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Abstract.  Methods for the seismic demands evaluation of structures require iterative procedures. Many 

studies dealt with the development of different inelastic spectra with the aim to simplify the evaluation of 

inelastic deformations and performance of structures. Recently, the concept of inelastic spectra has been 

adopted in the global scheme of the Performance-Based Seismic Design (PBSD) through Capacity-

Spectrum Method (CSM). For instance, the Modal Pushover Analysis (MPA) has been proved to provide 

accurate results for inelastic buildings to a similar degree of accuracy than the Response Spectrum Analysis 

(RSA) in estimating peak response for elastic buildings. In this paper, a simplified nonlinear procedure for 

evaluation of the seismic demand of structures is proposed with its applicability to multi-degree-of-freedom 

(MDOF) systems. The basic concept is to write the equation of motion of (MDOF) system into series of 

normal modes based on an inelastic modal decomposition in terms of ductility factor. The accuracy of the 

proposed procedure is verified against the Nonlinear Time History Analysis (NL-THA) results and 

Uncoupled Modal Response History Analysis (UMRHA) of a 9-story steel building subjected to El-Centro 

1940 (N/S) as a first application. The comparison shows that the new theoretical approach is capable to 

provide accurate peak response with those obtained when using the NL-THA analysis. After that, a 

simplified nonlinear spectral analysis is proposed and illustrated by examples in order to describe inelastic 

response spectra and to relate it to the capacity curve (Pushover curve) by a new parameter of control, called 

normalized yield strength coefficient (η). In the second application, the proposed procedure is verified 

against the NL-THA analysis results of two buildings for 80 selected real ground motions. 
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1. Introduction 
 

Several simple evaluation methods have been proposed as an alternative to the complex 

nonlinear dynamic analysis to estimate the seismic demands of structures (Gulkan and Sozen 
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1974, Freeman et al. 1975, Newmark and Hall 1982, Fajfar and Fischinger 1988, Kowalsky 1994, 

Sasaki et al. 1998, Fajfar 1999, Gupta and Kunnath 2000, Albanesi et al. 2000, Priestley and 

Kowalsky 2000, Miranda 2001, Chopra and Goel 2001, Lin and Chang 2003, Maja and Fajfar 

2012, Chikh et al. 2014, Zerbin and Aprile 2015, Kazaz 2016). The basic idea of these methods is 

to relate the structural capacity to the physical basis of elastic or inelastic demand spectra, as the 

Capacity Spectrum Method (ATC-40 1996) and its different implementations. 

The Capacity Spectrum Method (CSM) provides an overview of the inelastic behavior of 

structures subjected to seismic excitation. The CSM Method was developed for the first time by 

Freeman et al. (1975) and adopted by the Applied Technology Council (ATC-40 1996). Chopra 

and Goel (1999) proposed an improved Capacity-Demand-Diagram Method, which uses an 

inelastic design response spectrum as the demand spectrum with an alternative graphical 

implementation. In another version of the CSM method proposed by Fajfar (1999), highly damped 

elastic spectra have been used to determine seismic demand. It is implemented in Eurocode 8 

(CEN 2005) and it was used in a comparison between traditional non-linear static methods in the 

evaluation of asymmetric structures by Bosco et al. (2013). 

The seismic demands assessment methods are generally based on the nonlinear static analysis, 

where the structure is subjected to lateral loads increasing monotonically over the entire height 

until a predetermined target displacement. The distribution of these forces and the target 

displacement are based on the assumption that the response is controlled only by the fundamental 

mode, knowing that constant distribution of forces will not capture the contribution of higher 

modes in the overall structural response. Several researchers have proposed adaptive force 

distributions that attempt to follow more closely the distribution of inertial forces over time (Fajfar 

and Fischinger 1988, Baracci et al. 1997, Gupta and Kunnath 2000). Attempts have also been 

made to consider more than the fundamental mode of vibration in the Pushover analysis (Paret et 

al. 1996, Sasaki et al. 1998, Gupta and Kunnath 2000, Matsumori et al. 1999, Chopra and Goel 

2001). 

