams. The convergence of fundamental frequencies is 

illustrated in Figs. 10(a) and (b) for curved beam with 60º opening angle and different integral 

schemes by using quadratic NURBS elements for R/r=100 and 20, respectively. Moreover, the 

exact solution are from the references (Howson and Jemah 1999, Tufekci and Dogruer 2006) and 

the different combination of numbers correspond to Gauss integration for twisting, shear and 

bending energy terms, separately.  

It is seen that the gap between the two ranges (0~12% and 0~0.5%) of relative error are fairly 

wide for R/r =100 and 20, respectively. The slender beam corresponds to the lower accuracy of 

frequency parameters. From Fig. 10, the reduced 2-point integration or 2-point integration only in 

shear energy term exhibits better convergence than the other integral schemes, and only five of the  

 

 

  
(a) opening angle: 60º (b) opening angle: 90º 

Fig. 9 Numerical locking effect of fundamental frequency for out-of-plane curved beam model 
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(a) R/r=100 (b) R/r=20 

Fig. 10 Convergence comparison of fundamental frequency for out-of-plane curved beam model with 

different integral schemes by quadratic NURBS 

 

  

Fig. 11 Convergence comparison for cubic NURBS Fig. 12 Convergence comparison for quartic NURBS 

 

 

relatively high accuracy are shown here. Then by using k-refinement, different integral selections 

of cubic NURBS for R/r =100 and 20 are shown in Fig. 11. The accuracy is greatly enhanced and 

there is no significant difference for various integral selections no matter R/r =100 or 20. When the 

subdividing elements are less than ten, there are still small accuracy gaps for the two slenderness 

ratios, but both of them obtain accurate results with the fine subdivision. Next, the order of 

NURBS is elevated to quartic and the convergence comparison is shown in Fig. 12. Obviously, 

both of them acquire consistent convergence, and the frequency results are in excellent agreement 

with the exact solution. Note that there are only 10 control points in total for Nele=6, while the 

finite element method requires 25 nodes, namely with relatively few degrees of freedom. 

To sum up, there are locking effects for IGA-based free vibration of Timoshenko curved beam, 

in which C1-continuous quadratic and C2-continuous cubic NURBS elements suffer from 

numerical locking severely in extremely slender models for both in-plane and out-of-plane 

patterns. The selective reduced 1-point integration is free from membrane and shear locking of in-

plane case. Nevertheless, it is not suitable for out-of-plane locking due to its special characteristic. 

Through numerical tests, the B  projection element based on stiffness ratio can achieve locking 

free analysis for out-of-plane vibration. Moreover, for moderately thin beam models 

(R/r=100~20), full integration (3-point) is not the best option for quadratic NURBS, and reduced 

2-point integration and selective reduced integration based on model parameters as well as B  

projection element can obtain better results. Finally, the cubic and higher order NURBS exhibits  
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Fig. 13 Geometric configuration of circular beam by quadratic NURBS 

 

 

negligible locking effect for moderately slender models, and also shows little difference for 

various integral schemes. 

 

 

4. Numerical examples for in-plane and out-of-plane free vibration of curved beams 

 
For the circular curved beam, the geometric configuration is shown in Fig. 13 by a quadratic 

NURBS curve. Actually, a single NURBS patch is adequate to construct the curved beam model 

with the opening angle less than 180º. The NURBS curve has the first and last control points P1 

and P3 interpolatory, the associated weights w1, w3=1, and the internal control points (P2) non-

interpolatory, w2=cos(θ/2). When the opening angle is greater than 180º, the model can be 

constructed using a NURBS curve with several patches and C0-continuity at each boundary 

(Cottrell et al. 2009). Herein, a single patch is utilized to analyze the curved beam models, which 

can be easily extended to multi-patch case. In addition, the NURBS geometric information of non-

circular curved beam such as parabolic and elliptical beams can be provided exactly from CAD 

model. The following numerical examples aim to illustrate the superiority of IGA method for in-

plane and out-of-plane free vibration analysis of curved beams with usual slenderness R/r≤100, 

complex shape and variable curvature. 