The Modal Pushover Analysis (MPA) developed by Chopra and Goel (2001) includes the 

effects of higher modes of vibration and provides a good estimation of the seismic demand. Later, 

the modal Pushover analysis undergoes changes by Chopra et al. (2004), for which an extension of 

this analysis was developed under the name of (Modified Modal Pushover Analysis, MMPA). The 

MMPA method combines the elastic influence of higher modes with inelastic response of the first 

mode using several combinations such as the Square Root of the Sum of Squares (SRSS). Unlike 

the MMPA, the Upper-Bound Pushover Analysis (UBPA) (Jan et al. 2004) is based on the use of a 

load vector obtained by combining the vector of the first mode and the second corrected vector 

mode. 

In the same way, Poursha et al. (2009) have developed a technique for multi-modal nonlinear 

analysis, known as (Consecutive Modal Pushover CMP analysis) involving the sequential 

application of patterns of different loads on the modal basis. An extension of this procedure 

Extended Consecutive Modal Pushover (ECMP) method was proposed by Timothy et al. (2014), 

indicating that the modal load patterns are varied, encouraging the formation of different inelastic 

mechanisms in order to reproduce the different mechanisms which can be observed to develop in 

NL-THA when using a set of ground motion records. Recently, Pushover analysis has undergone 

modifications to be applicable on asymmetric buildings under bi-directional excitations (Lin and 

Tsai 2011, Fujii 2013, Bosco et al. 2013, Manoukas and Avramidis 2014). It has also been 

extended to general three-dimensional torsion coupled systems in several studies as (Reyes and 

Chopra 2011, Camara and Astiz 2012, Kaatsız and Sucuoğlu 2014). 
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Simplified procedure for seismic demands assessment of structures 

 

Fig. 1 Example of the resisting force of a MDOF system 

 

 

This paper is divided into two main sections, an inelastic equation of motion of MDOF system 

will be rewritten in terms of the ductility to obtain an approximate multimodal dynamic analysis 

(AMDA) that consider the ductility factor as the inelastic response of the system. In the second 

section, a developed nonlinear multimodal spectral analysis (NL-MSA) for structures considering 

contribution of higher modes of vibration is introduced. 

 

 

2. Approximate multimodal dynamic analysis 
 

2.1 Inelastic modal decomposition in terms of ductility 
 

The matrix form of differential equations governing the response of a MDOF system to 

earthquake induced ground motion can be written as 

  ̈(𝑡)    ̇(𝑡)    (  𝑠    ̇)      ̈ (𝑡)                   (1) 

Where   and   are the mass and damping matrices respectively,   denotes the resisting 

force vector,   is the vector of earthquake influence coefficients and  ̈ (𝑡)  denotes the 

earthquake acceleration. The damping matrix   would not be needed in this analysis of 

earthquake response; instead modal damping ratios suffice. 

The resisting force vector   is defined as the sum of the linear and the hysteretic parts as 

represented in Fig. 1. 

        (   ̇)                             (2) 

Where, 𝑚𝑖   𝑖 𝑘𝑒 𝑖 𝑘  𝑖  𝑖 and  𝑦 𝑖 are the mass, resisting force, elastic stiffness, postyield 

stiffness, yield strength and yield displacement of the i
th
 level, respectively. 

In Eq. (2), the resisting force is a vector for MDOF systems,    is the postyield stiffness 

matrix,   the yield strength vector, and   a dimensionless variable that characterizes the Bouc-

Wen model of hysteresis (Wen 1976). It is given by 

 ̇  
 ̇

  
[  | | ( 𝑠   ( ̇ )   )]                       (3) 

Where,  𝑦 is the yield displacement vector;     𝜆 and   are the parameters that control the 

shape of the hysteresis loop which are taken as:   1   0.1 𝜆  0.9  and   6  for 

bilinear system, 𝑠   (. ) is the sign function (Wen 1976).  
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Using Eq. (1) and Eq. (2) we get 

  ̈(𝑡)    ̇(𝑡)     (𝑡)    (   ̇)      ̈ (𝑡)                                   (4) 

The decomposition of the MDOF system as a series of normal modes is reasonable. Eq. (5) is 

used to involve the influence of higher modes in the peak and overall response of the structure 

(Chopra 2007). 