 

4.1 Uniform circular Timoshenko curved beam 

 
Example 1: Accuracy and efficiency of IGA elements with Cp–1 continuity 

A quarter of circular beam is considered to analyze the in-plane free vibration using IGA with 

exact natural frequencies (Eisenberger and Efraim 2001) and FEM numerical solutions (Yang et 

al. 2008) presented for comparison. This example mainly discusses hinged-hinged and clamped-

clamped boundary conditions. The related parameters about geometry and material are given as: 

R/r=15 (hinged-hinged), R/r=15.9155 (clamped-clamped), r= ( / )I A , k=0.85, E=70 GPa, and 

kG/E=0.3 (Yang et al. 2008). 

Ten curved beam elements with cubic polynomial basis functions in FEM were employed in 

Yang et al. 2008, for each of which there are 4 nodes, totally 31 nodes. To compare with the FEM 

solutions, the initial curved beam model is subdivided into 10 and 28 cubic NURBS elements by 

k-refinement. Due to the C2 continuity between elements, there are 13 and 31 control points for the 

two refinement levels, respectively. According to the locking investigation in Section 3.1, the 
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Table 1 Comparison of frequency parameters for the 1/4 circular beam with hinged-hinged and clamped-

clamped boundary conditions 

Mode 

number 

Hinged-hinged Clamped-clamped 

Nele: 10 

Ncp: 13 

Nele: 28 

Ncp: 31 

Eisenberger 

and Efraim 

2001 

Yang et al. 

2008 

Nele: 10 

Ncp: 13 

Nele: 28 

Ncp: 31 

Eisenberger 

and Efraim 

2001 

Yang et al. 

2008 

1 29.2802 29.2799 29.2799 29.306 36.7033 36.7031 36.7031 36.657 

2 33.3050 33.3049 33.3049 33.243 42.2644 42.2635 42.2635 42.289 

3 67.1291 67.1235 67.1235 67.123 82.2454 82.2330 82.2330 82.228 

4 79.9726 79.9708 79.9708 79.950 84.4941 84.4915 84.4915 84.471 

5 107.9012 107.8512 107.8511 107.844 122.3905 122.3054 122.3053 122.298 

6 143.7909 143.6177 143.6175 143.679 155.1085 154.9448 154.9447 154.998 

7 156.8114 156.6657 156.6656 156.629 168.4921 168.2028 168.2026 168.174 

8 191.8435 190.4778 190.4771 190.596 206.2256 204.4727 204.4718 204.599 

9 225.5067 225.3612 225.3611 225.349 239.1456 238.9921 238.9920 238.973 

10 239.6933 234.5258 234.5235 234.809 255.1369 249.0140 249.0114 249.320 

 

 

effect of axis extensibility and shear deformation cannot be neglected for curved beam with 

R/r≤20, hence full integration (p+1 point) is adopted here.  

The first 10 frequency parameters with hinged-hinged and clamped-clamped boundary 

conditions are listed in Table 1, in which Nele and Ncp represent the number of NURBS elements 

and the corresponding control points respectively. Compared to the exact natural frequencies 

(Eisenberger and Efraim 2001), it is seen that the precision of the first 2 frequency parameters by 

IGA are higher than those by FEM (Yang et al. 2008) for the two boundary conditions when Nele 

equals 10. However, it is not the same case for the relative higher-order frequency parameters. 

Note that there are only 13 control points in IGA compared with 31 nodes in FEM, namely the less 

number of degrees of freedom are used for IGA herein. Thus, through further subdivision to 28 

elements and 31 control points, the frequency results of IGA are in excellent agreement with the 

exact solutions. In fact, due to the Cp–1 continuity of NURBS elements obtained by k-refinement, 

there are local sharing properties for the NURBS control points. Therefore, the IGA solutions 

present higher accuracy than the FEM solutions with the identical number of degrees of freedom. 

Meanwhile, the first 9 modal shapes of hinged-hinged boundary conditions obtained by 28 

cubic NURBS elements are demonstrated in Figs. 14(a)-(i), and the almost consistent modal 

shapes can be found in the references (Eisenberger and Efraim 2001, Yang et al. 2008). 

Example 2: In-plane free vibration of uniform circular arches 

The uniform circular arches with hinged-hinged and clamped-clamped boundary conditions and 

slenderness R/r=50, 75 and 100 are considered. The first 5 dimensionless natural frequencies of 

arches are shown in Tables 2 and 3 by cubic NURBS with the opening angle of 90º, 120º and 150º. 