 (𝑡)  ∑   (𝑡)  ∑     (𝑡)                          (5) 

Where:   (𝑡) is the modal coordinate and    is the n
th
 natural vibration mode of the 

structure. 

Substituting Eq. (4) into Eq. (5), using the mass, stiffness and classical damping orthogonality 

mode properties, we obtain the following differential equation for the single-degree-of-freedom 

(SDOF) system response 

 ̈ (𝑡)  2     ̇ (𝑡)      
  (𝑡)  

    (   ̇)

  
      ̈ (𝑡)              (6) 

Where,    is the natural vibration frequency,    the damping ratio,    the post-to-preyield 

stiffness ratio,      
𝑡  the yield strength,   

  
𝐿 

𝛤 
, the effective mass,      

𝑇𝑚  /  
𝑇𝑚   

the modal participation factor and 𝐿    
𝑇𝑚   for the n

th
 natural vibration mode. 

The solution,   , of Eq. (6) is given by (Chopra 2007) 

  (𝑡)      (𝑡)                              (7) 

With this approximation, the solution of Eq. (6) can be expressed by Eq. (7), where the 

displacement   (𝑡) of the SDOF system can be assessed by the following equation 

 ̈ (𝑡)  2     ̇ (𝑡)      
  (𝑡)  

    (   ̇)

𝛤   
    ̈ (𝑡)              (8) 

This ductility demand (or ductility factor) for the SDOF bilinear system is expressed as 

   
    

    
                                 (9) 

Where:    𝑚 is the peak displacement and    𝑦 is the yield displacement. 

It seems worth to associate for each instantaneous inelastic displacement   (𝑡)  an 

instantaneous ductility factor   (𝑡) defined as 

{

  (𝑡)    (𝑡)     𝑦

 ̇ (𝑡)   ̇ (𝑡)     𝑦

 ̈ (𝑡)   ̈ (𝑡)     𝑦

                          (10) 

Eq. (8) can be rewritten in terms of ductility factor   , by substituting Eq. (10) in Eq. (8) and 

dividing by    𝑦, which gives 

 ̈  2     ̇      
    

     (   ̇)

    
  

 

    
 ̈ (𝑡)              (11) 

𝑞  is the yield strength coefficient for the n
th
 natural vibration mode of the structure (defined as 

yield strength divided by 𝐿 ). 
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Fig. 2 Approximate multimodal dynamic procedure for MDOF structures 

 

 

𝑞  
  

𝐿 
                                 (12) 

Also, Eq. (3) may be expressed in terms of ductility factor    as 

 ̇   ̇ [  | |
 (  𝑠   ( ̇ )   )]                      (13) 

The term 
   

    
 in Eq. (11) is rewritten as 

   

    
   

 (1    )                            (14) 

Substituting Eq. (14) into Eq. (11) gives 

 ̈  2     ̇      
      

 (1    )  (   ̇)   
  
 (    )

   
 ̈ (𝑡)       (15) 

It can be observed from Eq. (15) that for a given ground acceleration,   (𝑡) depends on 

         and 𝑞  of the n
th
 natural vibration mode. 

Based on Eq. (5) and (7) and dividing by    𝑦 give the ductility demand and the displacement 

of the original structure 

 (𝑡)  ∑       (𝑡)         (𝑡)  ∑       (𝑡)                (16) 

Fig. 2 illustrates the technique of uncoupling the equation of motion in terms of ductility factor 

characterizing the MDOF system. The response of a MDOF system to earthquake ground motion 

can be computed as a function of time by the procedure just developed the approximate 

multimodal dynamic analysis (AMDA), which is detailed in the next application. The proposed 

approximate analysis consists to solve Eq. (15) for  ̈ (𝑡) that will be multiplied by a new factor 

   
 (1    )/𝑞    to constitute a new excitation for the structure to determine finally the total 

response quantities of interest by using Eq. (16). 

 
2.2 Application 
 

In recent years Chopra and Goel (2002) assessed the strength variation of several procedures 

including the modal Pushover analysis (MPA), that they developed. The MPA analysis is based on 

structural dynamics theory. Its accuracy and reliability in estimating the peak response of inelastic 

MDOF systems has been evaluated extensively by the authors. Goel and Chopra (2004) analyzed  
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Table 1 Properties of modal inelastic SDOF systems 

Properties Mode 1 Mode 2 Mode 3 

𝐿 (𝑘 ) 2736789 -920860 696400 

   1.36 -0.5309 0.2406 

  
  (𝑘 ) 3740189 488839.1 167531.5 

   𝑦( 𝑚) 26.51 18.65 19.12 

   (𝑠𝑒 ) 2.2671 0.8525 0.4927 

   0.19 0.13 0.14 

𝑘  (𝑘 / 𝑚) 210.3867 500.2020 1132.6086 

   ( ) 1.948 1.103 1.136 

  (𝑘 ) 6168.977 4374.343 4414.347 

𝑞 ( ) 0.168 0.912 2.685 

 

 

Fig. 3 Modal Pushover curves and capacity diagrams for the first three modes 

 

 

and evaluated the response of several procedures for nonlinear static analysis, including Pushover 

analysis where only fundamental mode was taken into account. 

The accurate of the proposed procedure is evaluated for a 9-story SAC steel building (Chopra 

and Goel 2001). The „exact‟ response of a rigorous nonlinear time history analysis (NL-THA) is 

compared with the response obtained by the approximate multimodal dynamic analysis (AMDA). 

The 9-story structure meets the seismic code requirements and represents typical medium-rise 

buildings designed for the Los Angeles, California region. The Pushover curves of this structure 

presented in (Chopra and Goel 2001) are sufficient for the objectives of this study. The selected 

structure is tested and detailed in this section when subjected to one time and half (1.5) El Centro 

1940 ground motion. The properties of the first three modes of vibration are summarized in Table 

1. 
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Simplified procedure for seismic demands assessment of structures 

The capacity curves of the three first modes are shown in Fig. 3. Next, the Pushover curves are 

transformed to equivalent SDOF systems (see Fig. 3). The conversion of the idealized Pushover 

curve to the force-displacement, (see Fig. 3(b)) for the n
th
–mode of inelastic SDOF system is 

obtained by using (  
     𝑦) 

    
   

  
    

          
   

𝛤    
                       (17) 

In which     is the spectral acceleration,     the base shear,     is the amplitude of    

and     the roof displacement. 

The approximate multimodal dynamic analysis of the structure starts with obtaining the 

multimodal Pushover curves of the MDOF system subjected to lateral forces distributed over the 

building height. In the proposed procedure, the movements will be decomposed in the form of a 

series of normal modes in terms of the ductility demand. Eq. (15) is solved, and the resulting 

ductility demand history is decomposed into its “modal” components. The obtained response 

histories of ductility demand and roof displacements for the three first modes of the selected 

building subject to 1.5 times El Centro ground motion (N/S) component (    0.32   
    36.14  𝑚/𝑠𝑒   and     21.34 𝑚) are shown in Fig. 4. 

The proposed procedure is evaluated by comparing the computed displacements histories 

according to Eqs. (15)-(16), considering three modes with those estimated by the NL-THA 

analysis and the Uncoupled Modal Response History Analysis (UMRHA) that was developed by 

Chopra and Goel (2001) (see Figs. 4 and 5). 

 

 

 

Fig. 4 Response histories of ductility demand and roof displacement from the proposed procedure for 

1.5×El Centro ground motion: first three modal responses and total (all modes) response 
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Fig. 5 Total response histories of roof displacement for 1.5×El Centro ground motion from the 

UMRHA and NL-THA (Chopra and Goel 2001) 

 
 

Following the AMDA procedure aforementioned, the total response is determined using the 

UMRHA and NL-THA (“exact”). Fig. 4 shows the ductility demand, also is shown in the same 

figure the roof displacements time histories. It is clear from the comparison shown in Figs. 4 and 5 

that the AMDA gives results in good agreement with the NL-THA. 