Based on the comparison of integration schemes in Fig. 8, almost consistent convergence can be 

obtained, thus fifty elements with 3-point integration are employed here. It can be observed from 

Tables 2 and 3 that, the IGA results agree well with the exact solutions in Tufekci and Arpaci 

(1998), and the natural frequencies of arch may be affected by constraint conditions and opening 

angles. Specifically, the arch structures with clamped-clamped ends have greater stiffness than the 

hinged ones, leading to the higher natural frequencies. To further describe the influence of opening 
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(a) 1st mode (b) 2nd mode (c) 3rd mode 

   

(d) 4th mode (e) 5th mode (f) 6th mode 

   

(g) 7th mode (h) 8th mode (i) 9th mode 

Fig. 14 The first 9 modal shapes of 1/4 circular beam with hinged-hinged boundary condition (The black, 

red/dash and blue/dot curves represent u, w and θ, respectively) 

 

 

Fig. 15 Influence of opening angle on natural frequency of arch with hinged-hinged end 
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Table 2 Frequency parameters 2 2
λ ωR θ ρA / EI  for uniform hinged-hinged arch 

R/r Mode 

90º 120º 150º 

Tufekci and 

Arpaci 1998 
IGA 

Tufekci and 

Arpaci 1998 
IGA 

Tufekci and 

Arpaci 1998 
IGA 

100 

1 33.8341 33.8341 30.3178 30.3178 26.4079 26.4079 

2 78.7259 78.7261 76.2373 76.2375 72.5587 72.5588 

3 150.0300 150.0312 146.9290 146.9298 142.5925 142.5933 

4 214.8133 214.8138 229.9762 229.9740 227.9351 227.9357 

5 259.7674 259.7633 339.1900 339.1539 336.4950 336.4769 

75 

1 33.7367 33.7368 30.2665 30.2665 26.3787 26.3787 

2 77.7025 77.7029 75.8395 75.8397 72.3473 72.3474 

3 148.4183 148.4198 145.9973 145.9987 141.9974 141.9981 

4 173.9414 173.9468 225.3067 225.3078 226.0291 226.0300 

5 239.3448 239.3443 321.9759 321.9895 333.3854 333.3658 

50 

1 33.4632 33.4635 30.1212 30.1214 26.2958 26.2958 

2 74.3412 74.3435 74.6949 74.6957 71.7477 71.7483 

3 121.4958 121.5088 143.4124 143.4163 140.3306 140.3326 

4 144.0231 144.0274 197.2652 197.2830 219.9901 219.9955 

5 226.3381 226.3464 242.4045 242.4112 324.5391 324.5281 

 

Table 3 Frequency parameters 
2 2

λ ωR θ ρA / EI  for uniform clamped-clamped arch 

R/r Mode 

90º 120º 150º 

Tufekci and 

Arpaci 1998 
IGA 

Tufekci and 

Arpaci 1998 
IGA 

Tufekci and 

Arpaci 1998 
IGA 

100 

1 55.3434 55.3436 51.7045 51.7046 47.5326 47.5326 

2 102.3868 102.3876 101.9366 101.9372 98.8691 98.8697 

3 188.4994 188.5014 185.7236 185.7249 181.2108 181.2116 

4 219.1514 219.1515 269.2141 269.2139 271.5375 271.5351 

5 299.1958 299.1832 393.7767 393.7655 391.9823 391.9661 

75 

1 55.9768 54.9771 51.5012 51.5014 47.4091 47.4092 

2 98.5094 98.5111 100.6416 100.6427 98.2165 98.2172 

3 174.9116 174.9162 183.7216 183.7238 179.9086 179.9100 

4 185.1081 185.1109 253.5605 253.5653 266.9185 266.9221 

5 284.7500 284.7454 332.4988 332.5134 386.3414 386.3178 

50 

1 53.9660 53.9670 50.9322 50.9328 47.0612 47.0616 

2 86.1908 86.1971 96.8517 96.8548 96.3684 96.3702 

3 132.7272 132.7371 178.1998 178.2046 176.2864 176.2897 

4 175.8392 175.8474 198.0489 198.0698 250.0629 250.0759 

5 265.8141 265.8241 282.9555 282.9695 338.9705 338.9982 
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angles, the first three frequency parameters of arches with opening angles from 15°~150° are 

demonstrated in Fig. 15 with taking hinged-hinged boundary condition as an example. It is seen 

that there is no consistent monotonicity for the three curves, due to the conversion of vibration 

modes of arch.  