 

 

3. Nonlinear multimodal spectral analysis (NL-MSA) 
 

The Approximate Multimodal Dynamic Analysis (AMDA) developed in the precedent part 

provides structural responses as a function of time and evaluated specifically for the n
th
 mode, but 

design and verification of different structural elements and the seismic demand is usually based on 

peak values of forces and deformations over the duration of the earthquake-induced response. An 

approximate spectral method is proposed in this paper. This method is suitable for estimating the 

inelastic seismic response of MDOF systems. However, it is based on the inelastic modal 

decomposition, and will be simplified when using an inelastic response spectrum in terms of the 

ductility demand. In this procedure the maximum ductility demand for n
th
 mode are generally not 

attained at the same time 𝑡. Therefore the value of ductility demand of the structure should be 

calculated as a combination. A summary of the implementation of this procedure is presented 

below. In this method, the peak responses of inelastic MDOF systems can be calculated from the 

inelastic response spectrum. The results of this procedure are quite accurate for structural design 

applications. 

 
3.1 Design spectra 
 

The seismic demand in this paper is determined by using the inelastic design spectra developed 

by the authors (Benazouz et al. 2012), which have been called ductility demand response spectrum 

(DDRS). These spectra depend on the normalized yield strength coefficient ( ) (defined as the 

yield strength coefficient divided by the Peak Ground Acceleration of the earthquake) that is fixed. 

The ductility demand quantity is calculated directly by drawing a vertical line passing by the 

natural period of the n
th
 mode of the structure (see Fig. 6). On the other hand, DDRS spectra are 

obtained when maximum ductility demands are assessed for a constant value of normalized yield  
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Fig. 6 DDRS for inelastic system computed for El Centro 1940 (N/S) component ( =0.25, 0.5, 

0.75, 1, 1.5, 2, 2.5 from top line to bottom line) 

 

 

strength coefficient ( ). To calculate peak meaningful system response to an ensemble of ground 

motions, Benazouz et al. (2012) have used the normalized yield strength coefficient ( ) to 

construct DDRS spectra. The utilization of this parameter has to be defined relative to the intensity 

of individual ground motions. Using the parameter    as (Benazouz et al. 2012, Mahin and Lin 

1984) 

   
   

   
                                 (18) 

Where,     stands for the Peak Ground Acceleration. 

Incorporating    into Eq. (15) results: 

 ̈  2     ̇     
      

 (1    )  (   ̇)   
  
 (    )

  
 ̈ ̅̅ ̅(𝑡)        (19) 

In which,  ̈ ̅̅ ̅(𝑡) represents the ground acceleration normalized with respect to the    . 

The ground acceleration has been normalized such that its value varies from -1 to 1. Eq. (19) 

implies that for a MDOF inelastic system, if    and    are fixed, the intensity of the ground 

motion has no effect on the peak normalized ductility factor. This permits the construction of the 

ductility response spectrum for an ensemble of ground motions with common frequency content. 

The DDRS is constructed also for El Centro 1940 ground motion (N/S) component and is 

shown in Fig. 6 in function of the parameter ( ). 

Simplified equations for ductility demands   would obviously facilitate the estimation of the 

ductility and deformation of inelastic SDOF system has been developed by (Benazouz et al. 2012). 

Such an equation for   could be used to determine the ductility demand for a new or rehabilitated 

structure with known normalized yield strength coefficient ( ) and post-to-preyield stiffness ratio 

( ). 

The spectrum is divided into three period regions according to the procedure described in 

(Benazouz et al. 2012), where   0.6𝑠𝑒  marks the transition from the acceleration-sensitive 

region to the velocity sensitive region which ends at     3 𝑠. Such an equation for   has been  
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Table 2 Parameters in Eq. (20) for each value of   and   

Parameters 

  1 
  1  (all 

values of  ) 
 ( ) 

0 3 5 10 

a 1.24 1.12 1.08 1.04 1.23 

b 0.98 0.94 0.92 0.88 0.85 

c 1.69 1.65 1.68 1.68 1.21    

 

 

Fig. 7 Peak response of ductility demand from the DDRS spectra and the AMDA procedure for 1.5 ×El 

Centro ground motion: first three modal responses 

 

 

derived in terms of  ,  , and  , and they are tabulated in Table 2 for different ranges of   and 

 . 

  
  ( ) / (𝑇)   

 
                                  𝑟     𝑣  𝑢𝑒𝑠                     (20) 

  
  (   )

 
0.027   .                        0.6𝑠𝑒                    (21) 

Fig. 7 provides a comparative study of the AMDA and the DDRS spectra (Benazouz et al. 
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2012), in the case of the first application under 1.5* El-Centro ground motion. However, it is 

challenging to develop a simple procedure able to include the higher vibration modes in the total 

response. 

 
3.2 Estimation of the ductility and base shear of structures 
 
To obtain the peak response from the NL-MSA procedure, the ductility demand when 

estimated by Eqs. (20)-(21) is used to read and compute the roof displacement and base shear 

using the simple equation repeated here (see Eq. (10) and (16)): 

For the n
th
 mode, the maximum displacement of the original structure based on the ductility 

demand is given by 

         𝑦                              (22) 

                 𝑚                             (23) 

Eqs. (5) and (7) lead to estimate the maximum floor displacements relative to the n
th
 mode by 

the following equation 

                                       (24) 

By using the second derivation of the precedent equation and multiplied by the mass vector of 

the structure, the equivalent static lateral forces  𝑖 are given by the following equation 

      𝑚𝑖   ̈                              (25) 

In which 𝑚𝑖 is the mass of the i
th
 level and  ̈  the acceleration of the SDOF system. 

In the nonlinear static analysis, for a SDOF equivalent system, the Push of the mass   
  with a 

positive displacement    implies that  ̇  0, in other words (see Eq. (13)) 

 ̇  0 if {
  0           𝑠    𝑟𝑒 𝑠   
  0           𝑠  𝑒 𝑟𝑒 𝑠   

    (26) 

In this case, Eq. (13) can be rewritten in the following form 

 ̇   ̇ [1  | |
 ]                             (27) 

Solving Eq. (27) (determination of homogeneous and particular solutions) leads to the 

following equation 

  1  𝑒                                 (28) 

Eq. (28) is valid only if the mass of the system is pushed by a positive displacement and   0. 

Then, to determine the coordinates of the capacity curve for a SDOF system, one determine the 

dimensioless   for a range of displacements. The base shear      is given by the following 

equation 

         
      

 (1    )(1  𝑒 𝑝 (   ))               (29) 

Combining those modal responses and using any of the proved modal combination methods 

(SRSS, square root of the sum of squares), we obtain a good estimation of the peak value of the 

total structural response. Eventhought this technique lacks theoretical basis, however it is proved 

to provide meaningful results. 
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𝑟  (∑𝑟 
 ) /                               (30) 

At this level, the NL-MSA provides a good estimation of the maxima (peak modal response) of 

any response (displacement profile, story drifts, joint rotations, etc.) 

 
3.3 Step by step NL-MSA procedure 
 

For convenience we summarize the nonlinear multimodal spectral analysis (NL-MSA) as a 

series of steps used to estimate the peak inelastic response of MDOF systems: 

1- Calculate the natural vibrating period   , the natural frequency    and the mode shapes 

  , for linearly elastic vibration of the structure. 

2- For the n
th
 mode, develop the diagram of force-deformation relationship between the base 

shear and the top displacement         (capacity curve). 

3- Idealize this curve as a bilinear curve. 

4- Transform the idealized Pushover curve to the capacity diagram        (Acceleration – 

Displacement format) using Eq (17). 

5- Define the ground motion  ̈ (𝑡). 

6- Compute the post-to-preyield stiffness ratio    and the normalized yield strength    with 

the known 𝑞  and    , and select the damping ratio    of the design structure. 

7- Calculate the ductility demand for the n
th
 mode by using Eqs. (20)-(21). 

8- Calculate peak roof displacement and base shear of the original structure by using Eq. (24) 

and Eq. (29), respectively. 

9- Calculate the floor displacement, story drifts, etc, from the capacity curve database obtained 

in the second step of the procedure.  

10- Repeat Steps 3 to 8 many times (for different modes) as required for sufficient accuracy. 

11- Determine the total response (demand) by combining the peak “modal” responses using the 

SRSS rule (Eq. (30)). 

Table 3 presents the results of the combined response of the first application (9-story SAC steel 

building) obtained by the DDRS spectra considering one, two, and three “modes”, respectively, 

and the errors in these estimates relative to the exact response from NL-THA (Chopra and Goel 

2001). 