Example 3: Out-of-plane free vibration of uniform circular arches 

The circular curved beams with constant circular cross-section and clamped-clamped boundary 

condition are considered firstly, and their main parameters (Howson and Jemah 1999, Ye and 

Zhao 2012) are listed as: v=0.3, k=0.89, A=π m2, Iy=π/4 m4, J=Ip=π/2 m4, 20 /yR = I A . Table 4 

presents the values of the first four dimensionless natural frequencies 2
/i i yλ ω R ρA EI  for 60º 

and 120º circular arches with k-refinement scheme. According to the comparison of various 

integral schemes in Figs. 10-12, the 3-2-2 integration is adopted for p=2 and full integration is 

utilized for p=3 and 4. 

The calculated results in Table 4 are refined from 5~50 elements, and compared with the exact 

solutions (Howson and Jemah 1999, Tufekci and Dogruer 2006, Ye and Zhao 2012). The accuracy 

for quadratic NURBS elements is gradually increased with the element subdivision. For cubic or 

quartic NURBS, the precise results can be achieved even for the coarse refinement levels. 

Moreover, the frequency solutions obtained by 30 cubic elements and 20 quartic elements are in 

 

 
Table 4 First 4 dimensionless natural frequencies for 60º and 120º circular curved beams with k-refinement 

schemes 

Order Nele 
Mode (opening angle 60º) Mode (opening angle 120º) 

1 2 3 4 1 2 3 4 

p=2 

5 16.96142 39.70332 41.85272 75.76912 4.467895 12.95843 23.27310 29.10392 

10 16.88865 39.70053 40.96557 70.76255 4.31657 11.83191 22.67829 23.31065 

20 16.88516 39.70037 40.93568 70.58891 4.309827 11.79763 22.51649 23.30297 

30 16.88499 39.70036 40.93438 70.58207 4.309495 11.79628 22.51132 23.30277 

50 16.88495 39.70036 40.93411 70.58071 4.309425 11.79600 22.51035 23.30274 

p=3 

5 16.88762 39.70041 41.03895 71.84812 4.315583 11.97866 23.25486 24.29330 

10 16.88497 39.70036 40.93479 70.58822 4.309467 11.79713 22.52211 23.30318 

20 16.88495 39.70036 40.93408 70.58058 4.309415 11.79598 22.51031 23.30274 

30 16.88495 39.70036 40.93407 70.58052 4.309415 11.79597 22.51022 23.30273 

50 16.88495 39.70036 40.93407 70.58051 4.309414 11.79597 22.51022 23.30273 

p=4 

5 16.88504 39.70036 40.94408 70.81863 4.309943 11.82554 22.88458 23.32965 

10 16.88495 39.70036 40.93409 70.58081 4.309415 11.79600 22.51094 23.30276 

20 16.88495 39.70036 40.93407 70.58051 4.309414 11.79597 22.51022 23.30273 

30 16.88495 39.70036 40.93407 70.58051 4.309414 11.79597 22.51022 23.30273 

50 16.88495 39.70036 40.93407 70.58051 4.309414 11.79597 22.51022 23.30273 

Tufekci and 

Dogruer 2006 
16.88495 39.70036 40.93407 70.58051 4.309414 11.79597 22.51022 23.30273 

Howson and 

Jemah 1999 
16.885 39.700 40.934 70.581 4.3094 11.796 22.510 23.303 

Ye and Zhao 

2012 
16.885 39.700 40.934 70.581 4.3094 11.796 22.510 23.303 
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(a) R/r=100 (b) R/r=20 

Fig. 16 Relation between opening angle and natural frequency with clamped-clamped end 

 

  
(a) R/r=100 (b) R/r=20 

Fig. 17 Relation between opening angle and natural frequency with clamped-free end 

 

 

excellent agreement with those in the references (Howson and Jemah 1999, Tufekci and Dogruer 

2006, Ye and Zhao 2012).  

To further study the influence of opening angle on the natural frequencies of circular arches, 

the values related to various opening angles are calculated by 20 quartic NURBS elements. The 

obvious change of monotonicity mainly exist in the range of 20º~150º, hence the relation of the 

first five natural frequencies with clamped-clamped and clamped-free ends are shown in Figs. 16 

and 17 for R/r=100 and 20, respectively. To sum up, the natural frequencies of arch with various 

opening angles yield large change, which is especially obvious for the higher order modes owing 

to the conversion of vibration mode. In addition, the relatively greater frequencies are acquired for 

slenderness R/r=100 than those for R/r=20, and the frequencies of curved beam with clamped-

clamped end are greater than the corresponding frequencies with clamped-free end because of the 

stiffer constraints of the former. 