 
 
4. Application and discussion  
 

Two examples of eight and three stories reinforced concrete plane frame structures (regular 

structures) are considered in order to evaluate the efficiency of the proposed method. They have 

been chosen for representing the behavior of low and medium-rise buildings. These examples are 

 

 
Table 3 Peak values of floor displacements from the NL-MSA and NL-THA for 1.5  El Centro ground 

motion 

Procedure 
Combined (NL-MSA) 

NL-THA 
Errors (%) 

1 Mode 2 Modes 3 Modes 1 Mode 2 Modes 3 Modes 

DDRS Spectra 44.12 44.38 44.45 
44.6 

-1.08 -0.49 -0.33 

DDRS Design Spectra 34.54 34.90 34.91 -29.12 -27.79 -21.39 
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Fig. 8 Elevation view of the 8St and 3St structures 

 
Table 4 Dynamic characteristics 

 Mode    (  )    (𝑠𝑒 )    𝐿 ( ) 

8St 

1 1,22 0,81 1,558 77,10 

2 3,60 0,27 -0,611 11,87 

3 6,40 0,15 -0,386 4,74 

3St 

1 3.13 0.32 0.461 85.63 

2 10.54 0.094 0.168 11.38 

3 20.07 0.05 0.086 2.3 

 

 
an eight (8St) and three-story (3St) reinforced concrete buildings as illustrated in Fig. 8. These 

structures are designed according to the Algerian code RPA-2003 (CGS 2003). Each structure 

consists of three bays frame, spaced at 4  and a uniform story height of 3  with no significant 

height irregularities. The purpose of this study is to confirm the application of the proposed 

method for each frame structure under a design earthquake. The geometric properties of the 

components are presented in Fig. 8. Vibration modes and periods of these structures for linearly 

elastic case are summarized in Table 4. The capacity curves were obtained by applying the 

Adaptive Pushover Analysis (Reinhorn et al. 2006). These curves were transformed to the capacity 

diagram (      ) format by using Eq. (17), and gave the curves shown in Fig. 9. The numerical 

models were simulated using IDARC program (Reinhorn 1997). The supports were modeled as 

infinitely rigid to avoid the soil-structure interaction. The periods of the selected structures were: 

  0.81     for the 8St building, in the velocity-sensitive spectral region, and   0.32     for 

the 3St building, in the acceleration-sensitive spectral region. Results obtained show that the 

proposed procedure give peak displacements close to those that obtained by NL-THA. Concrete 

compressive strength was 25    . Concrete density is 2.5  /  , concrete Young modulus is 

3.21 10  kN/m² and reinforcements yield strength is 400    . 
 

 

 
 

3St 

 

 

8St 
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Fig. 9 Pushover curve and capacity diagram of the 1
st
 mode for the 8St and the 3St structures 

 
 
4.1 Ground motion records 
 
Four ensembles of ground motions, each with 20 records were considered in this application. 

The ensembles, denoted by LMSR, LMLR, SMSR, and SMLR represent four combinations of 

large (M=6.6-6.9) or small (M=5.8-6.5) magnitude and short (R=13-30 km) or long (R=30-60 km) 

epicentral distance. These motions were selected from the PEER (Pacific Earthquake Engineering 

Research Center) Strong Motion Database. More details about this database can be found 

elsewhere (Chopra et al. 2003). These values were used for both horizontal directions of ground 

motion in the proposed procedure in order to be able to compare its results with those obtained by 

NL-THA. 

 

4.2 Capacity curve 
 
First, the Pushover curves of the two structures were transformed to the equivalent SDOF 

system (see Fig. 9). For example the Pushover curve of the eight-story structure is transformed to 

the equivalent SDOF capacity curve. In this case, the transformation factor amounts of    
1.558, and the effective mass is equal to 𝐿  40912454.4   . The capacity diagram shown in 

Fig. 9 was obtained by dividing the forces corresponding to the idealized SDOF system by the 

equivalent mass. For 8St structure, the yield strength ratio is equal to 𝑞    /𝐿  0.795. 

 
4.3 Seismic demand 
 
The AMDA was evaluated by comparing the computed displacements (displacement divided 

by the building height), and the inter-story drift ratio (relative drift between two consecutive 

stories normalized by story height). Since the time-history results were based on a set of 80 

simulations, both the mean and the dispersion (standard deviation  ) about the mean value are 

shown in the plots. 

Peak displacement profiles and inter-story drift ratio profiles estimated by the NL-THA 

analyses and those obtained by the AMDA procedure for the buildings are shown in Figs. 10-11.  
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Fig. 10 Displacements obtained by the AMDA and NL-THA for the four ensembles 

 

 

Fig. 11 Inter-story drift ratio obtained by the AMDA and NL-THA for the four ensembles 

 

 

These figures show the means and the standard deviations of the peak displacement profile 

estimated by NL-THA analyses and the predictions using the AMDA method for each building  
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Fig. 12 Displacements and inter-story drifts ratio along the elevation for the 8St and the 3St buildings, 

obtained by the NL-THA, AMDA, NL-MSA (Eq.20) and NL-MSA (Eq.21) for LMSR ensemble 

 

 

sorted by type of record. 

The displacement demands along the heights of the buildings showed that the AMDA method 

gives good results and generally yield to better estimates of the peak displacement profiles 

particularly for the 8St building. Comparing the time-history responses for the different 

accelerations indicates that the difference between the ground motion of far field records and near 

field records generally produce more variability in the demands. It is interesting to mention that 

the story displacement demands from the AMDA method are always conservative. 

Presented in Fig. 12 are the displacements profile and inter-story drift ratios of the two 

structures determined using two different equations for all periods (see Eq. (20)), and for the 

structure that its period less than 0.6 sec for the sensitive acceleration region by using Eq. (21). 

The displacements profile and inter-story drift ratio estimates by the two equations are compared 

in Fig. 12 with those from the AMDA and the NL-THA. These results shown in Fig. 12 illustrate 

that the approximate equations leads to significant error. The approximate Eq. (20) significantly 

overestimates the displacements and the inter-story drift demands; Eq. (21) significantly 

underestimates the seismic demands and provides excellent estimations. 

 
 
5. Conclusions 
 

An approximate procedure for seismic demands assessment of MDOF system has been 

developed and its accuracy was verified by examples. An inelastic modal decomposition in terms 
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of ductility has been developed to construct the Approximate Multimodal Dynamic Analysis. That 

was verified using the seismic response of an example steel frame structure for which capacity 

curve data is available. The results indicated that more reliable displacement predictions are 

obtained from the proposed method.  

Also, as presented in this paper, a nonlinear multimodal spectral analysis was developed. The 

base shear–roof displacement (       ) curve is developed from a Pushover analysis. This 

Pushover curve is idealized as a bilinear force–deformation relation for the n
th
 mode of inelastic 

SDOF system. This idealization is used to determine the normalized yield strength coefficient    

and the post-to-preyield stiffness ratio    to estimate the ductility demand. The peak deformation 

of this SDOF system, determined by the design spectra DDRS, is used to determine the target 

value of roof displacement at which the seismic response is determined by the Pushover analysis. 

The total demand is determined by combining the responses of the first three modes by the SRSS 

combination rule. 

The efficiency of the NL-MSA is evident; the designer needs only to have the Pushover curve 

of the structure and the design earthquake(s) to determine peak response of any structure, namely, 

base displacement and base shear. This method is applicable to a variety of uses such as a rapid 

evaluation technique for a large inventory of buildings, a design verification procedure for new 

construction, an evaluation procedure for an existing structure to identify damage states. The 

ductility demand is given by the direct estimation where the ductility calculated from the design 

spectra diagram matches the value associated with the period of the system. This method gives the 

deformation value consistent with the selected DDRS inelastic response spectrum, while retaining 

the attraction of graphical implementation of other methods. 

The results of the NL-MSA method are acceptable while compared to the nonlinear dynamic 

analysis results. For structures that the first mode contributes significantly to the response, the NL-

MSA method will generally give good estimates of demand for global deformations (application 

2). However, inelastic dynamic response may differ significantly from a selected or from the 

response distributions with constant lateral loads. For example, we can expect significant 

differences in structural response due to the influence of vibration modes at higher frequencies. 
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