 

4.2 Variable cross-section Timoshenko parabolic curved beam 
 

Example 4: Parabolic curved beam with constant and variable cross-sections 
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Fig. 18 Centroidal axis of parabolic curved beam Fig. 19 Parabolic curved beam with varying cross section 

 

 

Fig. 20 Relation between h/l and natural frequency parameters with clamped-clamped end (S=100) 

 
 
The NURBS employed in isogeometric analysis is powerful enough to describe the exact 

geometry of curved beam with variable curvature, and the computation process of IGA is 

convenient so that there is no additional effort needed in the specific geometric model of curved 

beam like in FEM. In this section, the parabolic geometry is considered to analyze the free 

vibration of both in-plane and out-of-plane curved beam models. 

In-plane vibration: Free vibration of the parabolic beam in Figs. 18 and 19 with variable cross 

section is discussed, and the non-dimensional equation of parabolic beam (Oh et al. 1999, Huang 

et al. 1998) are given by 

4 (1 ),  0 1η fξ ξ ξ                              (23) 

1

( )
[1 (1 )( / )]cos

c

x

I
I x

α x l 


 
                        

(24) 

where, l is the span length of the parabolic beam and l1 is half of the span length, ƞ = y/l, ξ = x/l; Ic 

is the moment of inertia at the middle of beam; Ac is the associated area of cross section; ϕx is the 

angle between the tangent and the horizontal axis; α=0.25, 0.5, 0.75 and 1.0; / ( / )c cS l I A

denotes the slenderness.  

The first 6 dimensionless natural frequencies 
2

i iλ ωl ρA / EI  together with the reference 

solutions (Huang et al. 1998) for clamped-clamped support are listed in Table 5 (S=100, h/l=0.1) 

and Table 6 (S=50, h/l=0.4). Based on the comparison of integration schemes in Fig. 7 in Section  
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Table 5 Dimensionless frequencies of in-plane free vibration of a parabolic beam with variable cross-

sections (S = 100, h/l=0.1) 

Mode 

α=0.25 α=0.5 α=0.75 α=1.0 

Huang et 

al. 1998 
IGA 

Huang et 

al. 1998 
IGA 

Huang et 

al. 1998 
IGA 

Huang et 

al. 1998 
IGA 

1 70.8520 70.8506 64.9926 64.9742 60.2053 60.1914 56.7777 56.7671 

2 72.9642 72.9385 68.2589 68.2578 66.5432 66.5425 65.2425 65.2423 

3 139.8112 139.7733 127.9823 127.9608 120.8314 120.8214 115.7458 115.7447 

4 217.8530 217.8716 200.6139 200.6635 189.4152 189.4919 181.0018 181.1023 

5 316.0446 316.4323 293.7004 294.1300 278.7741 279.2537 267.3887 267.9175 

6 340.8951 340.9163 327.5784 327.6066 319.0914 319.1305 312.9289 312.9830 

 
Table 6 Dimensionless frequencies of in-plane free vibration of a parabolic beam with variable cross-

sections (S = 50, h/l=0.4) 

Mode 

α=0.25 α=0.5 α=0.75 α=1.0 

Huang et 

al. 1998 
IGA 

Huang et 

al. 1998 
IGA 

Huang et 

al. 1998 
IGA 

Huang et 

al. 1998 
IGA 

1 39.5830 39.5339 34.9439 34.9094 32.2111 32.1844 30.2780 30.2565 

2 78.3612 78.2272 71.5691 71.4733 67.3029 67.2299 64.1796 64.1227 

3 90.6192 90.6142 87.7266 87.7238 85.9828 85.9809 84.7632 84.7621 

4 124.6073 124.3688 115.8481 115.6878 109.9981 109.8887 105.5253 105.4536 

5 145.2034 145.1974 139.3936 139.3918 135.9329 135.9331 133.5337 133.5353 

6 176.9525 176.6746 166.4010 166.2672 159.0894 159.0542 153.3831 153.4235 

 

 
3.1, twenty quadratic NURBS elements are adopted by 2-point integration here, and the calculated 

frequencies are in close agreement with the reference solutions. Moreover, it can be observed from 

Fig. 20 that the ratio of high to span length h/l affects clearly the first three frequencies. 

Out-of-plane vibration: The parabolic beam with constant cross section in Fig. 18 is 

considered here, with the equation (Ye and Zhao 2012) 

2= 0.8 0.02771y x x              (25) 

The main parameters are taken as: E=26 GPa, E/G=2.6, k=0.833, L=28.87 m, h=5.774 m, A=3 

m2, Iy=0.25 m4, Ip=2.5 m4, J=0.79 m4, and ρ=2166.67 kg/m3. Based on the comparison of Fig. 10 in 

Section 3.2, the 2-point integration is adopted here to eliminate numerical locking. Accordingly, 

for clamped-clamped, clamped-hinged and hinged-hinged supports, the first 6 dimensionless 

natural frequencies 
2

i iλ ωl ρA / EI  are listed in Table 7 together with the numerical solutions 

(Ye and Zhao 2012, Lee et al. 2008) for comparison. The frequencies acquired by 50 quadratic 

NURBS elements are almost identical with those by dynamic stiffness method (Ye and Zhao 

2012). However, the element subdivision and order elevation are implemented automatically in 

IGA based on exact geometric model, and also by k-refinement, the high-order continuous 

elements can enhance the accuracy of free vibration analysis of parabolic beam. 

523



 

 

 

 

 

 

Hongliang Liu, Xuefeng Zhu and Dixiong Yang 

Table 7 Dimensionless natural frequencies of out-of-plane free vibration of parabolic beam  

Supports  Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

Clamped 

-clamped 

Lee et al. 2008 17.12 48.77 96.06 109.9 158.7 203.8 

Ye and Zhao 2012 17.044 48.399 95.023 109.93 156.50 203.77 

IGA 17.043 48.399 95.023 109.93 156.50 203.77 

Clamped 

-hinged 

Lee et al. 2008 11.15 39.10 82.61 109.8 141.4 203.8 

Ye and Zhao 2012 11.128 38.963 82.191 109.82 140.46 203.77 

IGA 11.128 38.963 82.191 109.82 140.46 203.77 

Hinged 

-hinged 

Lee et al. 2008 6.090 30.40 70.03 109.8 125.0 194.0 

Ye and Zhao 2012 6.0826 30.402 70.032 109.80 125.04 193.96 

IGA 6.0825 30.402 70.032 109.80 125.05 193.97 

 

 

5. Conclusions 
 

The free vibration analysis of Timoshenko curved beam is addressed by NURBS-based IGA 

considering in-plane and especially the out-of-plane patterns in this paper. Actually, the Cp–1-

continuous NURBS elements present obviously higher accuracy than the finite elements with the 

same degrees of freedom. However, their convergence and accuracy are also affected by numerical 

locking for both of the two patterns, especially when p=2, which is the lowest order of NURBS 

that can represent exact curved beam model. For extremely slender models, there is severely 

locking effect for quadratic and cubic elements by full integration. It involves membrane locking 

and shear locking for the in-plane pattern, while the other locking may exist in out-of-plane case 

due to interpolation of inconsistent order in all the three strains. Therefore, the selective reduced  
integration in conjunction with B  projection method are proposed to achieve locking free  

analysis for curved beam regardless of the extent of slenderness, and the accurate numerical results 

are also obtained in the non-dominated regions of locking effect. 

Specifically, for extremely slender beams, the selective reduced one-point integration is free  
from membrane and shear locking of in-plane case, while B  projection element based on  

stiffness ratio can achieve locking free analysis for out-of-plane case. For curved beams with 

slenderness ratios R/r=100~20 and both in-plane and out-of plane models, the reduced 2-point  
integration and selective reduced integration based on model parameters as well as B  projection  

element are good candidates for quadratic NURBS, and their locking effects are negligible for 

cubic or higher order NURBS. 

In addition, the IGA computational model is directly utilized to the modal analysis of planar 

curved beams with variable curvature and complicated cross section, based on exact geometry, 

convenient implementation of k-refinement, and CAD and CAE integration. Moreover, the locking 

free schemes for vibration analysis of curved beam are applicable for distinct slenderness models. 

Finally, the influence factors of parameters of curved beams on their natural frequency are 

scrutinized, which facilitates the dynamic design of curved beams. 
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